/* Group 193536.b downloaded from the LMFDB on 11 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 15 | (1,2)(4,6)(8,14)(9,11)(10,12)(13,15), (1,2), (4,7,6,5)(8,11,9,14)(10,15,13,12), (4,5,7), (1,2,3)(5,7)(8,11)(9,14)(10,15)(12,13), (4,5)(6,7), (4,7)(5,6), (1,3,2), (1,2,3)(4,5)(6,7)(8,9,14,10)(11,15,12,13), (1,3,2)(4,6,7,5)(8,12)(9,15)(10,14)(11,13), (5,7) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_193536_b := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 3, G!(4,6)(5,7)>,< 2, 3, G!(1,2)>,< 2, 6, G!(4,7)>,< 2, 7, G!(8,9)(10,13)(11,14)(12,15)>,< 2, 9, G!(1,2)(4,5)(6,7)>,< 2, 18, G!(1,3)(4,7)>,< 2, 21, G!(2,3)(8,9)(10,13)(11,14)(12,15)>,< 2, 21, G!(4,5)(6,7)(8,15)(9,12)(10,11)(13,14)>,< 2, 42, G!(6,7)(8,9)(10,13)(11,14)(12,15)>,< 2, 42, G!(10,13)(11,14)>,< 2, 42, G!(8,10)(9,11)(12,14)(13,15)>,< 2, 63, G!(1,3)(4,6)(5,7)(8,9)(10,13)(11,14)(12,15)>,< 2, 126, G!(4,6)(5,7)(8,13)(9,11)(10,12)(14,15)>,< 2, 126, G!(4,5)(6,7)(9,12)(10,11)>,< 2, 126, G!(1,3)(4,6)(8,11)(9,14)(10,15)(12,13)>,< 2, 126, G!(1,3)(8,12)(9,15)>,< 2, 126, G!(1,3)(8,10)(9,14)(11,15)(12,13)>,< 2, 252, G!(6,7)(8,10)(9,15)(11,13)(12,14)>,< 2, 252, G!(4,5)(9,10)(14,15)>,< 2, 378, G!(2,3)(4,5)(6,7)(11,12)(14,15)>,< 2, 378, G!(2,3)(4,5)(6,7)(8,9)(10,11)(12,15)(13,14)>,< 2, 756, G!(1,3)(5,6)(10,13)(12,15)>,< 2, 756, G!(2,3)(4,6)(8,12)(9,15)(10,11)(13,14)>,< 3, 2, G!(1,3,2)>,< 3, 8, G!(5,7,6)>,< 3, 16, G!(1,2,3)(5,6,7)>,< 3, 224, G!(10,12,14)(11,13,15)>,< 3, 448, G!(1,3,2)(9,14,15)(11,13,12)>,< 3, 1792, G!(5,6,7)(10,14,15)(11,12,13)>,< 3, 3584, G!(1,3,2)(4,5,6)(8,14,15)(9,11,12)>,< 4, 6, G!(4,7,6,5)>,< 4, 18, G!(1,3)(4,7,6,5)>,< 4, 42, G!(4,7,6,5)(8,9)(10,13)(11,14)(12,15)>,< 4, 84, G!(8,13,10,9)(11,14,15,12)>,< 4, 126, G!(1,2)(4,5,6,7)(8,11)(9,14)(10,15)(12,13)>,< 4, 168, G!(10,14,13,11)(12,15)>,< 4, 168, G!(8,11,10,9)(12,13,14,15)>,< 4, 252, G!(2,3)(8,14,15,13)(9,10,12,11)>,< 4, 252, G!(4,5,6,7)(9,15)(10,14)>,< 4, 252, G!(4,5)(6,7)(8,12,9,15)(10,11,13,14)>,< 4, 252, G!(4,5,6,7)(8,11)(9,13)(10,15)(12,14)>,< 4, 504, G!(4,7,5,6)(8,10,15,11)(9,13,12,14)>,< 4, 504, G!(4,6)(5,7)(8,9,14,13)(10,11,12,15)>,< 4, 504, G!(2,3)(9,11,15,13)(10,14)>,< 4, 504, G!(1,2)(8,11,12,10)(9,14,15,13)>,< 4, 504, G!(4,6)(5,7)(8,12,11,13)(10,15)>,< 4, 504, G!(4,6)(8,11,10,15)(9,12,13,14)>,< 4, 756, G!(1,3)(4,7,5,6)(8,9)(10,14)(11,13)(12,15)>,< 4, 756, G!(2,3)(4,7)(5,6)(8,14,9,11)(10,12,13,15)>,< 4, 756, G!(1,2)(4,7,6,5)(8,13)(14,15)>,< 4, 1008, G!(4,7,5,6)(8,15)(9,11,12,10)>,< 4, 1008, G!(4,7,6,5)(8,10,11,9)(12,14,13,15)>,< 4, 1008, G!(5,7)(8,12,15,14)(9,11,13,10)>,< 4, 1008, G!(5,7)(8,10,15,11)(9,12)>,< 4, 1512, G!(1,3)(4,5)(6,7)(8,9,14,10)(11,15,12,13)>,< 4, 1512, G!(1,3)(4,7,5,6)(8,13,11,12)(9,10,14,15)>,< 4, 1512, G!(1,3)(4,5)(8,15,9,12)(10,14,13,11)>,< 4, 1512, G!(1,3)(4,5)(6,7)(8,14,13,15)(11,12)>,< 4, 3024, G!(1,3)(4,7,6,5)(8,10,13,12)(9,15,11,14)>,< 4, 3024, G!(2,3)(4,7)(8,13,15,14)(9,12)>,< 4, 3024, G!(1,2)(6,7)(8,12,13,10)(9,14,11,15)>,< 4, 3024, G!(1,2)(4,6,5,7)(8,9)(10,15,13,12)>,< 6, 6, G!(1,3,2)(4,6)(5,7)>,< 6, 12, G!(1,2,3)(6,7)>,< 6, 14, G!(1,3,2)(8,10)(9,13)(11,15)(12,14)>,< 6, 24, G!(1,2)(4,6,5)>,< 6, 42, G!(1,3,2)(4,5)(6,7)(8,15)(9,12)(10,11)(13,14)>,< 6, 56, G!(4,6,7)(8,14)(9,11)(10,12)(13,15)>,< 6, 84, G!(1,2,3)(6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 84, G!(1,3,2)(10,13)(11,14)>,< 6, 84, G!(1,3,2)(8,10)(9,11)(12,14)(13,15)>,< 6, 112, G!(1,3,2)(4,7,6)(8,9)(10,13)(11,14)(12,15)>,< 6, 168, G!(2,3)(5,6,7)(8,9)(10,13)(11,14)(12,15)>,< 6, 224, G!(8,9)(10,11,12,13,14,15)>,< 6, 252, G!(1,2,3)(4,5)(6,7)(9,12)(10,11)>,< 6, 252, G!(1,3,2)(4,6)(5,7)(8,11)(9,10)(12,13)(14,15)>,< 6, 336, G!(4,5,6)(9,15)(11,13)>,< 6, 336, G!(4,5,7)(8,12)(9,15)(10,11)(13,14)>,< 6, 448, G!(1,2,3)(8,15)(9,14,10,12,13,11)>,< 6, 504, G!(1,3,2)(6,7)(8,10)(9,15)(11,13)(12,14)>,< 6, 504, G!(1,3,2)(4,5)(9,10)(14,15)>,< 6, 672, G!(4,6)(5,7)(8,9,12)(10,11,13)>,< 6, 672, G!(2,3)(8,9,13)(11,14,12)>,< 6, 672, G!(1,3,2)(4,6,7)(8,10)(9,15)(11,13)(12,14)>,< 6, 672, G!(1,2,3)(4,6,5)(10,13)(11,14)>,< 6, 672, G!(4,5)(6,7)(8,9,10,11,14,15)(12,13)>,< 6, 672, G!(2,3)(8,15)(9,10,13,12,11,14)>,< 6, 1008, G!(1,3)(4,7,5)(8,12)(9,15)>,< 6, 1008, G!(1,3)(4,5,7)(8,10)(9,14)(11,15)(12,13)>,< 6, 1344, G!(1,2,3)(4,5)(6,7)(8,10)(9,11,14,13,15,12)>,< 6, 1344, G!(1,2,3)(4,7)(5,6)(9,15,12)(10,14,11)>,< 6, 1344, G!(4,5)(8,13,14,12,11,10)(9,15)>,< 6, 1344, G!(4,6)(9,12,15)(10,13,11)>,< 6, 1792, G!(4,5,6)(8,10,14,15,11,13)(9,12)>,< 6, 2016, G!(1,3)(4,6)(5,7)(8,13,12,9,10,15)(11,14)>,< 6, 2016, G!(1,2)(4,7)(5,6)(8,15,12)(10,13,11)>,< 6, 2688, G!(1,2,3)(4,7)(8,12,9)(10,11,14)>,< 6, 2688, G!(1,2,3)(5,6)(8,12)(9,13,14,15,11,10)>,< 6, 3584, G!(1,2,3)(4,6,5)(8,12,14,9,15,11)(10,13)>,< 6, 4032, G!(2,3)(4,5)(8,9,14)(10,12,15)>,< 6, 4032, G!(1,3)(4,6)(8,12,10,11,13,15)(9,14)>,< 6, 5376, G!(1,2)(5,7,6)(10,15,14)(11,13,12)>,< 6, 5376, G!(1,2)(5,7,6)(8,9,15,10,13,11)(12,14)>,< 7, 192, G!(8,9,15,10,11,12,14)>,< 7, 192, G!(8,14,12,11,10,15,9)>,< 12, 12, G!(1,2,3)(4,5,6,7)>,< 12, 84, G!(1,2,3)(4,5,6,7)(8,9)(10,13)(11,14)(12,15)>,< 12, 168, G!(1,2,3)(8,9,10,13)(11,12,15,14)>,< 12, 336, G!(1,2,3)(10,11,13,14)(12,15)>,< 12, 336, G!(1,2,3)(8,9,10,11)(12,15,14,13)>,< 12, 504, G!(1,2,3)(4,7,6,5)(9,15)(10,14)>,< 12, 504, G!(1,2,3)(4,5)(6,7)(8,15,9,12)(10,14,13,11)>,< 12, 504, G!(1,3,2)(4,7,6,5)(8,11)(9,13)(10,15)(12,14)>,< 12, 672, G!(4,7,6)(8,10,14,12)(9,13,11,15)>,< 12, 1008, G!(1,2,3)(4,6,5,7)(8,11,15,10)(9,14,12,13)>,< 12, 1008, G!(1,2,3)(4,6)(5,7)(8,13,14,9)(10,15,12,11)>,< 12, 1008, G!(1,2,3)(4,6)(5,7)(8,13,11,12)(10,15)>,< 12, 1008, G!(1,3,2)(4,6)(8,15,10,11)(9,14,13,12)>,< 12, 1344, G!(4,7,5,6)(8,15,12)(11,13,14)>,< 12, 1344, G!(5,7,6)(8,13,10,12)(9,15,14,11)>,< 12, 1344, G!(1,2,3)(4,6,7)(8,12,9,15)(10,11,13,14)>,< 12, 1344, G!(4,6,7)(8,11)(9,12,14,13)>,< 12, 1344, G!(4,6,7,5)(8,15,9,13,14,10)(11,12)>,< 12, 2016, G!(1,3,2)(4,6,5,7)(8,15)(9,10,12,11)>,< 12, 2016, G!(1,2,3)(4,5,6,7)(8,9,11,10)(12,15,13,14)>,< 12, 2016, G!(1,2,3)(5,7)(8,14,15,12)(9,10,13,11)>,< 12, 2016, G!(1,2,3)(5,7)(8,11,15,10)(9,12)>,< 12, 2016, G!(2,3)(4,6,5)(8,13,15,14)(9,11,12,10)>,< 12, 2688, G!(1,3,2)(4,6,7,5)(9,12,15)(10,11,14)>,< 12, 2688, G!(1,2,3)(4,7,6)(8,11,10,13)(9,12,15,14)>,< 12, 2688, G!(1,3,2)(4,5,6)(8,9)(10,11,13,14)>,< 12, 2688, G!(1,2,3)(4,5,6,7)(8,13)(9,11,14,10,12,15)>,< 12, 4032, G!(1,2)(4,7,6,5)(8,12,9)(10,13,11)>,< 12, 4032, G!(2,3)(4,6,5)(9,13,15,11)(10,14)>,< 12, 4032, G!(1,2)(4,7,5)(8,10,12,11)(9,13,15,14)>,< 12, 4032, G!(1,2)(4,7,6,5)(8,11)(9,13,15,14,12,10)>,< 14, 576, G!(4,6)(5,7)(8,11,9,12,15,14,10)>,< 14, 576, G!(4,6)(5,7)(8,10,14,15,12,9,11)>,< 14, 576, G!(1,2)(8,11,13,14,12,10,9)>,< 14, 576, G!(1,2)(8,9,10,12,14,13,11)>,< 14, 1152, G!(6,7)(8,13,9,12,10,14,11)>,< 14, 1152, G!(6,7)(8,11,14,10,12,9,13)>,< 14, 1728, G!(1,2)(4,5)(6,7)(8,15,11,14,9,10,12)>,< 14, 1728, G!(1,2)(4,5)(6,7)(8,12,10,9,14,11,15)>,< 14, 3456, G!(1,3)(4,7)(8,11,12,10,14,13,9)>,< 14, 3456, G!(1,3)(4,7)(8,9,13,14,10,12,11)>,< 21, 384, G!(1,2,3)(8,15,11,14,9,10,12)>,< 21, 384, G!(1,3,2)(8,12,10,9,14,11,15)>,< 21, 1536, G!(4,5,6)(8,14,9,13,10,11,12)>,< 21, 1536, G!(4,6,5)(8,12,11,10,13,9,14)>,< 21, 3072, G!(1,2,3)(5,6,7)(8,14,13,10,9,15,11)>,< 21, 3072, G!(1,3,2)(5,7,6)(8,11,15,9,10,13,14)>,< 28, 1152, G!(4,5,6,7)(8,12,10,9,14,11,15)>,< 28, 1152, G!(4,7,6,5)(8,15,11,14,9,10,12)>,< 28, 3456, G!(1,3)(4,5,6,7)(8,15,11,14,9,10,12)>,< 28, 3456, G!(1,3)(4,7,6,5)(8,12,10,9,14,11,15)>,< 42, 1152, G!(1,3,2)(4,6)(5,7)(8,9,15,10,11,12,14)>,< 42, 1152, G!(1,2,3)(4,6)(5,7)(8,14,12,11,10,15,9)>,< 42, 2304, G!(1,2,3)(6,7)(8,14,12,13,11,10,9)>,< 42, 2304, G!(1,3,2)(6,7)(8,9,10,11,13,12,14)>,< 42, 4608, G!(1,2)(4,6,5)(8,10,14,11,9,12,13)>,< 42, 4608, G!(1,2)(4,5,6)(8,13,12,9,11,14,10)>,< 84, 2304, G!(1,2,3)(4,7,6,5)(8,11,9,12,15,14,10)>,< 84, 2304, G!(1,3,2)(4,5,6,7)(8,10,14,15,12,9,11)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, -1, 2, -1, 2, -1, 2, -1, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, -1, 2, -1, -1, -1, -1, 0, 2, -1, -1, 2, 2, -1, -1, -1, 2, 2, 0, -1, 0, -1, 0, 0, -1, -1, 2, 2, 2, 0, 0, -1, -1, -1, 0, 0, 0, 0, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, 2, 2, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, -1, -1, 2, 2, -1, -1, 0, 0, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, -1, 2, -1, 0, 2, 2, -1, -1, 2, 2, 2, -1, -1, 2, 0, 0, 2, 2, 2, -1, 2, -1, -1, -1, 2, 2, 0, 0, -1, 2, 2, 0, 0, -1, 0, 0, -1, -1, 2, 2, 0, 0, 2, 2, 2, 0, 2, 0, -1, 0, 2, 2, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, -1, -1, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 2, 2, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 2, -2, 0, -2, 2, 2, 0, 2, -2, 2, 2, 0, -2, -2, 0, 0, -2, -2, 0, 0, 2, -1, -1, 2, 2, -1, -1, 0, 0, 0, 2, 0, 2, 2, -2, 0, 2, 0, -2, 0, 0, -2, 2, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 2, 1, 2, -1, 0, 2, 2, -1, 1, 2, 2, 2, -1, -1, 2, 0, 0, 2, 2, -2, -1, -2, -1, 1, 1, 2, 2, 0, 0, -1, -2, -2, 0, 0, -1, 0, 0, 1, 1, 2, 2, 0, 0, 2, 2, 2, 0, 2, 0, -1, 0, 2, 2, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, -1, 0, 1, 1, 0, 0, -2, -2, 2, 2, 0, 0, -2, -2, 0, 0, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, -2, 2, 0, 0, 0, 2, 2, -2, 2, 0, 2, 2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -1, 2, -1, 2, -1, 2, -1, -2, 0, -2, 2, 0, 2, 2, 0, -2, 2, -2, 0, -2, -2, 0, 2, 2, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, -1, 2, 1, -1, -1, -1, 0, 2, -1, -1, 2, 2, -1, 1, 1, 2, 2, 0, -1, 0, -1, 0, 0, -1, -1, -2, -2, 2, 0, 0, 1, 1, -1, 0, 0, 0, 0, 2, 2, 1, 1, -1, -1, -1, 1, -1, 1, 2, 1, -1, -1, 1, -1, 2, -2, 2, -2, 1, 1, 1, 1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, -2, -2, 0, 0, -1, -1, 1, 