/* Group 192.2 downloaded from the LMFDB on 03 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -2, -3, 14, 36, 58, 80, 102, 124]); a := Explode([GPC.1]); AssignNames(~GPC, ["a", "a2", "a4", "a8", "a16", "a32", "a64"]); GPerm := PermutationGroup< 67 | (1,64,32,48,16,56,24,40,8,60,28,44,12,52,20,36,4,62,30,46,14,54,22,38,6,58,26,42,10,50,18,34,2,63,31,47,15,55,23,39,7,59,27,43,11,51,19,35,3,61,29,45,13,53,21,37,5,57,25,41,9,49,17,33), (65,67,66), (1,32,16,24,8,28,12,20,4,30,14,22,6,26,10,18,2,31,15,23,7,27,11,19,3,29,13,21,5,25,9,17)(33,64,48,56,40,60,44,52,36,62,46,54,38,58,42,50,34,63,47,55,39,59,43,51,35,61,45,53,37,57,41,49), (1,16,8,12,4,14,6,10,2,15,7,11,3,13,5,9)(17,32,24,28,20,30,22,26,18,31,23,27,19,29,21,25)(33,48,40,44,36,46,38,42,34,47,39,43,35,45,37,41)(49,64,56,60,52,62,54,58,50,63,55,59,51,61,53,57), (1,8,4,6,2,7,3,5)(9,16,12,14,10,15,11,13)(17,24,20,22,18,23,19,21)(25,32,28,30,26,31,27,29)(33,40,36,38,34,39,35,37)(41,48,44,46,42,47,43,45)(49,56,52,54,50,55,51,53)(57,64,60,62,58,63,59,61), (1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,20,18,19)(21,24,22,23)(25,28,26,27)(29,32,30,31)(33,36,34,35)(37,40,38,39)(41,44,42,43)(45,48,46,47)(49,52,50,51)(53,56,54,55)(57,60,58,59)(61,64,62,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64) >; GLFp := MatrixGroup< 2, GF(31) | [[3, 28, 30, 3]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_192_2 := rec< RF | Agroup := true, Zgroup := true, abelian := true, almost_simple := false, cyclic := true, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^96>,< 3, 1, a^64>,< 3, 1, a^128>,< 4, 1, a^48>,< 4, 1, a^144>,< 6, 1, a^32>,< 6, 1, a^160>,< 8, 1, a^24>,< 8, 1, a^168>,< 8, 1, a^72>,< 8, 1, a^120>,< 12, 1, a^16>,< 12, 1, a^176>,< 12, 1, a^80>,< 12, 1, a^112>,< 16, 1, a^12>,< 16, 1, a^180>,< 16, 1, a^36>,< 16, 1, a^156>,< 16, 1, a^60>,< 16, 1, a^132>,< 16, 1, a^84>,< 16, 1, a^108>,< 24, 1, a^8>,< 24, 1, a^184>,< 24, 1, a^40>,< 24, 1, a^152>,< 24, 1, a^56>,< 24, 1, a^136>,< 24, 1, a^88>,< 24, 1, a^104>,< 32, 1, a^6>,< 32, 1, a^186>,< 32, 1, a^18>,< 32, 1, a^174>,< 32, 1, a^30>,< 32, 1, a^162>,< 32, 1, a^42>,< 32, 1, a^150>,< 32, 1, a^54>,< 32, 1, a^138>,< 32, 1, a^66>,< 32, 1, a^126>,< 32, 1, a^78>,< 32, 1, a^114>,< 32, 1, a^90>,< 32, 1, a^102>,< 48, 1, a^4>,< 48, 1, a^188>,< 48, 1, a^20>,< 48, 1, a^172>,< 48, 1, a^28>,< 48, 1, a^164>,< 48, 1, a^44>,< 48, 1, a^148>,< 48, 1, a^52>,< 48, 1, a^140>,< 48, 1, a^68>,< 48, 1, a^124>,< 48, 1, a^76>,< 48, 1, a^116>,< 48, 1, a^92>,< 48, 1, a^100>,< 64, 1, a^3>,< 64, 1, a^189>,< 64, 1, a^9>,< 64, 1, a^183>,< 64, 1, a^15>,< 64, 1, a^177>,< 64, 1, a^21>,< 64, 1, a^171>,< 64, 1, a^27>,< 64, 1, a^165>,< 64, 1, a^33>,< 64, 1, a^159>,< 64, 1, a^39>,< 64, 1, a^153>,< 64, 1, a^45>,< 64, 1, a^147>,< 64, 1, a^51>,< 64, 1, a^141>,< 64, 1, a^57>,< 64, 1, a^135>,< 64, 1, a^63>,< 64, 1, a^129>,< 64, 1, a^69>,< 64, 1, a^123>,< 64, 1, a^75>,< 64, 1, a^117>,< 64, 1, a^81>,< 64, 1, a^111>,< 64, 1, a^87>,< 64, 1, a^105>,< 64, 1, a^93>,< 64, 1, a^99>,< 96, 1, a^2>,< 96, 1, a^190>,< 96, 1, a^10>,< 96, 1, a^182>,< 96, 1, a^14>,< 96, 1, a^178>,< 96, 1, a^22>,< 96, 1, a^170>,< 96, 1, a^26>,< 96, 1, a^166>,< 96, 1, a^34>,< 96, 1, a^158>,< 96, 1, a^38>,< 96, 1, a^154>,< 96, 1, a^46>,< 96, 1, a^146>,< 96, 1, a^50>,< 96, 1, a^142>,< 96, 1, a^58>,< 96, 1, a^134>,< 96, 1, a^62>,< 96, 1, a^130>,< 96, 1, a^70>,< 96, 1, a^122>,< 96, 1, a^74>,< 96, 1, a^118>,< 96, 1, a^82>,< 96, 1, a^110>,< 96, 1, a^86>,< 96, 1, a^106>,< 96, 1, a^94>,< 96, 1, a^98>,< 192, 1, a>,< 192, 1, a^191>,< 192, 1, a^5>,< 192, 1, a^187>,< 192, 1, a^7>,< 192, 