/* Group 192.485 downloaded from the LMFDB on 30 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -2, -3, 728, 141, 36, 58, 3091, 102, 3372, 124, 3149]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4"]); GPerm := PermutationGroup< 19 | (1,2,4,6,3,5,7,8)(10,11)(12,13)(14,17)(15,16)(18,19), (1,3)(2,5)(4,7)(6,8)(13,16)(17,19), (2,5)(6,8)(12,14,15,18)(13,17,16,19), (1,4,3,7)(2,6,5,8), (12,15)(13,16)(14,18)(17,19), (1,3)(2,5)(4,7)(6,8), (9,10,11) >; GLZN := MatrixGroup< 2, Integers(48) | [[35, 1, 0, 1], [25, 0, 0, 25], [1, 24, 0, 1], [41, 24, 24, 17], [1, 16, 0, 1], [25, 12, 0, 1], [43, 0, 24, 43]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_192_485 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^4>,< 2, 1, c^6>,< 2, 1, b^4*c^6>,< 2, 2, a*b^2*c^9>,< 2, 2, a*b^6*c^9>,< 3, 2, c^8>,< 4, 1, b^2>,< 4, 1, b^6>,< 4, 1, b^2*c^6>,< 4, 1, b^6*c^6>,< 4, 2, c^3>,< 4, 2, b^4*c^3>,< 4, 2, b^6*c^3>,< 4, 2, b^2*c^9>,< 4, 2, a*b^4*c^6>,< 4, 2, a>,< 4, 2, a*b^4*c^9>,< 4, 2, a*c^9>,< 4, 2, a*b^2*c^6>,< 4, 2, a*b^2>,< 6, 2, c^2>,< 6, 2, b^4*c^8>,< 6, 2, b^4*c^2>,< 6, 2, a*b^2*c>,< 6, 2, a*b^2*c^5>,< 6, 2, a*b^6*c>,< 6, 2, a*b^2*c^7>,< 8, 12, b>,< 8, 12, b^3>,< 8, 12, b*c>,< 8, 12, b^3*c>,< 8, 12, a*b>,< 8, 12, a*b^3>,< 8, 12, a*b*c>,< 8, 12, a*b^3*c>,< 12, 2, c>,< 12, 2, c^5>,< 12, 2, b^4*c>,< 12, 2, b^4*c^5>,< 12, 2, b^2*c^4>,< 12, 2, b^6*c^4>,< 12, 2, b^2*c^2>,< 12, 2, b^6*c^2>,< 12, 2, b^2*c>,< 12, 2, b^6*c>,< 12, 2, b^2*c^5>,< 12, 2, b^6*c^5>,< 12, 2, a*c^4>,< 12, 2, a*b^4*c^2>,< 12, 2, a*c^8>,< 12, 2, a*c^2>,< 12, 2, a*c>,< 12, 2, a*c^7>,< 12, 2, a*c^5>,< 12, 2, a*b^4*c>,< 12, 2, a*b^2*c^4>,< 12, 2, a*b^2*c^2>,< 12, 2, a*b^2*c^8>,< 12, 2, a*b^6*c^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,-1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 1, -1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 1, -1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, 1, -1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 1, -1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,-2*K.1,2*K.1,0,0,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,0,0,2*K.1,0,0,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,2*K.1,-2*K.1,0,0,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,0,0,-2*K.1,0,0,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,2*K.1,-2*K.1,0,0,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,0,0,-2*K.1,0,0,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,-2*K.1,2*K.1,0,0,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,0,0,2*K.1,0,0,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2,2,0,0,0,0,0,0,0,-2,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,0,-2,2*K.1,2,-2,0,0,0,0,0,-2*K.1,0,0,2,0,0,-2*K.1,-2*K.1,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2,0,0,0,0,0,0,0,-2,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,0,-2,-2*K.1,2,-2,0,0,0,0,0,2*K.1,0,0,2,0,0,2*K.1,2*K.1,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2,-2,0,0,0,0,0,0,0,-2,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,0,2,-2*K.1,-2,2,0,0,0,0,0,-2*K.1,0,0,-2,0,0,2*K.1,2*K.1,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2,-2,0,0,0,0,0,0,0,-2,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,0,2,2*K.1,-2,2,0,0,0,0,0,2*K.1,0,0,-2,0,0,-2*K.1,-2*K.1,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,2,2,-2,0,0,0,0,-2*K.1,2*K.1,0,0,2*K.1,-2*K.1,0,-2,-2,0,2,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2,0,2,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,0,0,0,-2*K.1,0,0,0,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,2,2,-2,0,0,0,0,2*K.1,-2*K.1,0,0,-2*K.1,2*K.1,0,-2,-2,0,2,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2,0,2,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2,0,0,0,2*K.1,0,0,0,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,-2,-2,2,0,0,0,0,-2*K.1,2*K.1,0,0,-2*K.1,2*K.1,0,-2,-2,0,2,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2,0,-2,0,0,0,0,0,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2,0,0,0,2*K.1,0,0,0,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,-2,-2,2,0,0,0,0,2*K.1,-2*K.1,0,0,2*K.1,-2