/* Group 19360.h downloaded from the LMFDB on 18 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 5, 2, 2, 11, 2, 2, 11, 16, 380882, 106210, 66, 86403, 203851, 15515, 577604, 3212, 49460, 828, 739205, 390733, 45717, 22205, 141, 640646, 369614, 104182, 51774, 166, 225287, 225295, 114199, 56351]); a,b,c,d := Explode([GPC.1, GPC.3, GPC.5, GPC.6]); AssignNames(~GPC, ["a", "a2", "b", "b2", "c", "d", "d2", "d4"]); GPerm := PermutationGroup< 30 | (1,2,8,6,11,5,10,13,18,20,4)(3,7,21,14,15,17,9,19,12,16,22)(23,24)(25,27)(26,28)(29,30), (1,3,13,16,11,21,4,17,20,22)(2,9,5,12,18,15,8,7,6,19)(10,14)(25,27)(26,29)(28,30), (1,4,6,20,13,11,5,2,10,18)(3,14,21,9,7,22,19,12,15,16)(23,25,24,27)(26,29,28,30), (1,2,6,13,11,20,18,10,8,5)(3,15,7,9,17,14,22,21,12,16), (1,5,18,2,4)(3,16,22,15,19)(6,20,10,8,11)(7,14,21,12,17), (1,6,10,20,2,11,13,4,8,5,18)(3,7,21,14,15,17,9,19,12,16,22), (1,7,11,19,4,17,18,21,5,14,10,22,8,15,13,9,20,16,2,12)(3,6)(23,26,25,29,24,28,27,30), (23,24)(25,27)(26,28)(29,30) >; GLFp := MatrixGroup< 4, GF(11) | [[2, 7, 6, 1, 3, 7, 2, 10, 8, 1, 0, 7, 6, 9, 4, 2], [5, 3, 8, 0, 0, 0, 1, 6, 5, 1, 4, 8, 8, 7, 5, 2], [9, 9, 2, 3, 3, 8, 2, 2, 9, 0, 1, 2, 1, 9, 8, 0], [7, 10, 1, 7, 3, 8, 0, 1, 7, 8, 5, 1, 5, 7, 8, 6], [8, 0, 2, 2, 5, 2, 5, 10, 7, 6, 4, 6, 1, 9, 9, 3], [0, 2, 5, 1, 6, 10, 6, 5, 5, 3, 10, 9, 6, 5, 5, 9], [4, 10, 1, 7, 4, 6, 3, 1, 5, 6, 7, 1, 8, 5, 7, 9], [10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_19360_h := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^22>,< 2, 44, a^5*b^2*c*d^22>,< 2, 44, a^5*d^33>,< 2, 121, b^2*c^9*d^41>,< 2, 121, b^2*c^9*d^11>,< 4, 2, d^11>,< 4, 44, a^5*b*d^19>,< 4, 44, a^5*b*c^10*d^8>,< 4, 242, b^2*c^9*d^10>,< 5, 121, a^4*c*d^24>,< 5, 121, a^6*c^2*d^4>,< 5, 121, a^8*c^6*d^12>,< 5, 121, a^2*c^9*d^40>,< 8, 242, b*c^9*d^5>,< 8, 242, b^3*d^5>,< 8, 242, b*c^9*d^38>,< 8, 242, b^3*d^16>,< 10, 121, a^2*b^2*d>,< 10, 121, a^8*b^2*d>,< 10, 121, a^6*b^2*d>,< 10, 121, a^4*b^2*d>,< 10, 121, a^2*b^2*d^3>,< 10, 121, a^8*b^2*d^3>,< 10, 121, a^6*b^2*d^3>,< 10, 121, a^4*b^2*d^3>,< 10, 121, a^8*c^6*d^10>,< 10, 121, a^2*c^9*d^26>,< 10, 121, a^4*c*d^42>,< 10, 121, a^6*c^2*d^18>,< 10, 484, a*b^2*d^10>,< 10, 484, a^9*b^2*c^6*d^38>,< 10, 484, a^3*b^2*c^9*d^30>,< 10, 484, a^7*b^2*c^2*d^34>,< 10, 484, a^3*c*d^25>,< 10, 484, a^7*c^7*d^21>,< 10, 484, a^9*c^2*d^17>,< 10, 484, a*c^4*d>,< 11, 20, d^4>,< 11, 20, c^8*d^4>,< 11, 40, c^4*d^4>,< 11, 40, c^9*d^4>,< 20, 242, a^4*b^2*c^8*d^34>,< 20, 242, a^6*b^2*c^7*d^36>,< 20, 242, a^2*b^2*d^28>,< 20, 242, a^8*b^2*c^3*d^22>,< 20, 242, a^8*c^8*d^25>,< 20, 242, a^2*c*d^43>,< 20, 242, a^4*c^5*d^39>,< 20, 242, a^6*c^10*d>,< 20, 484, a^7*b*d^27>,< 20, 484, a^3*b*d^17>,< 20, 484, a*b*d^33>,< 20, 484, a^9*b*d^15>,< 20, 484, a*b^3*c^6*d^22>,< 20, 484, a^9*b^3*c^9*d^40>,< 20, 484, a^3*b^3*c^5*d^16>,< 20, 484, a^7*b^3*c^7*d^6>,< 22, 20, d^2>,< 22, 20, c^4*d^2>,< 22, 40, c^2*d^2>,< 22, 40, c^10*d^2>,< 22, 440, a^5*c^2*d^36>,< 22, 440, a^5*c^7*d^17>,< 40, 242, a^2*b*c^2*d^11>,< 40, 242, a^8*b^3*c*d^23>,< 40, 242, a^6*b^3*c^4*d^33>,< 40, 242, a^4*b*c^7*d^13>,< 40, 242, a^8*b*c^8*d^31>,< 40, 242, a^2*b^3*c^7*d^43>,< 40, 242, a^6*b*c^5*d^21>,< 40, 242, a^4*b^3*c^2*d^41>,< 40, 242, a^2*b*c^2>,< 40, 242, a^8*b^3*c*d^34>,< 40, 242, a^6*b^3*c^4>,< 40, 242, a^4*b*c^7*d^2>,< 40, 242, a^8*b*c^8*d^20>,< 40, 242, a^2*b^3*c^7*d^10>,< 40, 242, a^6*b*c^5*d^10>,< 40, 242, a^4*b^3*c^2*d^8>,< 44, 40, d>,< 44, 40, c^2*d>,< 44, 40, c*d>,< 44, 40, c^3*d>,< 44, 40, c^5*d>,< 44, 40, c^7*d>,< 44, 440, a^5*b*c^10*d^43>,< 44, 440, a^5*b*c*d^42>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,K.1^2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-2,K.1,1,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,K.1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^2,K.1^-1,1,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,K.1^-2,K.1^-1,K.1,K.1^2,1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,1,1,1,1,-1,-1,K.1^2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,K.1^2,K.1,K.1^-1,K.1^-2,1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,1,1,1,1,-1,-1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,K.1^-1,K.1^2,K.1^-2,K.1,1,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,1,1,1,1,-1,-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,K.1,K.1^-2,K.1^2,K.1^-1,1,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,1,1,1,1,-1,-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,-1,-1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,1,1,1,1,-1,-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,-1,-1,-1,-1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,1,1,1,1,-1,-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-2,K.1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,1,1,1,1,-1,-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,K.1,K.1^-2,K.1^2,K.1^-1,-1,-1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,1,1,1,1,-1,-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