1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, 3, 1, 3, -1, 1, 3, -1, 3, 1, 3, -1, -1, -1, 1, 3, 3, 1, 1, -1, -1, 1, 1, 3, 0, 0, 3, 3, 0, 0, -1, -1, -1, 3, -1, 3, 3, 3, -1, -1, -1, 3, -1, 1, 3, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 3, 0, -1, 0, 1, 3, 3, 0, 0, 3, -1, -1, 0, 0, 3, 1, 1, -1, -1, 3, 0, 3, 0, 0, 0, -1, -1, 1, 1, 0, -1, -1, 1, 1, 0, 1, 1, 0, 0, 3, 3, -1, -1, 3, 3, 3, -1, -1, -1, 0, -1, -1, -1, 1, 0, 0, -1, 0, -1, 1, 1, -1, -1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 3, 3, -1, -1, 1, 1, -1, -1, 1, 1, 3, 3, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, 3, -1, 3, -1, -1, 3, -1, 3, -1, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 3, 0, 0, 3, 3, 0, 0, 1, 1, 1, 3, 1, 3, 3, 3, 1, -1, 1, 3, 1, -1, 3, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 3, 0, -1, 0, -1, 3, 3, 0, 0, 3, -1, -1, 0, 0, 3, -1, -1, -1, -1, 3, 0, 3, 0, 0, 0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 3, 3, 1, 1, 3, 3, 3, 1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 1, 0, 1, -1, -1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, -3, -1, 3, 1, 1, -3, -1, 3, -1, 3, 1, -1, -1, 1, -3, -3, -1, -1, 1, 1, 1, 1, 3, 0, 0, 3, 3, 0, 0, 1, -1, 1, 3, -1, 3, 3, -3, 1, -1, 1, -3, 1, -1, -3, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 3, 0, -1, 0, -1, 3, 3, 0, 0, 3, -1, -1, 0, 0, 3, -1, -1, -1, -1, -3, 0, -3, 0, 0, 0, -1, -1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, 0, 3, 3, 1, 1, 3, 3, 3, 1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 1, 0, 1, -1, -1, 1, 1, 0, 1, 0, 0, 1, 0, 0, -1, -1, -3, -3, -1, -1, -1, -1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -1, -3, 1, 3, 1, -1, -3, -1, 3, 1, 3, 1, -1, -1, -1, -3, -3, 1, 1, 1, 1, -1, -1, 3, 0, 0, 3, 3, 0, 0, -1, 1, -1, 3, 1, 3, 3, -3, -1, -1, -1, -3, -1, 1, -3, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 3, 0, -1, 0, 1, 3, 3, 0, 0, 3, -1, -1, 0, 0, 3, 1, 1, -1, -1, -3, 0, -3, 0, 0, 0, -1, -1, 1, 1, 0, 1, 1, 1, 1, 0, -1, -1, 0, 0, 3, 3, -1, -1, 3, 3, 3, -1, -1, -1, 0, -1, -1, -1, 1, 0, 0, -1, 0, -1, 1, 1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 1, 1, -3, -3, -1, -1, 1, 1, 1, 1, -1, -1, 3, 3, 0, 0, 0, 0, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,3,3,3,3,3,3,3,-1,3,-1,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,0,0,0,0,3,3,3,-1,3,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,3,3,3,3,3,3,3,-1,-1,3,3,0,-1,-1,-1,-1,0,-1,-1,0,0,0,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,3,3,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,0,1,0,1,1,1,1,-1,0,1,1,0,1,1,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,3,3,3,3,3,3,3,-1,3,-1,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,3,3,3,0,0,0,0,3,3,3,-1,3,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,1,3,3,3,3,3,3,3,-1,-1,3,3,0,-1,-1,-1,-1,0,-1,-1,0,0,0,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,3,3,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,0,1,0,1,1,1,1,-1,0,1,1,0,1,1,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,-3,-3,3,-3,3,-3,3,-1,-3,-1,-3,-1,-1,3,1,1,1,1,1,1,-1,-1,3,3,3,0,0,0,0,-3,3,-3,-1,3,1,1,1,1,-1,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,3,-3,3,-3,3,3,-3,-1,-1,3,-3,0,-1,-1,-1,-1,0,1,1,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3,-3,-1,1,1,1,-1,1,-1,1,1,1,1,-1,1,0,1,0,-1,-1,-1,-1,1,0,1,1,0,-1,-1,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,-3,-3,3,-3,3,-3,3,-1,-3,-1,-3,-1,-1,3,1,1,1,1,1,1,-1,-1,3,3,3,0,0,0,0,-3,3,-3,-1,3,1,1,1,1,-1,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,3,-3,3,-3,3,3,-3,-1,-1,3,-3,0,-1,-1,-1,-1,0,1,1,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-3,-3,-1,1,1,1,-1,1,-1,1,1,1,1,-1,1,0,1,0,-1,-1,-1,-1,1,0,1,1,0,-1,-1,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,-3,3,3,-3,-3,-3,3,-1,3,-1,-3,-1,-1,-3,1,1,-1,-1,1,1,1,1,3,3,3,0,0,0,0,3,-3,3,-1,-3,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,3,3,3,-3,3,3,3,-1,-1,3,-3,0,-1,-1,-1,-1,0,-1,-1,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,3,3,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,0,1,0,1,1,1,1,1,0,1,1,0,-1,-1,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,-3,3,3,-3,-3,-3,3,-1,3,-1,-3,-1,-1,-3,1,1,-1,-1,1,1,1,1,3,3,3,0,0,0,0,3,-3,3,-1,-3,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,3,3,3,-3,3,3,3,-1,-1,3,-3,0,-1,-1,-1,-1,0,-1,-1,0,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,3,3,-1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,0,1,0,1,1,1,1,1,0,1,1,0,-1,-1,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,3,-3,3,3,-3,3,3,-1,-3,-1,3,-1,-1,-3,-1,-1,1,1,-1,-1,1,1,3,3,3,0,0,0,0,-3,-3,-3,-1,-3,1,1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,3,-3,3,3,3,3,-3,-1,-1,3,3,0,-1,-1,-1,-1,0,1,1,0,0,0,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3,-3,-1,1,1,1,-1,1,-1,1,1,1,1,-1,1,0,1,0,-1,-1,-1,-1,-1,0,1,1,0,1,1,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |3,3,3,-3,3,3,-3,3,3,-1,-3,-1,3,-1,-1,-3,-1,-1,1,1,-1,-1,1,1,3,3,3,0,0,0,0,-3,-3,-3,-1,-3,1,1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,3,-3,3,3,3,3,-3,-1,-1,3,3,0,-1,-1,-1,-1,0,1,1,0,0,0,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-3,-3,-1,1,1,1,-1,1,-1,1,1,1,1,-1,1,0,1,0,-1,-1,-1,-1,-1,0,1,1,0,1,1,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 4, 0, 0, 0, 4, 4, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 4, -2, -2, 1, 0, 0, 0, 4, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, -2, -2, 0, -2, -2, 1, 0, 4, -2, -2, -2, -2, -2, 0, 0, 4, 4, 0, 1, 0, 1, 0, 0, -2, -2, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 4, 0, 0, -2, -2, -2, 0, -2, 0, -2, 0, -2, -2, 0, 1, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 1, 1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 6, 2, 6, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 0, 0, 0, 0, 6, 6, 6, 2, 6, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 2, 2, 6, 6, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 6, 6, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, 2, 6, 0, 0, 0, -2, 6, 2, 6, 0, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, -3, 0, 0, 6, -3, 0, 0, -2, 0, -2, 6, 0, 6, 6, 0, -2, -2, -2, 0, -2, 2, 0, -2, -2, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -3, 0, 1, 0, -1, -3, -3, 0, 0, 6, 1, 1, 0, 0, -3, -1, -1, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 6, 6, 1, 1, -3, -3, -3, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, -2, 0, -2, -1, -1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, -2, -2, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 6, -6, 6, -6, 6, 2, -6, 2, -6, 2, 2, 6, -2, -2, -2, -2, -2, -2, 2, 2, 6, 6, 6, 0, 0, 0, 0, -6, 6, -6, 2, 6, 0, 0, -2, -2, 2, -2, 0, -2, -2, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, -6, 6, -6, 6, 6, -6, 2, 2, 6, -6, 0, 2, 2, 2, 2, 0, -2, -2, 0, 0, 0, 2, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -6, -6, 2, 0, 0, -2, 2, -2, 2, -2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, 6, 6, -6, -6, -6, 6, 2, 6, 2, -6, 2, 2, -6, -2, -2, 2, 2, -2, -2, -2, -2, 6, 6, 6, 0, 0, 0, 0, 6, -6, 6, 2, -6, 0, 0, -2, 2, 2, 2, 0, 2, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 6, 6, 6, -6, 6, 6, 6, 2, 2, 6, -6, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 2, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 6, 6, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, -6, 6, 6, -6, 6, 6, 2, -6, 2, 6, 2, 2, -6, 2, 2, -2, -2, 2, 2, -2, -2, 6, 6, 6, 0, 0, 0, 0, -6, -6, -6, 2, -6, 0, 0, 2, -2, 2, -2, 0, -2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 6, -6, 6, 6, 6, 6, -6, 2, 2, 6, 6, 0, 2, 2, 2, 2, 0, -2, -2, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -6, -6, 2, 0, 0, -2, 2, -2, 2, -2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -2, 0, -2, 6, 0, 0, 0, -2, 6, -2, 6, 0, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -3, 0, 0, 6, -3, 0, 0, 2, 0, 2, 6, 0, 6, 6, 0, 2, -2, 2, 0, 2, -2, 0, -2, -2, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -3, 0, 1, 0, 1, -3, -3, 0, 0, 6, 1, 1, 0, 0, -3, 1, 1, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 6, 6, -1, -1, -3, -3, -3, -1, 1, -1, 0, -1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,-6,0,6,-6,0,-6,6,-2,0,-2,-6,-2,-2,0,2,2,0,0,2,2,0,0,6,-3,-3,0,0,0,0,0,0,0,-2,0,2,2,2,0,-2,0,-2,0,0,-2,2,2,0,2,0,0,0,0,0,-2,0,0,-2,0,0,0,0,6,0,6,3,6,-3,0,-2,-2,-3,3,0,-2,-2,1,1,0,0,0,0,0,0,1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-2,2,2,0,-2,0,1,0,2,2,0,1,-1,0,-1,0,0,0,0,0,-1,0,-1,-1,0,1,1,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,-6,0,6,-6,0,-6,6,-2,0,-2,-6,-2,-2,0,2,2,0,0,2,2,0,0,6,-3,-3,0,0,0,0,0,0,0,-2,0,2,2,2,0,-2,0,-2,0,0,-2,2,2,0,2,0,0,0,0,0,-2,0,0,-2,0,0,0,0,6,0,6,3,6,-3,0,-2,-2,-3,3,0,-2,-2,1,1,0,0,0,0,0,0,1,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-2,2,2,0,-2,0,1,0,2,2,0,1,-1,0,-1,0,0,0,0,0,-1,0,-1,-1,0,1,1,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,0,-6,6,0,0,0,6,-2,-6,-2,0,-2,-2,0,0,0,2,2,0,0,0,0,-3,6,-3,0,0,0,0,-6,0,-6,-2,0,2,2,0,2,-2,2,0,2,2,0,2,2,0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-3,3,-3,0,-3,6,3,1,1,-3,0,0,1,1,-2,-2,0,-1,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,3,3,1,-1,-1,-1,1,-1,-2,-1,-1,-1,-1,1,2,0,2,0,1,1,1,1,0,0,-1,-1,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,0,-6,6,0,0,0,6,-2,-6,-2,0,-2,-2,0,0,0,2,2,0,0,0,0,-3,6,-3,0,0,0,0,-6,0,-6,-2,0,2,2,0,2,-2,2,0,2,2,0,2,2,0,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-3,3,-3,0,-3,6,3,1,1,-3,0,0,1,1,-2,-2,0,-1,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,3,3,1,-1,-1,-1,1,-1,-2,-1,-1,-1,-1,1,2,0,2,0,1,1,1,1,0,0,-1,-1,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,0,6,6,0,0,0,6,-2,6,-2,0,-2,-2,0,0,0,-2,-2,0,0,0,0,-3,6,-3,0,0,0,0,6,0,6,-2,0,2,2,0,-2,-2,-2,0,-2,-2,0,2,2,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-3,-3,-3,0,-3,6,-3,1,1,-3,0,0,1,1,-2,-2,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-3,-3,1,-1,-1,1,1,1,-2,1,-1,-1,1,1,2,0,2,0,-1,-1,-1,-1,0,0,-1,-1,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,0,6,6,0,0,0,6,-2,6,-2,0,-2,-2,0,0,0,-2,-2,0,0,0,0,-3,6,-3,0,0,0,0,6,0,6,-2,0,2,2,0,-2,-2,-2,0,-2,-2,0,2,2,0,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-3,-3,-3,0,-3,6,-3,1,1,-3,0,0,1,1,-2,-2,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-3,-3,1,-1,-1,1,1,1,-2,1,-1,-1,1,1,2,0,2,0,-1,-1,-1,-1,0,0,-1,-1,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,6,0,6,6,0,6,6,-2,0,-2,6,-2,-2,0,-2,-2,0,0,-2,-2,0,0,6,-3,-3,0,0,0,0,0,0,0,-2,0,2,2,-2,0,-2,0,2,0,0,2,2,2,0,-2,0,0,0,0,0,2,0,0,2,0,0,0,0,6,0,6,-3,6,-3,0,-2,-2,-3,-3,0,-2,-2,1,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-2,2,2,0,-2,0,1,0,2,2,0,1,-1,0,-1,0,0,0,0,0,1,0,-1,-1,0,-1,-1,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |6,6,6,0,6,6,0,6,6,-2,0,-2,6,-2,-2,0,-2,-2,0,0,-2,-2,0,0,6,-3,-3,0,0,0,0,0,0,0,-2,0,2,2,-2,0,-2,0,2,0,0,2,2,2,0,-2,0,0,0,0,0,2,0,0,2,0,0,0,0,6,0,6,-3,6,-3,0,-2,-2,-3,-3,0,-2,-2,1,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-2,2,2,0,-2,0,1,0,2,2,0,1,-1,0,-1,0,0,0,0,0,1,0,-1,-1,0,-1,-1,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, 