1, a^185>,< 192, 1, a^11>,< 192, 1, a^181>,< 192, 1, a^13>,< 192, 1, a^179>,< 192, 1, a^17>,< 192, 1, a^175>,< 192, 1, a^19>,< 192, 1, a^173>,< 192, 1, a^23>,< 192, 1, a^169>,< 192, 1, a^25>,< 192, 1, a^167>,< 192, 1, a^29>,< 192, 1, a^163>,< 192, 1, a^31>,< 192, 1, a^161>,< 192, 1, a^35>,< 192, 1, a^157>,< 192, 1, a^37>,< 192, 1, a^155>,< 192, 1, a^41>,< 192, 1, a^151>,< 192, 1, a^43>,< 192, 1, a^149>,< 192, 1, a^47>,< 192, 1, a^145>,< 192, 1, a^49>,< 192, 1, a^143>,< 192, 1, a^53>,< 192, 1, a^139>,< 192, 1, a^55>,< 192, 1, a^137>,< 192, 1, a^59>,< 192, 1, a^133>,< 192, 1, a^61>,< 192, 1, a^131>,< 192, 1, a^65>,< 192, 1, a^127>,< 192, 1, a^67>,< 192, 1, a^125>,< 192, 1, a^71>,< 192, 1, a^121>,< 192, 1, a^73>,< 192, 1, a^119>,< 192, 1, a^77>,< 192, 1, a^115>,< 192, 1, a^79>,< 192, 1, a^113>,< 192, 1, a^83>,< 192, 1, a^109>,< 192, 1, a^85>,< 192, 1, a^107>,< 192, 1, a^89>,< 192, 1, a^103>,< 192, 1, a^91>,< 192, 1, a^101>,< 192, 1, a^95>,< 192, 1, a^97>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1*K.1^2,K.1^4,1,1,K.1^4,-1*K.1^2,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1,K.1,K.1,K.1^5,K.1,K.1^5,K.1^5,K.1^5,K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^5,K.1,K.1^5,-1*K.1,K.1^5,K.1,K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1,-1*K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,K.1^4,-1*K.1^2,1,1,-1*K.1^2,K.1^4,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^5,K.1,K.1^5,K.1,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^5,K.1^5,K.1^5,K.1,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1,K.1,K.1^5,K.1,-1*K.1,-1*K.1^5,K.1^5,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1*K.1^2,K.1^4,1,1,K.1^4,-1*K.1^2,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1,K.1^5,K.1,K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,K.1,K.1,K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^5,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1,K.1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,K.1^4,-1*K.1^2,1,1,-1*K.1^2,K.1^4,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1,K.1^5,K.1^5,K.1^5,K.1,K.1^5,K.1,K.1,K.1,K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1^5,K.1,-1*K.1^5,K.1,K.1^5,K.1^5,K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,K.1,K.1^5,-1*K.1^5,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^3,K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1,K.1^7,K.1^3,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^7,K.1,-1*K.1^5,K.1^3,K.1^7,-1*K.1,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^5,-1*K.1^3,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1^5,K.1^7,K.1^5,K.1^7,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^3,K.1^7,K.1^7,K.1^3,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1,K.1^3,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^7,K.1^5,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^5,K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^3,K.1^7,-1*K.1,K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^5,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^5,K.1^3,K.1,-1*K.1^7,K.1,-1*K.1^7,K.1^3,-1*K.1^5,-1*K.1,K.1^7,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1^5,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^3,K.1^7,-1*K.1^3,K.1^7,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^5,K.1^3,K.1,-1*K.1^7,K.1,-1*K.1^3,K.1^3,-1*K.1^7,K.1^3,K.1^5,K.1^5,K.1,K.1,-1*K.1^3,-1*K.1^7,K.1^7,K.1^7,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^7,K.1^5,K.1,-1*K.1^5,K.1^3,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^5,K.1^5,K.1^7,K.1^7,K.1,