/* Group 1920.240594 downloaded from the LMFDB on 02 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 11 | (1,4,3,5,2)(7,8), (1,2)(3,4,5)(6,7,9,8), (1,3)(2,5)(6,8)(7,9), (2,3,5,4)(7,8)(10,11) >; GLZ := MatrixGroup< 6, Integers() | [[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1920_240594 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := true, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(6,9)(7,8)>,< 2, 1, G!(10,11)>,< 2, 1, G!(6,9)(7,8)(10,11)>,< 2, 2, G!(7,8)>,< 2, 2, G!(7,8)(10,11)>,< 2, 2, G!(6,7)(8,9)>,< 2, 2, G!(6,7)(8,9)(10,11)>,< 2, 10, G!(1,2)>,< 2, 10, G!(1,2)(10,11)>,< 2, 10, G!(1,2)(6,9)(7,8)>,< 2, 10, G!(1,2)(6,9)(7,8)(10,11)>,< 2, 15, G!(2,3)(4,5)(10,11)>,< 2, 15, G!(2,3)(4,5)(6,9)(7,8)(10,11)>,< 2, 15, G!(2,4)(3,5)>,< 2, 15, G!(2,3)(4,5)(6,9)(7,8)>,< 2, 20, G!(1,2)(7,8)>,< 2, 20, G!(1,2)(7,8)(10,11)>,< 2, 20, G!(1,2)(6,7)(8,9)>,< 2, 20, G!(1,2)(6,7)(8,9)(10,11)>,< 2, 30, G!(2,3)(4,5)(7,8)>,< 2, 30, G!(2,3)(4,5)(7,8)(10,11)>,< 2, 30, G!(2,3)(4,5)(6,7)(8,9)>,< 2, 30, G!(2,3)(4,5)(6,7)(8,9)(10,11)>,< 3, 20, G!(3,5,4)>,< 4, 2, G!(6,8,9,7)>,< 4, 2, G!(6,8,9,7)(10,11)>,< 4, 20, G!(1,2)(6,8,9,7)>,< 4, 20, G!(1,2)(6,8,9,7)(10,11)>,< 4, 30, G!(2,3)(4,5)(6,7,9,8)>,< 4, 30, G!(2,3)(4,5)(6,7,9,8)(10,11)>,< 4, 30, G!(2,3,4,5)>,< 4, 30, G!(2,3,4,5)(10,11)>,< 4, 30, G!(2,3,4,5)(6,9)(7,8)>,< 4, 30, G!(2,3,4,5)(6,9)(7,8)(10,11)>,< 4, 60, G!(2,5,3,4)(6,8,9,7)>,< 4, 60, G!(1,4,5,2)(6,7)(8,9)>,< 4, 60, G!(1,4,3,5)(6,8)(7,9)(10,11)>,< 4, 60, G!(1,2,3,5)(7,8)(10,11)>,< 4, 60, G!(2,4,3,5)(7,8)>,< 4, 60, G!(1,4,5,3)(6,8,9,7)(10,11)>,< 5, 24, G!(1,3,5,2,4)>,< 6, 20, G!(3,4,5)(10,11)>,< 6, 20, G!(3,4,5)(6,9)(7,8)(10,11)>,< 6, 20, G!(1,2)(3,4,5)>,< 6, 20, G!(1,2)(3,4,5)(10,11)>,< 6, 20, G!(1,2)(3,4,5)(6,9)(7,8)>,< 6, 20, G!(1,2)(3,4,5)(6,9)(7,8)(10,11)>,< 6, 20, G!(3,5,4)(6,9)(7,8)>,< 6, 40, G!(3,4,5)(7,8)>,< 6, 40, G!(3,4,5)(7,8)(10,11)>,< 6, 40, G!(3,4,5)(6,7)(8,9)>,< 6, 40, G!(3,4,5)(6,7)(8,9)(10,11)>,< 6, 40, G!(1,2)(3,4,5)(7,8)>,< 6, 40, G!(1,2)(3,4,5)(7,8)(10,11)>,< 6, 40, G!(1,2)(3,4,5)(6,7)(8,9)>,< 6, 40, G!(1,2)(3,4,5)(6,7)(8,9)(10,11)>,< 10, 24, G!(1,2,3,4,5)(10,11)>,< 10, 24, G!(1,2,3,4,5)(6,9)(7,8)(10,11)>,< 10, 24, G!(1,5,3,2,4)(6,9)(7,8)>,< 10, 48, G!(1,3,2,5,4)(6,9)(10,11)>,< 10, 48, G!(1,4,3,2,5)(7,8)>,< 10, 48, G!(1,5,4,3,2)(6,7)(8,9)>,< 10, 48, G!(1,4,2,3,5)(6,8)(7,9)(10,11)>,< 12, 40, G!(3,4,5)(6,7,9,8)>,< 12, 40, G!(3,4,5)(6,7,9,8)(10,11)>,< 12, 40, G!(1,2)(3,4,5)(6,7,9,8)>,< 12, 40, G!(1,2)(3,4,5)(6,7,9,8)(10,11)>,< 20, 48, G!(1,2,5,4,3)(6,8,9,7)>,< 20, 48, G!(1,3,5,2,4)(6,8,9,7)(10,11)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, -2, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, -2, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 1, 4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, 4, 4, -2, -2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 1, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, 4, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 1, 4, -4, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, 4, 2, -2, 2, -2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 1, 4, -4, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, 4, -4, 4, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 1, -4, 4, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, 4, -4, 4, 2, -2, 2, -2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 1, -4, 4, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, -4, 4, -4, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 1, -4, 4, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, -4, 4, -4, 2, -2, 2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 1, -4, 4, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, 4, -4, -4, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 1, 4, -4, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 4, 4, -4, -4, 2, -2, 2, -2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 1, 4, -4, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, -4, -4, -4, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 1, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, -4, -4, -4, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 1, 4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, 4, 4, -4, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 