7, 7, 7, 7, 7, -1, 7, -1, 7, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, 7, 7, 7, 1, 1, 1, 1, 7, 7, 7, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 7, 7, 7, 7, 7, 7, 7, -1, -1, 7, 7, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 7, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, -1, 7, 7, -1, -1, -1, -1, 3, -1, -1, 3, -1, 3, -1, -1, 3, 3, -1, 3, -1, 7, 7, 7, 1, 1, 1, 1, 7, 7, -1, -1, -1, 1, -1, -1, 3, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 3, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 7, 7, -1, 7, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, 3, 1, -1, -1, 3, 1, -1, 3, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 7, -1, -1, 1, -1, 3, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, 7, -1, 7, 7, -1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 3, 3, -1, -1, 3, -1, 3, 7, 7, 7, 1, 1, 1, 1, 7, 7, -1, -1, -1, -1, 1, -1, -1, -1, 3, -1, -1, -1, 1, 1, -1, 3, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 7, 7, -1, 7, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, 3, -1, 1, -1, -1, -1, 1, 3, -1, 3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 7, -1, -1, -1, 1, -1, -1, 3, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, -7, 7, -7, 7, -7, 7, -1, -7, -1, -7, -1, -1, 7, 1, 1, 1, 1, 1, 1, -1, -1, 7, 7, 7, 1, 1, 1, 1, -7, 7, -7, -1, 7, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 7, -7, 7, -7, 7, 7, -7, -1, -1, 7, -7, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 0, -7, -7, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, 7, 7, -7, -7, -7, 7, -1, 7, -1, -7, -1, -1, -7, 1, 1, -1, -1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 7, -7, 7, -1, -7, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, -7, 7, 7, 7, -1, -1, 7, -7, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 7, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, -7, 7, 7, -7, 7, 7, -1, -7, -1, 7, -1, -1, -7, -1, -1, 1, 1, -1, -1, 1, 1, 7, 7, 7, 1, 1, 1, 1, -7, -7, -7, -1, -7, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 7, -7, 7, 7, 7, 7, -7, -1, -1, 7, 7, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, -7, -7, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, -7, -1, -7, 7, 1, -1, -1, 1, 3, 1, -1, 3, -1, -3, 1, 1, -3, -3, 1, 3, -1, 7, 7, 7, 1, 1, 1, 1, -7, 7, 1, -1, -1, 1, -1, 1, -3, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 3, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 7, -7, -1, -7, -1, -1, 1, 3, -1, -1, 1, -1, 3, -1, 3, -1, -1, 1, -3, 1, -1, 1, 3, -1, -1, -3, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 0, 0, -7, 1, -1, 1, -1, -3, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, -7, -1, -7, 7, 1, -1, 3, 1, -1, 1, 3, -1, -1, 1, -3, -3, 1, 1, -3, -1, 3, 7, 7, 7, 1, 1, 1, 1, -7, 7, 1, -1, -1, -1, 1, 1, 1, -1, -3, 1, 1, 1, -1, 1, -1, 3, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 7, -7, -1, -7, -1, -1, 1, -1, 3, -1, 1, -1, -1, 3, -1, 3, -1, -3, 1, 1, -1, 1, -1, -1, 3, 1, -3, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 0, 0, -7, 1, -1, -1, 1, 1, -1, -3, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, 7, -1, -7, -7, 1, -1, -1, -1, 3, 1, -1, 3, 1, -3, 1, -1, 3, -3, 1, -3, 1, 7, 7, 7, 1, 1, 1, 1, 7, -7, -1, -1, 1, 1, -1, 1, 3, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -3, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 7, 7, -1, -7, -1, -1, -1, 3, -1, -1, 1, -1, 3, -1, 3, -1, -1, -1, 3, 1, -1, 1, 3, -1, -1, -3, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 7, -1, -1, 1, -1, 3, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -7, 7, -1, -7, -7, 1, -1, 3, -1, -1, 1, 3, -1, 1, 1, -3, 3, -1, 1, -3, 1, -3, 7, 7, 7, 1, 1, 1, 1, 7, -7, -1, -1, 1, -1, 1, 1, -1, -1, 3, 1, -1, -1, -1, 1, -1, -3, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 7, 7, -1, -7, -1, -1, -1, -1, 3, -1, 1, -1, -1, 3, -1, 3, -1, 3, -1, 1, -1, 1, -1, -1, 3, 1, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 7, -1, -1, -1, 1, -1, -1, 3, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, -7, -1, 7, -7, -1, -1, -1, 1, 3, -1, -1, 3, 1, 3, -1, 1, -3, 3, -1, -3, 1, 7, 7, 7, 1, 1, 1, 1, -7, -7, 1, -1, 1, 1, -1, -1, -3, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -3, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 7, -7, -1, 7, -1, -1, 1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -1, 1, -3, 1, -1, -1, 3, 1, -1, 3, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 0, 0, -7, 1, -1, 1, -1, -3, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, -7, -1, 7, -7, -1, -1, 3, 1, -1, -1, 3, -1, 1, -1, 3, -3, 1, -1, 3, 1, -3, 7, 7, 7, 1, 1, 1, 1, -7, -7, 1, -1, 1, -1, 1, -1, 1, -1, -3, -1, 1, 1, 1, 1, -1, -3, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 7, -7, -1, 7, -1, -1, 1, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -3, 1, 1, -1, -1, -1, 1, 3, -1, 3, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 0, 0, -7, 1, -1, -1, 1, 1, -1, -3, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 8, 8, 8, 8, 0, 8, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -1, -1, -1, -1, 8, 8, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 0, 0, 8, 8, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, -8, -8, 8, -8, 8, -8, 8, 0, -8, 0, -8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -1, -1, -1, -1, -8, 8, -8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, -8, 8, -8, 8, 8, -8, 0, 0, 8, -8, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, 1, 0, 1, 0, 0, 0, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, -8, 8, 8, -8, -8, -8, 8, 0, 8, 0, -8, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -1, -1, -1, -1, 8, -8, 8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -8, 8, 8, 8, 0, 0, 8, -8, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, 1, 0, 1, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, -8, 8, 8, -8, 8, 8, 0, -8, 0, 8, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -1, -1, -1, -1, -8, -8, -8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, -8, 8, 8, 8, 8, -8, 0, 0, 8, 8, -1, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, 0, -1, 0, 0, 0, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,-9,-3,9,3,3,-9,-3,-3,-3,-3,3,1,1,3,3,3,1,1,-1,-1,-1,-1,9,0,0,0,0,0,0,3,-3,3,-3,-3,3,3,3,-1,1,-1,-3,-1,1,-3,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,-3,-3,9,0,-3,0,-3,-3,-3,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,3,3,-3,3,3,-1,1,-1,0,-1,-1,-1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,-9,-3,9,3,3,-9,-3,-3,-3,-3,3,1,1,3,3,3,1,1,-1,-1,-1,-1,9,0,0,0,0,0,0,3,-3,3,-3,-3,3,3,3,-1,1,-1,-3,-1,1,-3,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,-3,-3,9,0,-3,0,-3,-3,-3,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3,3,-3,3,3,-1,1,-1,0,-1,-1,-1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,-9,3,9,3,-3,-9,-3,-3,3,-3,3,1,1,-3,3,3,-1,-1,-1,-1,1,1,9,0,0,0,0,0,0,-3,3,-3,-3,3,3,3,3,1,1,1,-3,1,-1,-3,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,-3,3,9,0,-3,0,3,-3,-3,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3,-3,-3,3,3,1,1,1,0,1,-1,-1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,-9,3,9,3,-3,-9,-3,-3,3,-3,3,1,1,-3,3,3,-1,-1,-1,-1,1,1,9,0,0,0,0,0,0,-3,3,-3,-3,3,3,3,3,1,1,1,-3,1,-1,-3,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,-3,3,9,0,-3,0,3,-3,-3,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,-3,-3,-3,3,3,1,1,1,0,1,-1,-1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,9,-3,9,-3,-3,9,-3,-3,-3,-3,-3,1,1,-3,-3,-3,1,1,1,1,1,1,9,0,0,0,0,0,0,3,3,3,-3,3,3,3,-3,-1,1,-1,3,-1,1,3,-1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-3,-3,9,0,-3,0,-3,-3,-3,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,3,3,-3,3,3,-1,1,-1,0,-1,-1,-1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,9,-3,9,-3,-3,9,-3,-3,-3,-3,-3,1,1,-3,-3,-3,1,1,1,1,1,1,9,0,0,0,0,0,0,3,3,3,-3,3,3,3,-3,-1,1,-1,3,-1,1,3,-1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-3,-3,9,0,-3,0,-3,-3,-3,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3,3,-3,3,3,-1,1,-1,0,-1,-1,-1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,9,3,9,-3,3,9,-3,-3,3,-3,-3,1,1,3,-3,-3,-1,-1,1,1,-1,-1,9,0,0,0,0,0,0,-3,-3,-3,-3,-3,3,3,-3,1,1,1,3,1,-1,3,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-3,3,9,0,-3,0,3,-3,-3,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3,-3,-3,3,3,1,1,1,0,1,-1,-1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |9,-3,9,3,9,-3,3,9,-3,-3,3,-3,-3,1,1,3,-3,-3,-1,-1,1,1,-1,-1,9,0,0,0,0,0,0,-3,-3,-3,-3,-3,3,3,-3,1,1,1,3,1,-1,3,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-3,3,9,0,-3,0,3,-3,-3,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,-3,-3,-3,3,3,1,1,1,0,1,-1,-1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[12, 