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^3,-1*K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1,-1*K.1^7,-1*K.1^3,K.1^5,K.1^7,-1*K.1,K.1^7,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^5,K.1,-1*K.1^5,K.1,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^3,K.1^5,K.1^7,-1*K.1,K.1^7,-1*K.1^5,K.1^5,-1*K.1,K.1^5,K.1^3,K.1^3,K.1^7,K.1^7,-1*K.1^5,-1*K.1,K.1,K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^3,K.1^5,K.1^3,-1*K.1^3,K.1^3,-1*K.1^7,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1^3,K.1,K.1,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^5,K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1^7,K.1,K.1^5,-1*K.1^3,-1*K.1,K.1^7,-1*K.1,K.1^7,-1*K.1^3,K.1^5,K.1,-1*K.1^7,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1^5,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^3,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^5,K.1,K.1,K.1^5,K.1^5,K.1,K.1,K.1^5,-1*K.1^7,K.1^5,-1*K.1^3,-1*K.1,K.1^7,-1*K.1,K.1^3,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1,K.1^3,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1^7,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,K.1^7,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^7,-1*K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^5,K.1^3,-1*K.1^7,K.1,-1*K.1^3,K.1^5,-1*K.1^3,K.1^5,K.1,-1*K.1^7,K.1^3,-1*K.1^5,-1*K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1,K.1^7,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^3,K.1^5,-1*K.1^3,-1*K.1,K.1,K.1^5,K.1,K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,K.1,-1*K.1,K.1,K.1^3,K.1^5,K.1^7,-1*K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1^7,K.1^7,K.1^3,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,K.1^7,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1,K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^3,-1*K.1^5,K.1,-1*K.1^7,K.1^5,-1*K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^5,K.1^3,K.1^7,-1*K.1,K.1,-1*K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1^7,-1*K.1,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^7,K.1^3,K.1^7,K.1^3,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^5,K.1^5,-1*K.1^7,K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,K.1,K.1,-1*K.1^5,-1*K.1^5,K.1,K.1^3,K.1,-1*K.1^7,K.1^5,-1*K.1^3,K.1^5,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1,K.1^5,K.1^5,K.1^7,-1*K.1^3,K.1^3,K.1^3,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,K.1^5,K.1,-1*K.1^7,-1*K.1,K.1,-1*K.1,-1*K.1^5,K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^5,K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^7,K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1^5,-1*K.1^3,K.1^7,-1*K.1,K.1^3,-1*K.1^5,K.1^3,-1*K.1^5,-1*K.1,K.1^7,-1*K.1^3,K.1^5,K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1,-1*K.1^7,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1^5,K.1^7,-1*K.1,K.1^3,-1*K.1^5,K.1^3,K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^3,K.1^3,K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^3,K.1^5,K.1,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^5,K.1^5,K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1,-1*K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^3,K.1^5,-1*K.1,K.1^7,-1*K.1^5,K.1^3,-1*K.1^5,K.1^3,K.1^7,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^7,K.1,-1*K.1,K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1^7,K.1,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,K.1^5,-1*K.1^7,K.1^5,-1*K.1^5,K.1^7,-1*K.1,K.1,-1*K.1,K.1^5,K.1^5,-1*K.1,-1*K.1,K.1^5,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^