1, -4, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, 4, 4, -4, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 1, -4, -4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, -4, -4, 4, -2, -2, -2, -2, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 1, -4, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, -4, -4, 4, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 1, -4, -4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, 5, 5, 5, 5, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 5, 5, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 5, 5, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, -5, -5, 5, 5, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 5, -5, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 0, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, -5, -5, 5, 5, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 5, -5, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 0, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, -5, 5, -5, 5, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -5, 5, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 0, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, -5, 5, -5, 5, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -5, 5, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, 5, -5, 5, -5, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -5, 5, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, 5, -5, 5, -5, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -5, 5, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, 5, 5, -5, -5, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 5, -5, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 0, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, -5, -5, 5, 5, -5, -5, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 5, -5, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 0, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, -5, -5, -5, -5, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 5, 5, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, -5, -5, -5, -5, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 5, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 0, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, -5, 5, 5, -5, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -5, -5, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, -5, 5, 5, -5, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -5, -5, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 0, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, 5, -5, -5, 5, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -5, -5, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 0, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[5, 5, 5, 5, 5, -5, -5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -5, -5, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 6, 6, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -6, -6, 6, 6, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, 2, 2, 0, 6, -6, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -6, 6, -6, 6, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 2, -2, 2, -2, 0, -6, 6, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 6, -6, 6, -6, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -2, 2, -2, 2, 0, -6, 6, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 6, 6, -6, -6, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, 0, 6, -6, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, -6, -6, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 6, 6, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, 6, 6, -6, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -2, 2, 2, -2, 0, -6, -6, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, -6, -6, 6, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 0, -6, -6, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, -10, 10, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, -10, 10, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, 10, -10, 0, 0, 0, 0, -2, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, 2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, 10, -10, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, -2, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1920_240594:= KnownIrreducibles(CR);