12, 0, 12, 12, 0, 0, 0, 12, 4, 12, 4, 0, 4, 4, 0, 0, 0, 4, 4, 0, 0, 0, 0, -6, 12, -6, 0, 0, 0, 0, 12, 0, 12, 4, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, 0, -6, 12, -6, -2, -2, -6, 0, 0, -2, -2, 4, 4, 0, -2, -2, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -6, -6, -2, 0, 0, -2, -2, -2, 4, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 1, 1, -2, -2, 1, 1, -2, -2, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 0, 12, 12, 0, 12, 12, 4, 0, 4, 12, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 0, 12, -6, -6, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 12, -6, 12, -6, 0, 4, 4, -6, -6, 0, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, -2, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 4, 0, 0, 0, 4, 0, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, -2, -2, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, 0, 12, -12, 0, -12, 12, 4, 0, 4, -12, 4, 4, 0, -4, -4, 0, 0, -4, -4, 0, 0, 12, -6, -6, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 12, 6, 12, -6, 0, 4, 4, -6, 6, 0, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, -2, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 4, 0, 0, 0, 4, 0, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 2, 2, 0, 0, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, -2, -2, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 0, -12, 12, 0, 0, 0, 12, 4, -12, 4, 0, 4, 4, 0, 0, 0, -4, -4, 0, 0, 0, 0, -6, 12, -6, 0, 0, 0, 0, -12, 0, -12, 4, 0, 0, 0, 0, -4, 4, -4, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 6, -6, 0, -6, 12, 6, -2, -2, -6, 0, 0, -2, -2, 4, 4, 0, 2, 2, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 6, 6, -2, 0, 0, 2, -2, 2, 4, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 1, 1, -2, -2, 1, 1, 2, 2, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |12,12,0,0,12,0,0,0,12,-4,0,-4,0,-4,-4,0,0,0,0,0,0,0,0,0,-6,-6,3,0,0,0,0,0,0,0,-4,0,4,4,0,0,-4,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,0,-6,0,-6,-6,0,2,2,3,0,0,2,2,2,2,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4-4*K.1-4*K.1^2-4*K.1^-3,4*K.1+4*K.1^2+4*K.1^-3,0,0,2,-2,-2,0,2,0,2,0,-2,-2,0,-1,-2,0,-2,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,-4-4*K.1-4*K.1^2-4*K.1^-3,4*K.1+4*K.1^2+4*K.1^-3,0,0,0,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |12,12,0,0,12,0,0,0,12,-4,0,-4,0,-4,-4,0,0,0,0,0,0,0,0,0,-6,-6,3,0,0,0,0,0,0,0,-4,0,4,4,0,0,-4,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,0,-6,0,-6,-6,0,2,2,3,0,0,2,2,2,2,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1+4*K.1^2+4*K.1^-3,-4-4*K.1-4*K.1^2-4*K.1^-3,0,0,2,-2,-2,0,2,0,2,0,-2,-2,0,-1,-2,0,-2,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4*K.1+4*K.1^2+4*K.1^-3,-4-4*K.1-4*K.1^2-4*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[14, 14, 0, 14, 14, 0, 0, 0, 14, -2, 14, -2, 0, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, 14, 0, 14, -2, 0, -2, -2, 0, -2, -2, -2, 0, -2, -2, 0, -2, -2, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -7, -7, -7, 0, -7, 14, -7, 1, 1, -7, 0, 2, 1, 1, -2, -2, -1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 0, -1, -1, 2, 2, 2, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, -7, -7, 1, 1, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, -2, 2, -2, 2, 1, 1, 1, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, 0, 14, 14, 0, 14, 14, -2, 0, -2, 14, -2, -2, 0, -2, -2, 0, 0, -2, -2, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, -2, -2, -2, 0, -2, 0, -2, 0, 0, -2, -2, -2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 14, 0, 14, -7, 14, -7, 0, -2, -2, -7, -7, 2, -2, -2, 1, 1, 2, 0, 0, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 0, 0, -1, 2, 2, 0, 0, -1, 0, 0, -1, -1, 0, 0, 0, 0, -2, -2, -2, 0, -2, 0, 1, 0, -2, -2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 0, 14, -2, 0, 0, 0, -2, -2, -2, 6, 0, -2, 6, 0, 0, 0, -2, 6, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, 14, 0, -2, -2, 0, 2, -2, 0, 6, -2, -2, 0, -2, -2, 0, -2, 2, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -7, -7, 1, 0, 1, -2, 1, -3, 1, 1, 0, -2, -3, 1, 6, -2, 1, 1, -3, 2, -2, 0, -3, 0, 1, 0, 0, 1, -1, -2, 2, -2, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, -7, 1, 1, -1, 1, -3, 1, 1, -2, 1, 1, -1, 1, 1, -2, -2, 2, 2, -1, 1, 1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 0, 14, -2, 0, 0, 0, -2, 6, -2, -2, 0, 6, -2, 0, 0, 0, 6, -2, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, 14, 0, -2, -2, 0, -2, 2, 0, -2, -2, 6, 0, -2, -2, 0, 2, -2, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -7, -7, 1, 0, 1, -2, 1, 1, -3, 1, 0, -2, 1, -3, -2, 6, 1, -3, 1, 2, -2, 0, 1, 0, -3, 0, 0, 1, -1, -2, 2, -2, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, -7, 1, 1, 1, -1, 1, 1, -3, -2, 1, -1, 1, 1, 1, 2, -2, -2, 2, 1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, 0, -2, 14, 0, -2, -2, -2, 0, 6, -2, -2, 6, 0, 6, -2, 0, 0, 6, -2, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, 2, -2, -2, 0, -2, 0, 2, 0, 0, -2, -2, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 14, 0, -2, -7, -2, 1, 0, 6, -2, 1, 1, -2, 6, -2, -3, 1, -2, 0, 0, 2, -2, -2, -3, 2, 1, -3, 1, -2, 2, 0, 0, 1, -2, 2, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, -2, 2, -2, 0, -2, 0, 1, 0, -2, 2, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, 0, -2, 14, 0, -2, -2, 6, 0, -2, -2, 6, -2, 0, -2, 6, 0, 0, -2, 6, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, -2, 2, -2, 0, -2, 0, -2, 0, 0, 2, 2, -2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 14, 0, -2, -7, -2, 1, 0, -2, 6, 1, 1, -2, -2, 6, 1, -3, -2, 0, 0, 2, -2, -2, 1, 2, -3, 1, -3, -2, 2, 0, 0, 1, -2, 2, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, -2, -2, 2, 0, -2, 0, 1, 0, 2, -2, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, 14, -2, 14, 14, -2, -2, 2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 14, 14, 14, -1, -1, -1, -1, 14, 14, -2, -2, -2, 0, 0, -2, 2, -2, 2, 0, -2, -2, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 14, 14, -2, 14, -2, -2, -2, 2, 2, -2, -2, 1, 2, 2, 2, 2, 1, 2, 2, -1, 1, 1, 2, -1, 2, 2, 2, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 14, -2, -2, 0, 0, 2, -2, 2, -2, -2, 0, 0, -2, -2, 0, 1, 0, -1, 0, 0, 0, 0, -2, -1, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, 0, 14, -14, 0, -14, 14, -2, 0, -2, -14, -2, -2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, -2, -2, 2, 0, -2, 0, 2, 0, 0, 2, -2, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 14, 0, 14, 7, 14, -7, 0, -2, -2, -7, 7, 2, -2, -2, 1, 1, 2, 0, 0, 2, 2, -2, 1, -2, 1, -1, -1, 2, 2, 0, 0, -1, -2, -2, 0, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, -2, -2, -2, 0, -2, 0, 1, 0, -2, -2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 0, -14, 14, 0, 0, 0, 14, -2, -14, -2, 0, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, -14, 0, -14, -2, 0, -2, -2, 0, 2, -2, 2, 0, 2, 2, 0, -2, -2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, -7, 0, -7, 14, 7, 1, 1, -7, 0, 2, 1, 1, -2, -2, -1, -1, -1, 2, 2, 0, 1, 0, 1, 0, 0, -1, -1, -2, -2, 2, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 7, 7, 1, 1, 1, -1, 1, -1, -2, -1, 1, 1, -1, 1, -2, -2, -2, -2, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, -14, -2, -14, 14, 2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 14, 14, 14, -1, -1, -1, -1, -14, 14, 2, -2, -2, 0, 0, 2, -2, -2, -2, 0, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 14, -14, -2, -14, -2, -2, 2, 2, 2, -2, 2, 1, 2, 2, 2, 2, 1, -2, -2, -1, 1, -1, 2, 1, 2, -2, -2, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 0, 0, -14, 2, -2, 0, 0, -2, -2, -2, -2, 2, 0, 0, 2, -2, 0, -1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, 14, -2, -14, -14, 2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 14, 14, 14, -1, -1, -1, -1, 14, -14, -2, -2, 2, 0, 0, 2, 2, -2, 2, 0, -2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 14, 14, -2, -14, -2, -2, -2, 2, 2, -2, 2, 1, 2, 2, 2, 2, 1, 2, 2, -1, 1, -1, 2, 1, 2, -2, -2, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 14, -2, -2, 0, 0, 2, -2, 2, -2, -2, 0, 0, -2, -2, 0, 1, 0, -1, 0, 0, 0, 0, 2, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, -14, -2, 14, -14, -2, -2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 14, 14, 14, -1, -1, -1, -1, -14, -14, 2, -2, 2, 0, 0, -2, -2, -2, -2, 0, 2, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 14, -14, -2, 14, -2, -2, 2, 2, 2, -2, -2, 1, 2, 2, 2, 2, 1, -2, -2, -1, 1, 1, 2, -1, 2, 2, 2, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 0, 0, -14, 2, -2, 0, 0, -2, -2, -2, -2, 2, 0, 0, 2, -2, 0, -1, 0, 1, 0, 0, 0, 0, -2, 1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, 0, -2, -14, 0, 2, -2, -2, 0, 6, 2, -2, 6, 0, -6, 2, 0, 0, -6, 2, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, 2, -2, 2, 0, -2, 0, -2, 0, 0, 2, -2, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 14, 0, -2, 7, -2, 1, 0, 6, -2, 1, -1, -2, 6, -2, -3, 1, -2, 0, 0, 2, -2, 2, -3, -2, 1, 3, -1, -2, 2, 0, 0, 1, 2, -2, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, -2, 2, -2, 0, -2, 0, 1, 0, -2, 2, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, -14, 0, -2, -14, 0, 2, -2, 6, 0, -2, 2, 6, -2, 0, 2, -6, 0, 0, 2, -6, 0, 0, 14, -7, -7, 