5,K.1^3,-1*K.1^5,-1*K.1^7,K.1^7,K.1^3,K.1^7,K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^7,K.1^7,K.1^5,K.1^3,K.1,-1*K.1^5,-1*K.1,K.1^7,K.1,-1*K.1,K.1,K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^2,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^7,K.1^5,-1*K.1^11,-1*K.1,K.1^5,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,-1*K.1,K.1^5,K.1,K.1^11,-1*K.1^5,K.1^7,K.1^5,K.1^11,-1*K.1,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,K.1,-1*K.1^5,-1*K.1,K.1^5,K.1^7,K.1^11,K.1^11,K.1^11,-1*K.1^11,K.1^7,K.1^7,K.1^5,K.1^11,K.1,K.1^5,K.1,-1*K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^7,K.1,-1*K.1^5,K.1^11,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1^7,K.1,K.1^11,-1*K.1^7,-1*K.1^5,K.1^7,K.1^7,K.1^7,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1,K.1^11,-1*K.1^5,K.1,K.1^5,K.1,-1*K.1^11,K.1^7,K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^11,K.1,-1*K.1^11,K.1^7,K.1^7,K.1^11,K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1^11,K.1^7,-1*K.1,K.1^5,K.1^11,K.1^11,K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^2,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,K.1^11,K.1^7,K.1^11,K.1^7,-1*K.1^7,-1*K.1^5,K.1^11,K.1,-1*K.1^5,-1*K.1^7,K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^11,K.1,-1*K.1^7,K.1^11,K.1^7,K.1^11,-1*K.1,K.1^5,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^11,-1*K.1,-1*K.1^5,-1*K.1,K.1^11,-1*K.1,K.1^5,K.1^5,K.1,K.1^7,-1*K.1^7,K.1^11,K.1^7,-1*K.1,K.1^5,-1*K.1^11,K.1^7,K.1,K.1,K.1^7,K.1^7,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1^7,-1*K.1,-1*K.1^11,K.1^7,K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^11,K.1^7,K.1^11,K.1^11,-1*K.1^11,K.1^7,K.1^11,K.1,-1*K.1^7,K.1^5,K.1^7,K.1,-1*K.1^11,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^11,K.1^7,K.1^5,K.1,K.1,K.1,-1*K.1,K.1^5,K.1^5,K.1^7,K.1,K.1^11,K.1^7,K.1^11,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^11,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1^11,-1*K.1^7,K.1,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1,K.1^11,-1*K.1^5,-1*K.1^7,K.1^11,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^11,K.1^7,K.1^7,-1*K.1^7,K.1^11,K.1^7,K.1^5,-1*K.1^11,K.1,K.1^11,K.1^5,-1*K.1^7,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^11,-1*K.1^7,K.1^11,K.1,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1,K.1,K.1^11,K.1^5,K.1^7,K.1^11,K.1^7,-1*K.1^5,K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1,K.1,-1*K.1^5,-1*K.1,K.1^7,-1*K.1^11,K.1^5,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^7,K.1^11,K.1^7,K.1^11,-1*K.1^11,-1*K.1,K.1^7,K.1^5,-1*K.1,-1*K.1^11,K.1,K.1,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^11,-1*K.1,-1*K.1^7,K.1^5,-1*K.1^11,K.1^7,K.1^11,K.1^7,-1*K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^5,K.1,K.1,K.1^5,K.1^11,-1*K.1^11,K.1^7,K.1^11,-1*K.1^5,K.1,-1*K.1^7,K.1^11,K.1^5,K.1^5,K.1^11,K.1^11,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^5,K.1,K.1^5,K.1,-1*K.1,-1*K.1^11,K.1^5,K.1^7,-1*K.1^11,-1*K.1,K.1^11,K.1^11,K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^5,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^7,-1*K.1,K.1^5,K.1,K.1^5,-1*K.1^7,K.1^11,K.1^7,-1*K.1^11,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^5,-1*K.1^7,K.1^11,K.1^11,K.1^7,K.1,-1*K.1,K.1^5,K.1,-1*K.1^7,K.1^11,-1*K.1^5,K.1,K.1^7,K.1^7,K.1,K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,K.1^11,K.1,-1*K.1^7,-1*K.1^5,K.1,K.1^11,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^5,-1*K.1^5,K.1,K.1^5,K.1^7,-1*K.1,K.1^11,K.1,K.1^7,-1*K.1^5,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