,-1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,-1,1,-1,1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1^-2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,1,1,1,1,-1,1,-1*K.1^2,K.1,-1*K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,-1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,-1,1,-1,1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,1,1,1,1,-1,1,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,-1,1,1,K.1^-1,K.1^2,K.1^-2,K.1,-1,1,-1,1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,1,1,1,1,-1,1,-1*K.1,K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,-1,1,1,K.1,K.1^-2,K.1^2,K.1^-1,-1,1,-1,1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,1,1,1,1,-1,1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-2,K.1^-2,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,1,-1,1,K.1^-2,K.1^-1,K.1,K.1^2,1,-1,1,-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1^-2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,1,1,1,1,-1,1,K.1^2,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,1,-1,1,K.1^2,K.1,K.1^-1,K.1^-2,1,-1,1,-1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,1,1,1,1,-1,1,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,1,-1,1,K.1^-1,K.1^2,K.1^-2,K.1,1,-1,1,-1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,1,1,1,1,-1,1,K.1,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,1,-1,1,K.1,K.1^-2,K.1^2,K.1^-1,1,-1,1,-1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,1,1,1,1,-1,1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,-1,1,1,K.1^-2,K.1^-1,K.1,K.1^2,1,-1,1,-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,K.1^-2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,1,1,1,1,1,-1,K.1^2,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,-1,1,1,K.1^2,K.1,K.1^-1,K.1^-2,1,-1,1,-1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,1,1,1,1,1,-1,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,-1,1,1,K.1^-1,K.1^2,K.1^-2,K.1,1,-1,1,-1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,1,1,1,1,1,-1,K.1,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,-1,1,1,K.1,K.1^-2,K.1^2,K.1^-1,1,-1,1,-1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^-1,K.1^-2,-1*K.1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,K.1,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,1,1,1,1,1,-1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1,-1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,-1,1,K.1^-2,K.1^-1,K.1,K.1^2,-1,1,-1,1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,K.1^-2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,1,1,1,1,1,-1,-1*K.1^2,K.1,-1*K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^-1,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,-1,1,K.1^2,K.1,K.1^-1,K.1^-2,-1,1,-1,1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,1,1,1,1,1,-1,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,-1,1,K.1^-1,K.1^2,K.1^-2,K.1,-1,1,-1,1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,1,1,1,1,1,-1,-1*K.1,K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,1,-1,1,K.1,K.1^-2,K.1^2,K.1^-1,-1,1,-1,1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^-1,K.1^-2,-1*K.1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,K.1,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,1,1,1,1,1,-1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-2,K.1^-2,-1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,1,K.1^-2,K.1^-1,K.1,K.1^2,-1,-1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,1,1,1,1,1,1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,1,K.1^2,K.1,K.1^-1,K.1^-2,-1,-1,-1,-1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,1,1,1,1,1,1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,1,K.1^-1,K.1^2,K.1^-2,K.1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,1,1,1,1,1,1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,1,K.1,K.1^-2,K.1^2,K.1^-1,-1,-1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,1,1,1,1,1,1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,1,1,1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, -2, -2, 2, 0, 0, -2, 2, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, 2, 2, -2, 0, 0, -2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2,2,2,2,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-2,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2,2,2,2,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-2,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,2,0,0,-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,0,0,0,0,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,2,0,0,-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,0,0,0,0,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,2,0,0,-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,0,0,0,0,2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,2,0,0,-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,0,0,0,0,2