2, 2, -1, -1, 0, 0, 0, -2, 0, -2, 2, 2, 0, -2, 0, 2, 0, 0, -2, 2, -2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 14, 0, -2, 7, -2, 1, 0, -2, 6, 1, -1, -2, -2, 6, 1, -3, -2, 0, 0, 2, -2, 2, 1, -2, -3, -1, 3, -2, 2, 0, 0, 1, 2, -2, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, -2, -2, 2, 0, -2, 0, 1, 0, 2, -2, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 0, -14, -2, 0, 0, 0, -2, -2, 2, 6, 0, -2, 6, 0, 0, 0, 2, -6, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, -14, 0, 2, -2, 0, 2, -2, 0, -6, -2, 2, 0, 2, 2, 0, -2, 2, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 1, 0, 1, -2, -1, -3, 1, 1, 0, -2, -3, 1, 6, -2, 1, -1, 3, 2, -2, 0, -3, 0, 1, 0, 0, 1, -1, 2, -2, -2, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 7, -1, 1, -1, 1, 3, 1, -1, -2, -1, 1, -1, -1, 1, -2, 2, 2, -2, 1, -1, -1, 1, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 0, -14, -2, 0, 0, 0, -2, 6, 2, -2, 0, 6, -2, 0, 0, 0, -6, 2, 0, 0, 0, 0, -7, 14, -7, 2, -1, 2, -1, -14, 0, 2, -2, 0, -2, 2, 0, 2, -2, -6, 0, 2, 2, 0, 2, -2, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -7, 7, 1, 0, 1, -2, -1, 1, -3, 1, 0, -2, 1, -3, -2, 6, 1, 3, -1, 2, -2, 0, 1, 0, -3, 0, 0, 1, -1, 2, -2, -2, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 7, -1, 1, 1, -1, -1, 1, 3, -2, -1, -1, 1, -1, 1, 2, 2, -2, -2, -1, 1, 1, -1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 0, 16, 16, 0, 0, 0, 16, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 16, -8, -2, 1, -2, 1, 16, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, -8, 0, -8, 16, -8, 0, 0, -8, 0, -2, 0, 0, 0, 0, 1, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, -2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 2, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, 2, 2, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 16, 0, 16, 16, 0, 16, 16, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, -8, -8, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 16, -8, 16, -8, 0, 0, 0, -8, -8, -2, 0, 0, 0, 0, -2, 0, 0, -2, -2, -2, 0, -2, 0, 0, 0, -2, -2, 0, 0, 1, -2, -2, 0, 0, 1, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 2, 2, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, -16, 0, 16, -16, 0, -16, 16, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, -8, -8, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 16, 8, 16, -8, 0, 0, 0, -8, 8, -2, 0, 0, 0, 0, -2, 0, 0, -2, -2, 2, 0, 2, 0, 0, 0, -2, -2, 0, 0, 1, 2, 2, 0, 0, 1, 0, 0, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -2, -2, 0, 0, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 0, -16, 16, 0, 0, 0, 16, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 16, -8, -2, 1, -2, 1, -16, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 8, -8, 0, -8, 16, 8, 0, 0, -8, 0, -2, 0, 0, 0, 0, 1, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, -2, 0, 0, -1, -1, 1, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, -2, -2, 0, 0, -1, -1, 1, 1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, -6, 18, 6, 18, -6, 6, 18, -6, 6, 6, 6, -6, -2, -2, 6, 6, 6, 2, 2, -2, -2, 2, 2, 18, 0, 0, 0, 0, 0, 0, -6, -6, -6, 6, -6, 0, 0, 6, -2, -2, -2, 0, -2, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, -6, 6, 18, 0, -6, 0, 6, 6, 6, 0, 0, 0, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -6, -6, 6, 0, 0, -2, -2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, -1, -1, 1, 1, -1, -1, -3, -3, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, -6, 18, -6, 18, -6, -6, 18, -6, 6, -6, 6, -6, -2, -2, -6, 6, 6, -2, -2, -2, -2, -2, -2, 18, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 0, 0, 6, 2, -2, 2, 0, 2, -2, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, -6, -6, 18, 0, -6, 0, -6, 6, 6, 0, 0, 0, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 6, 6, 6, 0, 0, 2, -2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, -6, -18, -6, 18, 6, 6, -18, -6, 6, -6, 6, 6, -2, -2, 6, -6, -6, -2, -2, 2, 2, 2, 2, 18, 0, 0, 0, 0, 0, 0, 6, -6, 6, 6, -6, 0, 0, -6, 2, -2, 2, 0, 2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, -6, -6, 18, 0, -6, 0, -6, 6, 6, 0, 0, 0, -2, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, 6, 6, 6, 0, 0, 2, -2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 1, 1, 1, -1, -1, -1, -1, -3, -3, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, -6, -18, 6, 18, 6, -6, -18, -6, 6, 6, 6, 6, -2, -2, -6, -6, -6, 2, 2, 2, 2, -2, -2, 18, 0, 0, 0, 0, 0, 0, -6, 6, -6, 6, 6, 0, 0, -6, -2, -2, -2, 0, -2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, -6, 6, 18, 0, -6, 0, 6, 6, 6, 0, 0, 0, -2, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -6, -6, 6, 0, 0, -2, -2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 1, -1, -1, -1, -1, 1, 1, -3, -3, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |18,-6,0,-6,18,0,0,0,-6,-6,-6,-6,0,2,2,0,0,0,2,2,0,0,0,0,-9,0,0,0,0,0,0,6,0,6,-6,0,6,6,0,-2,2,-2,0,-2,2,0,-2,-2,0,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,3,3,-9,0,3,0,3,3,3,0,0,0,-1,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6-6*K.1-6*K.1^2-6*K.1^-3,6*K.1+6*K.1^2+6*K.1^-3,-3,-3,3,-3,-3,1,-1,1,0,1,1,1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |18,-6,0,-6,18,0,0,0,-6,-6,-6,-6,0,2,2,0,0,0,2,2,0,0,0,0,-9,0,0,0,0,0,0,6,0,6,-6,0,6,6,0,-2,2,-2,0,-2,2,0,-2,-2,0,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,3,3,-9,0,3,0,3,3,3,0,0,0,-1,-1,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1+6*K.1^2+6*K.1^-3,-6-6*K.1-6*K.1^2-6*K.1^-3,-3,-3,3,-3,-3,1,-1,1,0,1,1,1,-1,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |18,-6,0,6,18,0,0,0,-6,-6,6,-6,0,2,2,0,0,0,-2,-2,0,0,0,0,-9,0,0,0,0,0,0,-6,0,-6,-6,0,6,6,0,2,2,2,0,2,-2,0,-2,-2,0,0,0,-2,-2,2,2,0,0,0,0,0,0,0,0,3,-3,-9,0,3,0,-3,3,3,0,0,0,-1,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6-6*K.1-6*K.1^2-6*K.1^-3,6*K.1+6*K.1^2+6*K.1^-3,3,3,3,-3,-3,-1,-1,-1,0,-1,1,1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |18,-6,0,6,18,0,0,0,-6,-6,6,-6,0,2,2,0,0,0,-2,-2,0,0,0,0,-9,0,0,0,0,0,0,-6,0,-6,-6,0,6,6,0,2,2,2,0,2,-2,0,-2,-2,0,0,0,-2,-2,2,2,0,0,0,0,0,0,0,0,3,-3,-9,0,3,0,-3,3,3,0,0,0,-1,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1+6*K.1^2+6*K.1^-3,-6-6*K.1-6*K.1^2-6*K.1^-3,3,3,3,-3,-3,-1,-1,-1,0,-1,1,1,1,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[21, -7, 21, 7, 21, -7, 7, 21, -7, -3, 7, -3, -7, 1, 1, 7, -3, -3, -1, -1, 1, 1, -1, -1, 21, 0, 0, 3, 3, 0, 0, -7, -7, -7, -3, -7, -3, -3, -3, 1, 1, 1, -3, 1, -1, -3, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -7, 7, 21, 0, -7, 0, 7, -3, -3, 0, 0, 3, 1, 1, 0, 0, 3, -1, -1, -1, -1, 3, 0, 3, 0, 0, 0, -1, -1, 1, 1, 0, -1, -1, 1, 1, 0, 1, 1, 0, 0, 0, 0, -7, -7, -3, -3, -3, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, -1, 0, -1, -1, -1, 1, 1, 0, -1, 0, 0, -1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, 21, 7, -3, -7, 7, -3, 1, -3, -1, 9, 1, 1, -3, -1, 9, -3, -1, 3, -3, 1, 3, -1, 21, 0, 0, 3, 3, 0, 0, -7, -7, 1, -3, 1, 3, -3, -3, -3, 1, 1, 3, 1, -1, -3, 1, -1, 1, 1, -3, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -7, 7, -3, 0, 1, 0, -1, 9, -3, 0, 0, -3, -3, 1, 0, 0, -3, -1, 3, -1, 1, -3, 0, 3, 0, 0, 0, 1, -1, -1, 1, 0, 1, -1, 1, -1, 0, 1, -1, 0, 0, 0, 0, -7, 1, -3, 3, -3, -3, 1, 1, 0, 1, 1, -1, -1, 0, 0, 1, 0, -1, 1, -1, 1, -1, 0, -1, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, 21, 7, -3, -7, 7, -3, 1, 9, -1, -3, 1, -3, 1, -1, -3, 9, 3, -1, 1, -3, -1, 3, 21, 0, 0, 3, 3, 0, 0, -7, -7, 1, -3, 1, -3, 3, -3, 1, 1, -3, -3, 1, -1, 3, -1, 1, -3, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -7, 7, -3, 0, 1, 0, -1, -3, 9, 0, 0, -3, 1, -3, 0, 0, -3, 3, -1, -1, 1, -3, 0, 3, 0, 0, 0, 1, -1, -1, 1, 0, 1, -1, 1, -1, 0, 1, -1, 0, 0, 0, 0, -7, 1, -3, -3, 3, 1, 1, -3, 0, 1, -1, 1, -1, 0, 0, 1, 0, -1, -1, 1, -1, 1, 0, -1, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, -3, 21, 21, -3, -3, -3, -3, 1, -3, -3, 1, -3, 1, -3, -3, 1, 1, -3, 1, -3, 21, 21, 21, 0, 0, 0, 0, 21, 21, -3, 1, -3, -1, 1, 1, 1, 1, -3, -1, 1, 1, 1, 1, -1, -3, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 21, 21, -3, 21, -3, -3, -3, 1, -3, -3, -3, 0, 1, -3, 1, -3, 0, -3, 1, 0, 0, 0, 1, 0, -3, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 1, -1, 1, 1, 1, -3, 1, 1, 1, -1, 1, 1, 1, 0, -1, 0, -1, 1, 1, -1, 1, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, 21, -3, 21, 21, -3, -3, 1, -3, -3, -3, 1, -3, -3, -3, 1, 1, -3, -3, 1, -3, 1, 21, 21, 21, 0, 0, 0, 0, 21, 21, -3, 1, -3, 1, -1, 1, -3, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -3, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 21, 21, -3, 21, -3, -3, -3, -3, 1, -3, -3, 0, -3, 1, -3, 1, 0, 1, -3, 0, 0, 0, -3, 0, 1, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 1, 1, -1, -3, 1, 1, 1, 1, -1, 1, 1, 1, -1, 0, 1, 0, 1, -1, -1, 1, 1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, -21, -21, -3, -21, 21, 3, -3, -3, 3, 1, 3, -3, 1, -3, -1, 3, 3, -1, -1, 3, 1, -3, 21, 21, 21, 0, 0, 0, 0, -21, 21, 3, 1, -3, -1, 1, -1, -1, 1, 3, 1, -1, -1, -1, 1, -1, -3, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 21, -21, -3, -21, -3, -3, 3, 1, -3, -3, 3, 0, 1, -3, 1, -3, 0, 3, -1, 0, 0, 0, 1, 0, -3, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 1, -1, 1, -1, 1, 3, 1, -1, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, -1, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, -21, -21, -3, -21, 21, 3, -3, 1, 3, -3, 3, 1, -3, -3, 3, -1, -1, 3, 3, -1, -3, 1, 21, 21, 21, 0, 0, 0, 0, -21, 21, 3, 1, -3, 1, -1, -1, 3, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -3, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 21, -21, -3, -21, -3, -3, 3, -3, 1, -3, 3, 0, -3, 1, -3, 1, 0, -1, 3, 0, 0, 0, -3, 0, 1, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 