^11,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^11,K.1^11,K.1,K.1^7,K.1^5,K.1,K.1^5,-1*K.1^7,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^11,K.1^5,-1*K.1,K.1^7,-1*K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1^11,-1*K.1^11,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^11,-1*K.1^5,-1*K.1^7,K.1^9,-1*K.1,K.1^15,K.1^13,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1^9,K.1^7,K.1^3,-1*K.1^13,-1*K.1^15,K.1,-1*K.1^15,K.1,-1*K.1^13,K.1^3,K.1^7,-1*K.1^9,K.1^5,-1*K.1^11,-1*K.1^3,K.1^13,K.1^15,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^5,K.1^11,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^10,K.1^10,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^10,K.1^10,-1*K.1^5,-1*K.1^9,K.1^5,K.1^9,K.1^13,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1^15,-1*K.1^13,K.1^3,-1*K.1^11,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,K.1^3,K.1^7,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^13,K.1^15,K.1,-1*K.1^15,K.1^5,K.1^13,K.1,-1*K.1^13,-1*K.1^11,K.1^11,K.1^15,-1*K.1^15,K.1^5,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^13,-1*K.1^5,K.1^13,-1*K.1^7,K.1,K.1^11,-1*K.1^15,K.1^3,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^7,-1*K.1^9,-1*K.1^5,K.1^5,K.1,K.1^11,K.1^11,K.1^9,K.1^9,-1*K.1^15,K.1^15,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^5,K.1^11,K.1^9,-1*K.1^7,K.1^15,-1*K.1,-1*K.1^3,K.1^13,K.1^5,-1*K.1^11,K.1^7,-1*K.1^9,-1*K.1^13,K.1^3,K.1,-1*K.1^15,K.1,-1*K.1^15,K.1^3,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^11,K.1^5,K.1^13,-1*K.1^3,-1*K.1,K.1^15,-1*K.1^7,K.1^9,K.1^11,-1*K.1^5,K.1^2,K.1^14,K.1^14,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,K.1^14,-1*K.1^14,-1*K.1^10,K.1^6,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,K.1^14,K.1^10,K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^9,K.1^11,K.1^9,-1*K.1,K.1^3,-1*K.1^13,K.1^5,K.1^13,-1*K.1^9,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1^9,K.1^13,-1*K.1^7,-1*K.1^13,K.1^3,-1*K.1,-1*K.1^15,K.1,-1*K.1^11,-1*K.1^3,-1*K.1^15,K.1^3,K.1^5,-1*K.1^5,-1*K.1,K.1,-1*K.1^11,K.1^15,K.1^7,K.1^7,-1*K.1^3,K.1^11,-1*K.1^3,K.1^9,-1*K.1^15,-1*K.1^5,K.1,-1*K.1^13,K.1^3,K.1^5,K.1^13,K.1^5,K.1^9,K.1^7,K.1^11,-1*K.1^11,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1,K.1^15,K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^11,K.1^5,K.1^7,-1*K.1^9,K.1,-1*K.1^15,-1*K.1^13,K.1^3,K.1^11,-1*K.1^5,K.1^9,-1*K.1^7,-1*K.1^3,K.1^13,K.1^15,-1*K.1,K.1^15,-1*K.1,K.1^13,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1^5,K.1^11,K.1^3,-1*K.1^13,-1*K.1^15,K.1,-1*K.1^9,K.1^7,K.1^5,-1*K.1^11,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^10,K.1^10,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^10,K.1^10,K.1^5,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^13,K.1^7,K.1^5,K.1^7,-1*K.1^15,K.1^13,-1*K.1^3,K.1^11,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^13,-1*K.1^15,-1*K.1,K.1^15,-1*K.1^5,-1*K.1^13,-1*K.1,K.1^13,K.1^11,-1*K.1^11,-1*K.1^15,K.1^15,-1*K.1^5,K.1,K.1^9,K.1^9,-1*K.1^13,K.1^5,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^11,K.1^15,-1*K.1^3,K.1^13,K.1^11,K.1^3,K.1^11,K.1^7,K.1^9,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^9,K.1^15,-1*K.1^15,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^12,K.1^5,-1*K.1^11,-1*K.1^9,K.1^7,-1*K.1^15,K.1,K.1^3,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^7,K.1^9,K.1^13,-1*K.1^3,-1*K.1,K.1^15,-1*K.1,K.1^15,-1*K.1^3,K.1^13,K.1^9,-1*K.1^7,K.1^11,-1*K.1^5,-1*K.1^13,K.1^3,K.1,-1*K.1^15,K.1^7,-1*K.1^9,-1*K.1^11,K.1^5,K.1^2,K.1^14,K.1^14,