# Group 192.521 downloaded from the LMFDB on 16 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(166993666269766018098321025,192); a := GPC.1; b := GPC.3; c := GPC.6; GPerm := Group( (1,2,4,6,3,5,7,8)(12,13), (1,3)(2,5)(4,7)(6,8)(9,10), (1,2)(3,5)(4,8)(6,7)(9,10)(14,15,16,17), (14,16)(15,17), (1,4,3,7)(2,6,5,8), (1,3)(2,5)(4,7)(6,8), (11,12,13) ); GLZN := Group([[[ZmodnZObj(9,40), ZmodnZObj(5,40)], [ZmodnZObj(28,40), ZmodnZObj(1,40)]],[[ZmodnZObj(1,40), ZmodnZObj(10,40)], [ZmodnZObj(0,40), ZmodnZObj(1,40)]],[[ZmodnZObj(9,40), ZmodnZObj(0,40)], [ZmodnZObj(0,40), ZmodnZObj(9,40)]],[[ZmodnZObj(33,40), ZmodnZObj(24,40)], [ZmodnZObj(8,40), ZmodnZObj(1,40)]],[[ZmodnZObj(1,40), ZmodnZObj(20,40)], [ZmodnZObj(0,40), ZmodnZObj(1,40)]],[[ZmodnZObj(21,40), ZmodnZObj(0,40)], [ZmodnZObj(0,40), ZmodnZObj(21,40)]],[[ZmodnZObj(27,40), ZmodnZObj(25,40)], [ZmodnZObj(0,40), ZmodnZObj(37,40)]]]); # Booleans booleans_192_521 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_192_521:=rec(); chartbl_192_521.IsFinite:= true; chartbl_192_521.UnderlyingCharacteristic:= 0; chartbl_192_521.UnderlyingGroup:= GPC; chartbl_192_521.Size:= 192; chartbl_192_521.InfoText:= "Character table for group 192.521 downloaded from the LMFDB."; chartbl_192_521.Identifier:= " C2*C6.D8 "; chartbl_192_521.NrConjugacyClasses:= 48; chartbl_192_521.ConjugacyClasses:= [ of ..., f2, f6*f7, f5*f6*f7, f2*f6*f7, f2*f5, f2*f5*f6*f7, f5, f7, f4, f4*f5*f6*f7, f2*f4*f5, f2*f4*f5*f6*f7, f1*f2, f1, f1*f2*f6*f7, f1*f6*f7, f1*f3, f1*f2*f3, f1*f3*f6, f1*f2*f3*f6, f6, f5*f6, f2*f6, f2*f5*f7, f2*f5*f6, f5*f7^2, f2*f7^2, f3, f3*f5, f3*f6, f3*f5*f6, f2*f3, f2*f3*f5, f2*f3*f6, f2*f3*f5*f6, f4*f7, f4*f6, f2*f4*f7, f2*f4*f6, f1*f7, f1*f2*f7^2, f1*f7^2, f1*f2*f7, f1*f6, f1*f2*f4*f6, f1*f4*f6, f1*f2*f6]; chartbl_192_521.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]; chartbl_192_521.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 1, 1, 9, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28], [1, 2, 3, 4, 5, 6, 7, 8, 1, 10, 11, 12, 13, 15, 14, 17, 16, 19, 18, 21, 20, 3, 4, 5, 6, 7, 8, 2, 30, 29, 32, 31, 34, 33, 36, 35, 10, 11, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17]]; chartbl_192_521.SizesCentralizers:= [192, 192, 192, 192, 192, 192, 192, 192, 96, 96, 96, 96, 96, 48, 48, 48, 48, 16, 16, 16, 16, 96, 96, 96, 96, 96, 96, 96, 32, 32, 32, 32, 32, 32, 32, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48]; chartbl_192_521.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "2F", "2G", "3A", "4A", "4B", "4C", "4D", "4E1", "4E-1", "4F1", "4F-1", "4G1", "4G-1", "4H1", "4H-1", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "8A1", "8A3", "8B1", "8B3", "8C1", "8C3", "8D1", "8D3", "12A", "12B", "12C", "12D", "12E1", "12E-1", "12E5", "12E-5", "12F1", "12F-1", "12F5", "12F-5"]; chartbl_192_521.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]; chartbl_192_521.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1], [1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1], [1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1], [1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, E(4), -1, -1*E(4), -1, E(4), -1*E(4), -1*E(4), 1, E(4), -1*E(4), E(4)], [1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1*E(4), -1, E(4), -1, -1*E(4), E(4), E(4), 1, -1*E(4), E(4), -1*E(4)], [1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, E(4), -1, -1*E(4), -1, E(4), -1*E(4), -1*E(4), 1, E(4), -1*E(4), E(4)], [1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1*E(4), -1, E(4), -1, -1*E(4), E(4), E(4), 1, -1*E(4), E(4), -1*E(4)], [1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1*E(4), 1, -1*E(4), -1, E(4), E(4), -1*E(4), 1, E(4), E(4), -1*E(4)], [1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, E(4), 1, E(4), -1, -1*E(4), -1*E(4), E(4), 1, -1*E(4), -1*E(4), E(4)], [1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1*E(4), 1, -1*E(4), -1, E(4), E(4), -1*E(4), 