1, 1, -1, 3, 1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 1, 0, -1, 1, 1, -1, -1, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, -21, 21, -3, -21, -21, 3, -3, -3, -3, 1, 3, -3, 1, 3, -1, 3, -3, 1, -1, 3, -1, 3, 21, 21, 21, 0, 0, 0, 0, 21, -21, -3, 1, 3, -1, 1, -1, 1, 1, -3, 1, 1, 1, -1, 1, -1, 3, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 21, 21, -3, -21, -3, -3, -3, 1, -3, -3, 3, 0, 1, -3, 1, -3, 0, -3, 1, 0, 0, 0, 1, 0, -3, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 1, -1, 1, 1, 1, -3, 1, 1, 1, -1, 1, 1, 1, 0, -1, 0, -1, 1, 1, -1, -1, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, -21, 21, -3, -21, -21, 3, -3, 1, -3, -3, 3, 1, -3, 3, 3, -1, 1, -3, 3, -1, 3, -1, 21, 21, 21, 0, 0, 0, 0, 21, -21, -3, 1, 3, 1, -1, -1, -3, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 3, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 21, 21, -3, -21, -3, -3, -3, -3, 1, -3, 3, 0, -3, 1, -3, 1, 0, 1, -3, 0, 0, 0, -3, 0, 1, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 1, 1, -1, -3, 1, 1, 1, 1, -1, 1, 1, 1, -1, 0, 1, 0, 1, -1, -1, 1, -1, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, -21, -3, 21, -21, -3, -3, -3, 3, 1, -3, -3, 1, 3, 1, -3, 3, -1, 1, -3, -1, 3, 21, 21, 21, 0, 0, 0, 0, -21, -21, 3, 1, 3, -1, 1, 1, -1, 1, 3, -1, -1, -1, 1, 1, -1, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 21, -21, -3, 21, -3, -3, 3, 1, -3, -3, -3, 0, 1, -3, 1, -3, 0, 3, -1, 0, 0, 0, 1, 0, -3, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 1, -1, 1, -1, 1, 3, 1, -1, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, -21, -3, 21, -21, -3, -3, 1, 3, -3, -3, 1, -3, 3, -3, 1, -1, 3, -3, 1, 3, -1, 21, 21, 21, 0, 0, 0, 0, -21, -21, 3, 1, 3, 1, -1, 1, 3, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 3, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 21, -21, -3, 21, -3, -3, 3, -3, 1, -3, -3, 0, -3, 1, -3, 1, 0, -1, 3, 0, 0, 0, -3, 0, 1, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 1, 1, -1, 3, 1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 1, 0, -1, 1, 1, -1, 1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, 21, -7, 21, -7, -7, 21, -7, -3, -7, -3, -7, 1, 1, -7, -3, -3, 1, 1, 1, 1, 1, 1, 21, 0, 0, 3, 3, 0, 0, 7, 7, 7, -3, 7, -3, -3, -3, -1, 1, -1, -3, -1, 1, -3, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -7, -7, 21, 0, -7, 0, -7, -3, -3, 0, 0, 3, 1, 1, 0, 0, 3, 1, 1, -1, -1, 3, 0, 3, 0, 0, 0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 7, 7, -3, -3, -3, -1, 1, -1, 0, -1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, -1, -1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, -7, 21, 7, 7, -21, -7, -3, -7, -3, 7, 1, 1, 7, 3, 3, 1, 1, -1, -1, -1, -1, 21, 0, 0, 3, 3, 0, 0, 7, -7, 7, -3, -7, -3, -3, 3, -1, 1, -1, 3, -1, 1, 3, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -7, -7, 21, 0, -7, 0, -7, -3, -3, 0, 0, 3, 1, 1, 0, 0, 3, 1, 1, -1, -1, -3, 0, -3, 0, 0, 0, -1, -1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, 0, 0, 0, 7, 7, -3, -3, -3, -1, 1, -1, 0, -1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, -1, -1, 0, 1, 0, 0, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, 7, 21, 7, -7, -21, -7, -3, 7, -3, 7, 1, 1, -7, 3, 3, -1, -1, -1, -1, 1, 1, 21, 0, 0, 3, 3, 0, 0, -7, 7, -7, -3, 7, -3, -3, 3, 1, 1, 1, 3, 1, -1, 3, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -7, 7, 21, 0, -7, 0, 7, -3, -3, 0, 0, 3, 1, 1, 0, 0, 3, -1, -1, -1, -1, -3, 0, -3, 0, 0, 0, -1, -1, 1, 1, 0, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, 0, -7, -7, -3, -3, -3, 1, 1, 1, 0, 1, 1, 1, -1, 0, 0, -1, 0, -1, -1, -1, 1, 1, 0, -1, 0, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, 21, -7, -3, -7, -7, -3, 1, -3, 1, 9, 1, 1, -3, 1, 9, -3, 1, -3, -3, 1, -3, 1, 21, 0, 0, 3, 3, 0, 0, 7, 7, -1, -3, -1, 3, -3, -3, 3, 1, -1, 3, -1, 1, -3, 1, -1, -1, 1, 3, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -7, -7, -3, 0, 1, 0, 1, 9, -3, 0, 0, -3, -3, 1, 0, 0, -3, 1, -3, -1, 1, -3, 0, 3, 0, 0, 0, 1, -1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 0, 0, 0, 0, 7, -1, -3, 3, -3, 3, 1, -1, 0, -1, 1, -1, 1, 0, 0, -1, 0, 1, -1, 1, -1, 1, 0, 1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, 21, -7, -3, -7, -7, -3, 1, 9, 1, -3, 1, -3, 1, 1, -3, 9, -3, 1, 1, -3, 1, -3, 21, 0, 0, 3, 3, 0, 0, 7, 7, -1, -3, -1, -3, 3, -3, -1, 1, 3, -3, -1, 1, 3, -1, 1, 3, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -7, -7, -3, 0, 1, 0, 1, -3, 9, 0, 0, -3, 1, -3, 0, 0, -3, -3, 1, -1, 1, -3, 0, 3, 0, 0, 0, 1, -1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 0, 0, 0, 0, 7, -1, -3, -3, 3, -1, 1, 3, 0, -1, -1, 1, 1, 0, 0, -1, 0, 1, 1, -1, 1, -1, 0, 1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, -7, -3, 7, 7, 3, 1, -3, 1, 9, -1, 1, -3, -1, -9, 3, 1, -3, 3, -1, 3, -1, 21, 0, 0, 3, 3, 0, 0, 7, -7, -1, -3, 1, 3, -3, 3, 3, 1, -1, -3, -1, 1, 3, 1, -1, 1, -1, -3, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -7, -7, -3, 0, 1, 0, 1, 9, -3, 0, 0, -3, -3, 1, 0, 0, -3, 1, -3, -1, 1, 3, 0, -3, 0, 0, 0, 1, -1, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, 0, 0, 0, 7, -1, -3, 3, -3, 3, 1, -1, 0, -1, 1, -1, 1, 0, 0, -1, 0, 1, -1, 1, -1, 1, 0, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, -7, -3, 7, 7, 3, 1, 9, 1, -3, -1, -3, 1, -1, 3, -9, -3, 1, -1, 3, -1, 3, 21, 0, 0, 3, 3, 0, 0, 7, -7, -1, -3, 1, -3, 3, 3, -1, 1, 3, 3, -1, 1, -3, -1, 1, -3, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -7, -7, -3, 0, 1, 0, 1, -3, 9, 0, 0, -3, 1, -3, 0, 0, -3, -3, 1, -1, 1, 3, 0, -3, 0, 0, 0, 1, -1, 1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, 0, 0, 0, 7, -1, -3, -3, 3, -1, 1, 3, 0, -1, -1, 1, 1, 0, 0, -1, 0, 1, 1, -1, 1, -1, 0, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, 7, -3, 7, -7, 3, 1, -3, -1, 9, -1, 1, -3, 1, -9, 3, -1, 3, 3, -1, -3, 1, 21, 0, 0, 3, 3, 0, 0, -7, 7, 1, -3, -1, 3, -3, 3, -3, 1, 1, -3, 1, -1, 3, 1, -1, -1, -1, 3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -7, 7, -3, 0, 1, 0, -1, 9, -3, 0, 0, -3, -3, 1, 0, 0, -3, -1, 3, -1, 1, 3, 0, -3, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, -1, 1, 0, 0, 0, 0, -7, 1, -3, 3, -3, -3, 1, 1, 0, 1, 1, -1, -1, 0, 0, 1, 0, -1, 1, -1, 1, -1, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -7, -21, 7, -3, 7, -7, 3, 1, 9, -1, -3, -1, -3, 1, 1, 3, -9, 3, -1, -1, 3, 1, -3, 21, 0, 0, 3, 3, 0, 0, -7, 7, 1, -3, -1, -3, 3, 3, 1, 1, -3, 3, 1, -1, -3, -1, 1, 3, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -7, 7, -3, 0, 1, 0, -1, -3, 9, 0, 0, -3, 1, -3, 0, 0, -3, 3, -1, -1, 1, 3, 0, -3, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, -1, 1, 0, 0, 0, 0, -7, 1, -3, -3, 3, 1, 1, -3, 0, 1, -1, 1, -1, 0, 0, 1, 0, -1, -1, 1, -1, 1, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 0, 0, 24, 0, 0, 0, 24, 8, 0, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, -12, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, -12, 0, -12, -12, 0, -4, -4, 6, 0, 0, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, -4, 0, 0, 0, -4, 0, -4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -8, 24, 8, 24, -8, 8, 24, -8, 0, 8, 0, -8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, -3, -3, 0, 0, -8, -8, -8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 8, 24, 0, -8, 0, 8, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 0, 0, 1, 1, -3, 0, -3, 0, 0, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, -1, -1, 0, 0, 3, 3, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 3, 3, -1, -1, 1, 1, -1, -1, 1, 1, 3, 3, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -8, -24, -8, 24, 8, 8, -24, -8, 0, -8, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, -3, -3, 0, 0, 8, -8, 8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 24, 0, -8, 0, -8, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 0, 0, 1, 1, 3, 0, 3, 0, 0, 0, 1, 1, 1, 1, 0, -1, -1, 1, 1, 0, -1, -1, 0, 0, 3, 3, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, -3, -3, -1, -1, -1, -1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -8, -24, 8, 24, 8, -8, -24, -8, 0, 8, 0, 8, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, -3, -3, 0, 0, -8, 8, -8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 8, 24, 0, -8, 0, 8, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 0, 0, 1, 1, 3, 0, 3, 0, 0, 0, 1, 1, -1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 0, 0, 3, 3, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, -1, -1, -3, -3, -1, -1, 1, 1, 1, 1, -1, -1, 3, 3, 0, 0, 0, 0, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -8, 24, -8, 24, -8, -8, 24, -8, 0, -8, 0, -8, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, -3, -3, 0, 0, 8, 8, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 24, 0, -8, 0, -8, 0, 0, 0, 0, -3, 0, 0, 0, 0, -3, 0, 0, 1, 1, -3, 0, -3, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 3, 3, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 0, 0, -4, 0, 0, 0, -4, -4, 0, 12, 0, -4, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 7, 4, -2, -2, 1, 0, 0, 0, -4, 0, 4, -4, 0, 0, -4, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, 2, 0, 2, 2, 0, -6, 2, -1, 0, -4, -6, 2, -6, 2, 2, 0, 0, 4, -4, 0, 3, 0, -1, 0, 0, 2, -2, 0, 0, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 2, 0, 2, 0, 2, -2, 0, -1, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 0, 0, -4, 0, 0, 0, -4, 12, 0, -4, 0, 12, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 7, 4, -2, -2, 1, 0, 0, 0, -4, 0, -4, 4, 0, 0, -4, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, 2, 0, 2, 2, 0, 2, -6, -1, 0, -4, 2, -6, 2, -6, 2, 0, 0, 4, -4, 0, -1, 0, 3, 0, 0, 2, -2, 0, 0, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 2, 0, 2, 0, -2, 2, 