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,K.1^14,-1*K.1^14,-1*K.1^10,K.1^6,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,K.1^14,K.1^10,K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^11,-1*K.1^7,K.1^11,K.1^7,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1,-1*K.1^3,K.1^13,-1*K.1^5,-1*K.1^13,K.1^9,K.1^9,-1*K.1^13,K.1^13,K.1^9,K.1^9,-1*K.1^13,K.1^7,K.1^13,-1*K.1^3,K.1,K.1^15,-1*K.1,K.1^11,K.1^3,K.1^15,-1*K.1^3,-1*K.1^5,K.1^5,K.1,-1*K.1,K.1^11,-1*K.1^15,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^11,K.1^3,-1*K.1^9,K.1^15,K.1^5,-1*K.1,K.1^13,-1*K.1^3,-1*K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^7,-1*K.1^11,K.1^11,K.1^15,K.1^5,K.1^5,K.1^7,K.1^7,-1*K.1,K.1,-1*K.1^15,-1*K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^3,K.1^13,-1*K.1^15,K.1,K.1^9,-1*K.1^7,K.1^5,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1,K.1^15,K.1^11,-1*K.1^5,K.1^7,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1^5,K.1^11,K.1^15,-1*K.1,-1*K.1^13,K.1^3,-1*K.1^11,K.1^5,-1*K.1^7,K.1^9,K.1,-1*K.1^15,K.1^13,-1*K.1^3,K.1^14,K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^10,K.1^14,-1*K.1^6,K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,K.1^10,K.1^2,K.1^6,K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^10,K.1^13,-1*K.1,-1*K.1^13,K.1,K.1^5,-1*K.1^15,K.1^13,-1*K.1^15,-1*K.1^7,-1*K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1^15,K.1^15,-1*K.1^11,K.1^11,K.1^15,K.1^15,-1*K.1^11,K.1,K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^13,K.1^5,-1*K.1^9,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1^13,K.1^9,-1*K.1,-1*K.1,K.1^5,K.1^13,K.1^5,-1*K.1^15,-1*K.1^9,-1*K.1^3,K.1^7,K.1^11,-1*K.1^5,K.1^3,-1*K.1^11,K.1^3,-1*K.1^15,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1,K.1,K.1^7,-1*K.1^7,K.1^9,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^12,K.1^13,-1*K.1^3,K.1,-1*K.1^15,-1*K.1^7,K.1^9,-1*K.1^11,K.1^5,-1*K.1^13,K.1^3,K.1^15,-1*K.1,-1*K.1^5,K.1^11,-1*K.1^9,K.1^7,-1*K.1^9,K.1^7,K.1^11,-1*K.1^5,-1*K.1,K.1^15,K.1^3,-1*K.1^13,K.1^5,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^15,K.1,-1*K.1^3,K.1^13,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^6,K.1^10,-1*K.1^10,K.1^2,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,K.1^10,-1*K.1^6,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,K.1^14,K.1^10,K.1^2,K.1^6,K.1^6,-1*K.1^3,K.1^15,K.1^3,-1*K.1^15,-1*K.1^11,K.1,-1*K.1^3,K.1,K.1^9,K.1^11,-1*K.1^5,-1*K.1^13,K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^15,-1*K.1^5,K.1^11,K.1^9,K.1^7,-1*K.1^9,K.1^3,-1*K.1^11,K.1^7,K.1^11,-1*K.1^13,K.1^13,K.1^9,-1*K.1^9,K.1^3,-1*K.1^7,K.1^15,K.1^15,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1,K.1^7,K.1^13,-1*K.1^9,-1*K.1^5,K.1^11,-1*K.1^13,K.1^5,-1*K.1^13,K.1,K.1^15,-1*K.1^3,K.1^3,K.1^7,K.1^13,K.1^13,-1*K.1^15,-1*K.1^15,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^3,-1*K.1^13,K.1^15,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^5,K.1^11,-1*K.1^3,K.1^13,K.1,-1*K.1^15,-1*K.1^11,K.1^5,-1*K.1^7,K.1^9,-1*K.1^7,K.1^9,K.1^5,-1*K.1^11,-1*K.1^15,K.1,K.1^13,-1*K.1^3,K.1^11,-1*K.1^5,K.1^7,-1*K.1^9,-1*K.1,K.1^15,-1*K.1^13,K.1^3,K.1^14,K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^10,K.1^14,-1*K.1^6,K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,K.1^10,K.1^2,K.1^6,K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^10,-1*K.1^13,K.1,K.1^13,-1*K.1,-1*K.1^5,K.1^15,-1*K.1^13,K.1^15,K.1^7,K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^15,-1*K.1^15,K.1^11,-1*K.1^11,-1*K.1^15,-1*K.1^15,K.1^11,-1*K.1,-1*K.1^11,K.1^5,K.1^7,K.1^9,-1*K.1^7,K.1^13,-1*K.1^5,K.1^9,K.