*K.1,0,-2,-2,0,2,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2,0,-2,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2,0,0,0,-2*K.1,0,0,0,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,2,2,-2,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,2*K.1^3,-2*K.1^3,1-2*K.1^2,1,1,-1+2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^3,-1,-1*K.1-K.1^-1,-1,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,2,2,-2,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,-2*K.1^3,2*K.1^3,-1+2*K.1^2,1,1,1-2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^3,-1,-1*K.1-K.1^-1,-1,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,2,2,-2,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,2*K.1^3,-2*K.1^3,-1+2*K.1^2,1,1,1-2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^3,-1,K.1+K.1^-1,-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,2,2,-2,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,-2*K.1^3,2*K.1^3,1-2*K.1^2,1,1,-1+2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^3,-1,K.1+K.1^-1,-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,-2,-2,2,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,-2*K.1^3,2*K.1^3,1-2*K.1^2,1,1,-1+2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,K.1^3,K.1^3,1,-1*K.1-K.1^-1,1,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,-2,-2,2,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,2*K.1^3,-2*K.1^3,-1+2*K.1^2,1,1,1-2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^3,1,-1*K.1-K.1^-1,1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,-2,-2,2,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,-2*K.1^3,2*K.1^3,-1+2*K.1^2,1,1,1-2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,K.1^3,K.1^3,1,K.1+K.1^-1,1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,-2,-2,2,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,2*K.1^3,-2*K.1^3,1-2*K.1^2,1,1,-1+2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^3,1,K.1+K.1^-1,1,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,1-2*K.1^2,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,-1,-1,1,-1,1,1,1,0,0,0,0,0,0,0,0,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,-1,-1,1,-1,1,1,1,0,0,0,0,0,0,0,0,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,-1,-1,1,-1,1,1,1,0,0,0,0,0,0,0,0,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,-1,-1,1,-1,1,1,1,0,0,0,0,0,0,0,0,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2,2,0,0,0,0,0,0,1-2*K.1^2,1,-1,-1+2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,1,-1*K.1^3,-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2,2,0,0,0,0,0,0,-1+2*K.1^2,1,-1,1-2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1+2*K.1^2,K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,1,K.1^3,-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2,2,0,0,0,0,0,0,-1+2*K.1^2,1,-1,1-2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1,-1*K.1^3,-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2,2,0,0,0,0,0,0,1-2*K.1^2,1,-1,-1+2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,K.1+K.1^-1,1-2*K.1^2,K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1,K.1^3,-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2,-2,0,0,0,0,0,0,1-2*K.1^2,1,-1,-1+2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1+2*K.1^2,-1*K.1^3,K.1^3,K.1^3,K.1+K.1^-1,-1,K.1^3,1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2,-2,0,0,0,0,0,0,-1+2*K.1^2,1,-1,1-2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,K.1+K.1^-1,1-2*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1,-1*K.1^3,1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2,-2,0,0,0,0,0,0,-1+2*K.1^2,1,-1,1-2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,-1,K.1^3,1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1+K.1^-1,1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2,-2,0,0,0,0,0,0,1-2*K.1^2,1,-1,-1+2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1+2*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1,-1*K.1^3,1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,1,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_192_485:= KnownIrreducibles(CR);