0, -1, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 0, 0, 28, 0, 0, 0, 28, -4, 0, -4, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 7, 4, -2, -2, 1, 0, 0, 0, -4, 0, -4, -4, 0, 0, -4, 0, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, -14, 0, -14, -14, 0, 2, 2, 7, 0, 4, 2, 2, 2, 2, -2, 0, 0, 4, 4, 0, -1, 0, -1, 0, 0, -2, -2, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, -1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, -28, 0, -4, -28, 0, 4, -4, 4, 0, 4, 4, 4, 4, 0, -4, -4, 0, 0, -4, -4, 0, 0, 28, -14, -14, -2, -2, 1, 1, 0, 0, 0, -4, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, -4, 14, -4, 2, 0, 4, 4, 2, -2, 2, 4, 4, -2, -2, 2, 0, 0, -2, 2, -2, -2, 2, -2, 2, 2, 2, -2, 0, 0, -1, -2, 2, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 0, -28, -4, 0, 0, 0, -4, 4, 4, 4, 0, 4, 4, 0, 0, 0, -4, -4, 0, 0, 0, 0, -14, 28, -14, -2, 1, -2, 1, -28, 0, 4, -4, 0, 0, 0, 0, -4, -4, -4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 14, 2, 0, 2, -4, -2, -2, -2, 2, 0, 2, -2, -2, 4, 4, -1, 2, 2, -2, 2, 0, -2, 0, -2, 0, 0, -1, 1, -2, 2, 2, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 14, -2, 2, 0, 0, 2, 2, 2, -4, -2, 0, 0, -2, 2, 0, -2, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 0, 28, -4, 0, 0, 0, -4, 4, -4, 4, 0, 4, 4, 0, 0, 0, 4, 4, 0, 0, 0, 0, -14, 28, -14, -2, 1, -2, 1, 28, 0, -4, -4, 0, 0, 0, 0, 4, -4, 4, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 2, 0, 2, -4, 2, -2, -2, 2, 0, 2, -2, -2, 4, 4, -1, -2, -2, -2, 2, 0, -2, 0, -2, 0, 0, -1, 1, 2, -2, 2, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, -14, 2, 2, 0, 0, -2, 2, -2, -4, 2, 0, 0, 2, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, 28, 28, 0, -4, 28, 0, -4, -4, 4, 0, 4, -4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 0, 28, -14, -14, -2, -2, 1, 1, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, -4, -14, -4, 2, 0, 4, 4, 2, 2, 2, 4, 4, -2, -2, 2, 0, 0, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, 0, 0, -1, 2, -2, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, 32, 0, 0, 32, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, -16, 8, -4, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 0, -16, 0, -16, -16, 0, 0, 0, 8, 0, -4, 0, 0, 0, 0, 2, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 1, 1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[36, -12, 0, 12, 36, 0, 0, 0, -12, 12, 12, 12, 0, -4, -4, 0, 0, 0, 4, 4, 0, 0, 0, 0, -18, 0, 0, 0, 0, 0, 0, -12, 0, -12, 12, 0, 0, 0, 0, -4, -4, -4, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, -18, 0, 6, 0, -6, -6, -6, 0, 0, 0, 2, 2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 6, 6, -6, 0, 0, 2, 2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 2, 2, 0, 0, -1, -1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[36, -12, 0, -12, 36, 0, 0, 0, -12, 12, -12, 12, 0, -4, -4, 0, 0, 0, -4, -4, 0, 0, 0, 0, -18, 0, 0, 0, 0, 0, 0, 12, 0, 12, 12, 0, 0, 0, 0, 4, -4, 4, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, -18, 0, 6, 0, 6, -6, -6, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, -6, -6, 0, 0, -2, 2, -2, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, -2, -2, 0, 0, -1, -1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, 14, -6, 0, 0, 0, 2, -6, -2, 18, 0, 2, -6, 0, 0, 0, -2, 6, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, -14, 0, 2, -6, 0, 6, -6, 0, -6, 2, 2, 0, 2, -2, 0, 2, -2, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, -7, 3, 0, -1, 0, 1, -9, 3, 0, 0, -6, 3, -1, 0, 0, 3, 1, -3, -2, 2, 0, 0, 0, 0, 0, 0, -1, 1, -2, 2, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 7, -1, 3, -3, 3, 3, -1, -1, 0, -1, -1, 1, 1, 0, 0, 2, 0, -2, -1, 1, -1, 1, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, 14, -6, 0, 0, 0, 2, 18, -2, -6, 0, -6, 2, 0, 0, 0, 6, -2, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, -14, 0, 2, -6, 0, -6, 6, 0, 2, 2, -6, 0, 2, -2, 0, -2, 2, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 7, -7, 3, 0, -1, 0, 1, 3, -9, 0, 0, -6, -1, 3, 0, 0, 3, -3, 1, -2, 2, 0, 0, 0, 0, 0, 0, -1, 1, -2, 2, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 7, -1, 3, 3, -3, -1, -1, 3, 0, -1, 1, -1, 1, 0, 0, 2, 0, -2, 1, -1, 1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, 14, 42, 0, 0, 0, -14, -6, 14, -6, 0, 2, 2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, -14, 0, -14, -6, 0, -6, -6, 0, 2, 2, 2, 0, 2, -2, 0, 2, 2, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 7, -7, -21, 0, 7, 0, -7, 3, 3, 0, 0, 6, -1, -1, 0, 0, -3, 1, 1, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 7, 7, 3, 3, 3, -1, -1, -1, 0, -1, -1, -1, 1, 0, 0, -2, 0, -2, 1, 1, -1, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 42, 14, -6, -14, 14, -6, 2, 6, -2, 6, 2, -2, -2, -2, 6, 6, 2, 2, -2, -2, 2, 2, 42, 0, 0, -3, -3, 0, 0, -14, -14, 2, -6, 2, 0, 0, -6, -2, 2, -2, 0, 2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, -14, 14, -6, 0, 2, 0, -2, 6, 6, 0, 0, 3, -2, -2, 0, 0, 3, 2, 2, 1, -1, 3, 0, -3, 0, 0, 0, -1, 1, 1, -1, 0, -1, 1, -1, 1, 0, -1, 1, 0, 0, 0, 0, -14, 2, -6, 0, 0, -2, 2, -2, 0, 2, 0, 0, -2, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, -42, -14, -6, 14, 14, 6, 2, 6, 2, 6, -2, -2, -2, -2, -6, -6, -2, -2, 2, 2, 2, 2, 42, 0, 0, -3, -3, 0, 0, 14, -14, -2, -6, 2, 0, 0, 6, 2, 2, 2, 0, -2, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, -14, -14, -6, 0, 2, 0, 2, 6, 6, 0, 0, 3, -2, -2, 0, 0, 3, -2, -2, 1, -1, -3, 0, 3, 0, 0, 0, -1, 1, -1, 1, 0, 1, -1, 1, -1, 0, -1, 1, 0, 0, 0, 0, 14, -2, -6, 0, 0, 2, 2, 2, 0, -2, 0, 0, 2, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, -42, 14, -6, 14, -14, 6, 2, 6, -2, 6, -2, -2, -2, 2, -6, -6, 2, 2, 2, 2, -2, -2, 42, 0, 0, -3, -3, 0, 0, -14, 14, 2, -6, -2, 0, 0, 6, -2, 2, -2, 0, 2, -2, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, -14, 14, -6, 0, 2, 0, -2, 6, 6, 0, 0, 3, -2, -2, 0, 0, 3, 2, 2, 1, -1, -3, 0, 3, 0, 0, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, 0, 0, 0, 0, -14, 2, -6, 0, 0, -2, 2, -2, 0, 2, 0, 0, -2, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, -14, -6, 0, 0, 0, 2, -6, 2, 18, 0, 2, -6, 0, 0, 0, 2, -6, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, 14, 0, -2, -6, 0, 6, -6, 0, 6, 2, -2, 0, -2, 2, 0, 2, -2, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 3, 0, -1, 0, -1, -9, 3, 0, 0, -6, 3, -1, 0, 0, 3, -1, 3, -2, 2, 0, 0, 0, 0, 0, 0, -1, 1, 2, -2, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, -7, 1, 3, -3, 3, -3, -1, 1, 0, 1, -1, 1, -1, 0, 0, -2, 0, 2, 1, -1, 1, -1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, -14, -6, 0, 0, 0, 2, 18, 2, -6, 0, -6, 2, 0, 0, 0, -6, 2, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, 14, 0, -2, -6, 0, -6, 6, 0, -2, 2, 6, 0, -2, 2, 0, -2, 2, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 3, 0, -1, 0, -1, 3, -9, 0, 0, -6, -1, 3, 0, 0, 3, 3, -1, -2, 2, 0, 0, 0, 0, 0, 0, -1, 1, 2, -2, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, -7, 1, 3, 3, -3, 1, -1, -3, 0, 1, 1, -1, -1, 0, 0, -2, 0, 2, -1, 1, -1, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 0, -14, 42, 0, 0, 0, -14, -6, -14, -6, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, -21, 0, 0, 6, -3, 0, 0, 14, 0, 14, -6, 0, -6, -6, 0, -2, 2, -2, 0, -2, 2, 0, 2, 2, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, -21, 0, 7, 0, 7, 3, 3, 0, 0, 6, -1, -1, 0, 0, -3, -1, -1, -2, -2, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -7, -7, 3, 3, 3, 1, -1, 1, 0, 1, -1, -1, -1, 0, 0, 2, 0, 2, -1, -1, 1, 1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -14, 42, -14, -6, -14, -14, -6, 2, 6, 2, 6, 2, -2, -2, 2, 6, 6, -2, -2, -2, -2, -2, -2, 42, 0, 0, -3, -3, 0, 0, 14, 14, -2, -6, -2, 0, 0, -6, 2, 2, 2, 0, -2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, -14, -14, -6, 0, 2, 0, 2, 6, 6, 0, 0, 3, -2, -2, 0, 0, 3, -2, -2, 1, -1, 3, 0, -3, 0, 0, 0, -1, 1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, 0, 0, 0, 0, 14, -2, -6, 0, 0, 2, 2, 2, 0, -2, 0, 0, 2, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, -42, 0, -6, -42, 0, 6, -6, -6, 0, 2, 6, -6, 2, 0, -2, 6, 0, 0, -2, 6, 0, 0, 42, -21, -21, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 2, -2, 0, 2, 0, 2, 0, 0, -2, 2, -2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 42, 0, -6, 21, -6, 3, 0, 2, -6, 3, -3, 0, 2, -6, -1, 3, 0, 0, 0, 0, 0, 0, -1, 0, 3, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 2, 0, -1, 0, 2, -2, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, -42, 0, -6, -42, 0, 6, -6, 2, 0, -6, 6, 2, -6, 0, 6, -2, 0, 0, 6, -2, 0, 0, 42, -21, -21, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, -2, -2, 0, 2, 0, -2, 0, 0, 2, -2, 2, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 42, 0, -6, 21, -6, 3, 0, -6, 2, 3, -3, 0, -6, 2, 3, -1, 0, 0, 0, 0, 0, 0, 3, 0, -1, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 2, 0, -1, 0, -2, 2, 0, -1, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 0, -42, -6, 0, 0, 0, -6, -6, 6, 2, 0, -6, 2, 0, 0, 0, 6, -2, 0, 0, 0, 0, -21, 42, -21, 0, 0, 0, 0, -42, 0, 6, 2, 0, -2, 2, 0, -2, 2, 6, 0, -2, -2, 0, 2, -2, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -21, 21, 3, 0, 3, -6, -3, -1, 3, 3, 0, 0, -1, 3, 2, -6, 0, -3, 1, 0, 0, 0, -1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, -1, 1, -1, 1, -1, -3, 2, 1, -1, 1, 1, -1, 2, 0, -2, 0, -1, 1, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 0, -42, -6, 0, 0, 0, -6, 2, 6, -6, 0, 2, -6, 0, 0, 0, -2, 6, 0, 0, 0, 0, -21, 42, -21, 0, 0, 0, 0, -42, 0, 6, 2, 0, 2, -2, 0, 6, 2, -2, 0, -2, -2, 0, -2, 2, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -21, 21, 3, 0, 3, -6, -3, 3, -1, 3, 0, 0, 3, -1, -6, 2, 0, 1, -3, 0, 0, 0, 3, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, -1, -1, 