1^5,-1*K.1^3,K.1^3,K.1^7,-1*K.1^7,K.1^13,-1*K.1^9,K.1,K.1,-1*K.1^5,-1*K.1^13,-1*K.1^5,K.1^15,K.1^9,K.1^3,-1*K.1^7,-1*K.1^11,K.1^5,-1*K.1^3,K.1^11,-1*K.1^3,K.1^15,K.1,-1*K.1^13,K.1^13,K.1^9,K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^13,K.1^3,-1*K.1,K.1^15,K.1^7,-1*K.1^9,K.1^11,-1*K.1^5,K.1^13,-1*K.1^3,-1*K.1^15,K.1,K.1^5,-1*K.1^11,K.1^9,-1*K.1^7,K.1^9,-1*K.1^7,-1*K.1^11,K.1^5,K.1,-1*K.1^15,-1*K.1^3,K.1^13,-1*K.1^5,K.1^11,-1*K.1^9,K.1^7,K.1^15,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^6,K.1^10,-1*K.1^10,K.1^2,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,K.1^10,-1*K.1^6,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,K.1^14,K.1^10,K.1^2,K.1^6,K.1^6,K.1^3,-1*K.1^15,-1*K.1^3,K.1^15,K.1^11,-1*K.1,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^11,K.1^5,K.1^13,-1*K.1^5,K.1,K.1,-1*K.1^5,K.1^5,K.1,K.1,-1*K.1^5,K.1^15,K.1^5,-1*K.1^11,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^3,K.1^11,-1*K.1^7,-1*K.1^11,K.1^13,-1*K.1^13,-1*K.1^9,K.1^9,-1*K.1^3,K.1^7,-1*K.1^15,-1*K.1^15,K.1^11,K.1^3,K.1^11,-1*K.1,-1*K.1^7,-1*K.1^13,K.1^9,K.1^5,-1*K.1^11,K.1^13,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^15,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^13,-1*K.1^13,K.1^15,K.1^15,K.1^9,-1*K.1^9,K.1^7,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^10,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^7,K.1^9,-1*K.1^3,K.1^13,-1*K.1^5,K.1^11,K.1,-1*K.1^15,K.1^7,-1*K.1^9,-1*K.1^13,K.1^3,K.1^15,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^11,K.1^5,-1*K.1,K.1^15,K.1^3,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^15,K.1,K.1^11,-1*K.1^5,K.1^13,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^14,K.1^6,K.1^10,K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^10,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^10,K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,K.1^10,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^2,K.1^9,-1*K.1^13,-1*K.1^9,K.1^13,K.1,-1*K.1^3,K.1^9,-1*K.1^3,K.1^11,-1*K.1,K.1^15,K.1^7,-1*K.1^15,K.1^3,K.1^3,-1*K.1^15,K.1^15,K.1^3,K.1^3,-1*K.1^15,K.1^13,K.1^15,-1*K.1,K.1^11,K.1^5,-1*K.1^11,-1*K.1^9,K.1,K.1^5,-1*K.1,K.1^7,-1*K.1^7,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^13,K.1,K.1^9,K.1,-1*K.1^3,K.1^5,-1*K.1^7,-1*K.1^11,K.1^15,-1*K.1,K.1^7,-1*K.1^15,K.1^7,-1*K.1^3,-1*K.1^13,K.1^9,-1*K.1^9,K.1^5,-1*K.1^7,-1*K.1^7,K.1^13,K.1^13,-1*K.1^11,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^9,-1*K.1^7,K.1^13,-1*K.1^3,K.1^11,-1*K.1^5,-1*K.1^15,K.1,-1*K.1^9,K.1^7,K.1^3,-1*K.1^13,-1*K.1,K.1^15,K.1^5,-1*K.1^11,K.1^5,-1*K.1^11,K.1^15,-1*K.1,-1*K.1^13,K.1^3,K.1^7,-1*K.1^9,K.1,-1*K.1^15,-1*K.1^5,K.1^11,-1*K.1^3,K.1^13,-1*K.1^7,K.1^9,K.1^10,K.1^6,K.1^6,K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^10,K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,K.1^2,-1*K.1^10,K.1^14,K.1^14,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^15,K.1^13,-1*K.1^7,K.1^13,-1*K.1^5,K.1^15,-1*K.1,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^13,K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1,-1*K.1^3,-1*K.1,K.1^15,-1*K.1^5,-1*K.1^11,K.1^5,K.1^7,-1*K.1^15,-1*K.1^11,K.1^15,-1*K.1^9,K.1^9,-1*K.1^5,K.1^5,K.1^7,K.1^11,K.1^3,K.1^3,-1*K.1^15,-1*K.1^7,-1*K.1^15,K.1^13,-1*K.1^11,K.1^9,K.1^5,-1*K.1,K.1^15,-1*K.1^9,K.1,-1*K.1^9,K.1^13,K.1^3,-1*K.1^7,K.1^7,-1*K.1^11,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^11,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^10,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^7,-1*K.1^9,K.1^3,-1*K.1^13,K.1^5,-1*K.1^11,-1*K.1,K.1^15,-1*K.1^7,K.1^9,K.1^13