1, E(4), E(4), -1*E(4)], [1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, E(4), 1, E(4), -1, -1*E(4), -1*E(4), E(4), 1, -1*E(4), -1*E(4), E(4)], [2, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0], [2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 0], [2, 2, -2, -2, -2, 2, -2, 2, -1, 2, -2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1], [2, 2, -2, -2, -2, 2, -2, 2, -1, 2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1], [2, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1], [2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, 2, 0, 0, 0, -2, 0, 0, 0], [2, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0], [2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, 2, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, 2, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, 2, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, 2, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, -2, 2, -2, 2, 2, -1, 2, -2, -2, 2, -2*E(4), 2*E(4), -2*E(4), 2*E(4), 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1*E(4), 1, E(4), 1, -1*E(4), E(4), E(4), -1, -1*E(4), E(4), -1*E(4)], [2, -2, -2, -2, 2, -2, 2, 2, -1, 2, -2, -2, 2, 2*E(4), -2*E(4), 2*E(4), -2*E(4), 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, E(4), 1, -1*E(4), 1, E(4), -1*E(4), -1*E(4), -1, E(4), -1*E(4), E(4)], [2, -2, 2, 2, -2, -2, -2, 2, -1, 2, 2, -2, -2, -2*E(4), -2*E(4), 2*E(4), 2*E(4), 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, E(4), -1, E(4), 1, -1*E(4), -1*E(4), E(4), -1, -1*E(4), -1*E(4), E(4)], [2, -2, 2, 2, -2, -2, -2, 2, -1, 2, 2, -2, -2, 2*E(4), 2*E(4), -2*E(4), -2*E(4), 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1*E(4), -1, -1*E(4), 1, E(4), E(4), -1*E(4), -1, E(4), E(4), -1*E(4)], [2, 2, -2, -2, -2, 2, -2, 2, -1, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1-2*E(3), -1, -1-2*E(3), 1, 1+2*E(3), 1+2*E(3), 1+2*E(3), 1, -1-2*E(3), -1-2*E(3), 1+2*E(3)], [2, 2, -2, -2, -2, 2, -2, 2, -1, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1+2*E(3), -1, 1+2*E(3), 1, -1-2*E(3), -1-2*E(3), -1-2*E(3), 1, 1+2*E(3), 1+2*E(3), -1-2*E(3)], [2, 2, 2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1-2*E(3), 1, 1+2*E(3), 1, -1-2*E(3), 1+2*E(3), -1-2*E(3), 1, 1+2*E(3), -1-2*E(3), 1+2*E(3)], [2, 2, 2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1+2*E(3), 1, -1-2*E(3), 1, 1+2*E(3), -1-2*E(3), 1+2*E(3), 1, -1-2*E(3), 1+2*E(3), -1-2*E(3)], [2, 2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, -2, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, -2, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, -2, 2, -2, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, -2, 2, -2, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, -2, 2, -2, 2, 2, -1, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1*E(12)-E(12)^-1, -1, -1*E(12)-E(12)^-1, -1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, 1, E(12)+E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1], [2, -2, -2, -2, 2, -2, 2, 2, -1, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, E(12)+E(12)^-1, -1, E(12)+E(12)^-1, -1, E(12)+E(12)^-1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, 1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1], [2, -2, 2, 2, -2, -2, -2, 2, -1, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1*E(12)-E(12)^-1, 1, E(12)+E(12)^-1, -1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1, 1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1], [2, -2, 2, 2, -2, -2, -2, 2, -1, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, E(12)+E(12)^-1, 1, -1*E(12)-E(12)^-1, -1, -1*E(12)-E(12)^-1, E(12)+E(12)^-1, E(12)+E(12)^-1, 1, E(12)+E(12)^-1, -1*E(12)-E(12)^-1, -1*E(12)-E(12)^-1], [4, -4, -4, 4, 4, 4, -4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, -4, 4, 4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, 4, -4, -4, 4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, 4, -4, 4, -4, -4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_192_521);