1, -3, -1, 1, 2, 1, 1, -1, 1, -1, -2, 0, 2, 0, 1, -1, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 0, 42, -6, 0, 0, 0, -6, -6, -6, 2, 0, -6, 2, 0, 0, 0, -6, 2, 0, 0, 0, 0, -21, 42, -21, 0, 0, 0, 0, 42, 0, -6, 2, 0, -2, 2, 0, 2, 2, -6, 0, 2, 2, 0, 2, -2, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, 3, 0, 3, -6, 3, -1, 3, 3, 0, 0, -1, 3, 2, -6, 0, 3, -1, 0, 0, 0, -1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, -1, 1, -1, -1, -1, 3, 2, -1, -1, 1, -1, -1, 2, 0, -2, 0, 1, -1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 0, 42, -6, 0, 0, 0, -6, 2, -6, -6, 0, 2, -6, 0, 0, 0, 2, -6, 0, 0, 0, 0, -21, 42, -21, 0, 0, 0, 0, 42, 0, -6, 2, 0, 2, -2, 0, -6, 2, 2, 0, 2, 2, 0, -2, 2, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, 3, 0, 3, -6, 3, 3, -1, 3, 0, 0, 3, -1, -6, 2, 0, -1, 3, 0, 0, 0, 3, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, -1, -1, 1, 3, -1, -1, 2, -1, 1, -1, -1, -1, -2, 0, 2, 0, -1, 1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 42, 0, -6, 42, 0, -6, -6, -6, 0, 2, -6, -6, 2, 0, 2, -6, 0, 0, 2, -6, 0, 0, 42, -21, -21, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 2, 2, 0, 2, 0, -2, 0, 0, 2, 2, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 42, 0, -6, -21, -6, 3, 0, 2, -6, 3, 3, 0, 2, -6, -1, 3, 0, 0, 0, 0, 0, 0, -1, 0, 3, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 2, 0, -1, 0, 2, -2, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 42, 42, 0, -6, 42, 0, -6, -6, 2, 0, -6, -6, 2, -6, 0, -6, 2, 0, 0, -6, 2, 0, 0, 42, -21, -21, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, -2, 2, 0, 2, 0, 2, 0, 0, -2, -2, 2, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 42, 0, -6, -21, -6, 3, 0, -6, 2, 3, 3, 0, -6, 2, 3, -1, 0, 0, 0, 0, 0, 0, 3, 0, -1, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 2, 0, -1, 0, -2, 2, 0, -1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, -16, 0, 16, 48, 0, 0, 0, -16, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, 0, -6, 3, 0, 0, -16, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, -8, -24, 0, 8, 0, -8, 0, 0, 0, 0, -6, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 6, 6, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, -2, -2, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, -16, 0, -16, 48, 0, 0, 0, -16, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, 0, -6, 3, 0, 0, 16, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, -24, 0, 8, 0, 8, 0, 0, 0, 0, -6, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, 2, 2, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 6, 6, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[56, 56, 0, 0, -8, 0, 0, 0, -8, 8, 0, 8, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, -28, 14, -4, 2, 2, -1, 0, 0, 0, -8, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, 0, 4, 0, 4, 4, 0, -4, -4, -2, 0, 4, -4, -4, -4, -4, -2, 0, 0, -4, 4, 0, 2, 0, 2, 0, 0, -2, 2, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, -63, -21, -9, 21, 21, 9, 3, -9, 3, 3, -3, 3, -1, -3, -3, 9, 3, -1, 1, -3, 1, -3, 63, 0, 0, 0, 0, 0, 0, 21, -21, -3, 3, 3, -3, 3, -3, 1, -1, -3, 3, 1, -1, -3, -1, 1, 3, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -21, -21, -9, 0, 3, 0, 3, 3, -9, 0, 0, 0, -1, 3, 0, 0, 0, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 3, -3, 3, 1, -1, -3, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, -63, -21, -9, 21, 21, 9, 3, 3, 3, -9, -3, -1, 3, -3, 9, -3, -1, 3, -3, 1, -3, 1, 63, 0, 0, 0, 0, 0, 0, 21, -21, -3, 3, 3, 3, -3, -3, -3, -1, 1, -3, 1, -1, 3, 1, -1, -1, 1, 3, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -21, -21, -9, 0, 3, 0, 3, -9, 3, 0, 0, 0, 3, -1, 0, 0, 0, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 3, 3, -3, -3, -1, 1, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, -63, 21, -9, 21, -21, 9, 3, -9, -3, 3, -3, 3, -1, 3, -3, 9, -3, 1, 1, -3, -1, 3, 63, 0, 0, 0, 0, 0, 0, -21, 21, 3, 3, -3, -3, 3, -3, -1, -1, 3, 3, -1, 1, -3, -1, 1, -3, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -21, 21, -9, 0, 3, 0, -3, 3, -9, 0, 0, 0, -1, 3, 0, 0, 0, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 3, -3, 3, -1, -1, 3, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, -63, 21, -9, 21, -21, 9, 3, 3, -3, -9, -3, -1, 3, 3, 9, -3, 1, -3, -3, 1, 3, -1, 63, 0, 0, 0, 0, 0, 0, -21, 21, 3, 3, -3, 3, -3, -3, 3, -1, -1, -3, -1, 1, 3, 1, -1, 1, 1, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -21, 21, -9, 0, 3, 0, -3, -9, 3, 0, 0, 0, 3, -1, 0, 0, 0, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 3, 3, -3, 3, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, 63, -21, -9, -21, -21, -9, 3, -9, 3, 3, 3, 3, -1, 3, 3, -9, 3, -1, -1, 3, -1, 3, 63, 0, 0, 0, 0, 0, 0, 21, 21, -3, 3, -3, -3, 3, 3, 1, -1, -3, -3, 1, -1, 3, -1, 1, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -21, -21, -9, 0, 3, 0, 3, 3, -9, 0, 0, 0, -1, 3, 0, 0, 0, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 3, -3, 3, 1, -1, -3, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, 63, -21, -9, -21, -21, -9, 3, 3, 3, -9, 3, -1, 3, 3, -9, 3, -1, 3, 3, -1, 3, -1, 63, 0, 0, 0, 0, 0, 0, 21, 21, -3, 3, -3, 3, -3, 3, -3, -1, 1, 3, 1, -1, -3, 1, -1, 1, -1, -3, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -21, -21, -9, 0, 3, 0, 3, -9, 3, 0, 0, 0, 3, -1, 0, 0, 0, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, 3, 3, -3, -3, -1, 1, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, 63, 21, -9, -21, 21, -9, 3, -9, -3, 3, 3, 3, -1, -3, 3, -9, -3, 1, -1, 3, 1, -3, 63, 0, 0, 0, 0, 0, 0, -21, -21, 3, 3, 3, -3, 3, 3, -1, -1, 3, -3, -1, 1, 3, -1, 1, 3, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -21, 21, -9, 0, 3, 0, -3, 3, -9, 0, 0, 0, -1, 3, 0, 0, 0, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 3, -3, 3, -1, -1, 3, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[63, -21, 63, 21, -9, -21, 21, -9, 3, 3, -3, -9, 3, -1, 3, -3, -9, 3, 1, -3, 3, -1, -3, 1, 63, 0, 0, 0, 0, 0, 0, -21, -21, 3, 3, 3, 3, -3, 3, 3, -1, -1, 3, -1, 1, -3, 1, -1, -1, -1, 3, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -21, 21, -9, 0, 3, 0, -3, -9, 3, 0, 0, 0, 3, -1, 0, 0, 0, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, 3, 3, -3, 3, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, -28, 0, -28, -12, 0, 0, 0, 4, 12, 4, 12, 0, -4, -4, 0, 0, 0, -4, -4, 0, 0, 0, 0, -42, 0, 0, -6, 3, 0, 0, 28, 0, -4, -12, 0, 0, 0, 0, 4, 4, 4, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 6, 0, -2, 0, -2, -6, -6, 0, 0, 6, 2, 2, 0, 0, -3, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 1, -1, -2, 2, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -14, 2, 6, 0, 0, -2, -2, -2, 0, 2, 0, 0, -2, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, -28, 0, 28, -12, 0, 0, 0, 4, 12, -4, 12, 0, -4, -4, 0, 0, 0, 4, 4, 0, 0, 0, 0, -42, 0, 0, -6, 3, 0, 0, -28, 0, 4, -12, 0, 0, 0, 0, -4, 4, -4, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, -14, 6, 0, -2, 0, 2, -6, -6, 0, 0, 6, 2, 2, 0, 0, -3, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 1, -1, 2, -2, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 14, -2, 6, 0, 0, 2, -2, 2, 0, -2, 0, 0, 2, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, 84, 0, 0, -12, 0, 0, 0, -12, -12, 0, 4, 0, -12, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, -42, 21, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 4, 0, 0, 4, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 6, 0, 6, 6, 0, -2, 6, -3, 0, 0, -2, 6, -2, 6, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, -2, 0, -2, 0, -2, 2, 0, 1, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, 84, 0, 0, -12, 0, 0, 0, -12, 4, 0, -12, 0, 4, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, -42, 21, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, -4, 0, 0, 4, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -42, 0, 6, 0, 6, 6, 0, 6, -2, -3, 0, 0, 6, -2, 6, -2, 0, 0, 0, 0, 0, 0, -3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, -2, 0, -2, 0, 2, -2, 0, 1, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, -42, 0, -42, -18, 0, 0, 0, 6, -18, 6, 6, 0, 6, -2, 0, 0, 0, 6, -2, 0, 0, 0, 0, -63, 0, 0, 0, 0, 0, 0, 42, 0, -6, 6, 0, -6, 6, 0, 2, -2, -6, 0, 2, -2, 0, -2, 2, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 9, 0, -3, 0, -3, -3, 9, 0, 0, 0, 1, -3, 0, 0, 0, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, -3, 3, -3, -1, 1, 3, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, -42, 0, -42, -18, 0, 0, 0, 6, 6, 6, -18, 0, -2, 6, 0, 0, 0, -2, 6, 0, 0, 0, 0, -63, 0, 0, 0, 0, 0, 0, 42, 0, -6, 6, 0, 6, -6, 0, -6, -2, 2, 0, 2, -2, 0, 2, -2, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 9, 0, -3, 0, -3, 9, -3, 0, 0, 0, -3, 1, 0, 0, 0, 1, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 3, -3, -3, 3, 3, 1, -1, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, -42, 0, 42, -18, 0, 0, 0, 6, -18, -6, 6, 0, 6, -2, 0, 0, 0, -6, 2, 0, 0, 0, 0, -63, 0, 0, 0, 0, 0, 0, -42, 0, 6, 6, 0, -6, 6, 0, -2, -2, 6, 0, -2, 2, 0, -2, 2, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 21, -21, 9, 0, -3, 0, 3, -3, 9, 0, 0, 0, 1, -3, 0, 0, 0, 3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, -3, 3, -3, 1, 1, -3, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, -42, 0, 42, -18, 0, 0, 0, 6, 6, -6, -18, 0, -2, 6, 0, 0, 0, 2, -6, 0, 0, 0, 0, -63, 0, 0, 0, 0, 0, 0, -42, 0, 6, 6, 0, 6, -6, 0, 6, -2, -2, 0, -2, 2, 0, 2, -2, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 21, -21, 9, 0, -3, 0, 3, 9, -3, 0, 0, 0, -3, 1, 0, 0, 0, -1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -3, -3, -3, 3, -3, 1, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_193536_b:= KnownIrreducibles(CR);