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,-2,0,0,-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,-2,0,0,-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,-2,0,0,-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,-2,0,0,-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1+K.1^11,-1*K.1^3+K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3+K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1-K.1^11,K.1^3-K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^13,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3-K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,-2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,K.1+K.1^11,-1*K.1-K.1^11,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,-2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,-2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1+K.1^11,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,-2,2,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1+K.1^11,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^16,-2*K.1^4,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1+K.1^11,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^4,2*K.1^16,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,K.1^3-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^16,-2*K.1^4,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^4,2*K.1^16,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,-2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^12,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,-1*K.1-K.1^11,K.1+K.1^11,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^12,2*K.1^8,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,K.1+K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,-2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^12,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1-K.1^11,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,0,0,2,-2,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^12,2*K.1^8,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,-1*K.1-K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[20, 20, 0, 0, 0, 0, 20, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 9, -2, -2, -2, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 10, 10, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, -2, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, -10, -10, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, -2, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 0, 0, 0, 0, 20, -10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 9, -2, -2, -2, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, -10, 10, 0, 0, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 2, 2, 2, 2, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 0, 0, 0, 0, -20, -10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -9, 2, 2, 2, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 0, 0, 0, 0, -20, 10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 9, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -9, 2, 2, 2, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 10, -10, 0, 0, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, -2, -2, -2, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 2, 2, 2, 2, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, 40, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 7, 7, -4, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, 40, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 7, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 7, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 7, -4, -4, -4, 7, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, -40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, 40, 0, 0, 0, 0, -40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, -7, -7, 4, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, 40, 0, 0, 0, 0, -40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 7, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 7, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -7, 4, 4, 4, -7, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[40, -40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 18, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -18, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |40,-40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-11*K.1,11*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |40,-40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11*K.1,-11*K.1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |40,-40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,7,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-11*K.1,0,0,0,11*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |40,-40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,7,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11*K.1,0,0,0,-11*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_19360_h:= KnownIrreducibles(CR);