,-1*K.1^3,-1*K.1^15,K.1,K.1^11,-1*K.1^5,K.1^11,-1*K.1^5,K.1,-1*K.1^15,-1*K.1^3,K.1^13,K.1^9,-1*K.1^7,K.1^15,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^13,K.1^3,-1*K.1^9,K.1^7,-1*K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^14,K.1^6,K.1^10,K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^10,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^10,K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,K.1^10,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^9,K.1^13,K.1^9,-1*K.1^13,-1*K.1,K.1^3,-1*K.1^9,K.1^3,-1*K.1^11,K.1,-1*K.1^15,-1*K.1^7,K.1^15,-1*K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,-1*K.1^3,-1*K.1^3,K.1^15,-1*K.1^13,-1*K.1^15,K.1,-1*K.1^11,-1*K.1^5,K.1^11,K.1^9,-1*K.1,-1*K.1^5,K.1,-1*K.1^7,K.1^7,-1*K.1^11,K.1^11,K.1^9,K.1^5,K.1^13,K.1^13,-1*K.1,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^5,K.1^7,K.1^11,-1*K.1^15,K.1,-1*K.1^7,K.1^15,-1*K.1^7,K.1^3,K.1^13,-1*K.1^9,K.1^9,-1*K.1^5,K.1^7,K.1^7,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^11,K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^9,K.1^7,-1*K.1^13,K.1^3,-1*K.1^11,K.1^5,K.1^15,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,K.1^13,K.1,-1*K.1^15,-1*K.1^5,K.1^11,-1*K.1^5,K.1^11,-1*K.1^15,K.1,K.1^13,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1,K.1^15,K.1^5,-1*K.1^11,K.1^3,-1*K.1^13,K.1^7,-1*K.1^9,K.1^10,K.1^6,K.1^6,K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^10,K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,K.1^2,-1*K.1^10,K.1^14,K.1^14,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^15,-1*K.1^13,K.1^7,-1*K.1^13,K.1^5,-1*K.1^15,K.1,K.1^9,-1*K.1,K.1^13,K.1^13,-1*K.1,K.1,K.1^13,K.1^13,-1*K.1,K.1^3,K.1,-1*K.1^15,K.1^5,K.1^11,-1*K.1^5,-1*K.1^7,K.1^15,K.1^11,-1*K.1^15,K.1^9,-1*K.1^9,K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^3,-1*K.1^3,K.1^15,K.1^7,K.1^15,-1*K.1^13,K.1^11,-1*K.1^9,-1*K.1^5,K.1,-1*K.1^15,K.1^9,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^3,K.1^7,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^10,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^15,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^13,K.1^3,K.1^9,-1*K.1^7,-1*K.1^15,K.1,K.1^5,-1*K.1^11,K.1^7,-1*K.1^9,-1*K.1^3,K.1^13,-1*K.1^3,K.1^13,-1*K.1^9,K.1^7,-1*K.1^11,K.1^5,K.1,-1*K.1^15,-1*K.1^7,K.1^9,K.1^3,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1,K.1^15,K.1^6,K.1^10,K.1^10,K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^14,K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,K.1^14,-1*K.1^6,K.1^2,K.1^2,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1^9,K.1^11,-1*K.1,K.1^11,K.1^3,-1*K.1^9,K.1^7,-1*K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^9,K.1^3,K.1^13,-1*K.1^3,K.1,K.1^9,K.1^13,-1*K.1^9,-1*K.1^15,K.1^15,K.1^3,-1*K.1^3,K.1,-1*K.1^13,K.1^5,K.1^5,K.1^9,-1*K.1,K.1^9,K.1^11,K.1^13,K.1^15,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1^15,-1*K.1^7,-1*K.1^15,K.1^11,K.1^5,-1*K.1,K.1,K.1^13,K.1^15,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^6,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1,K.1^15,-1*K.1^5,K.1^11,K.1^3,-1*K.1^13,-1*K.1^7,K.1^9,K.1,-1*K.1^15,-1*K.1^11,K.1^5,-1*K.1^9,K.1^7,K.1^13,-1*K.1^3,K.1^13,-1*K.1^3,K.1^7,-1*K.1^9,K.1^5,-1*K.1^11,-1*K.1^15,K.1,K.1^9,-1*K.1^7,-1*K.1^13,K.1^3,K.1^11,-1*K.1^5,K.1^15,-1*K.1,-1*K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^2,K.1^10,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,K.1^6,-1*K.1^2,K.1^10,-1*K.1^14,-1*K.1^14,K.1^15,-1*K.1^11,-1*K.1^15,K.1^11,-1*K.1^7,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^13,K.1^7,-1*K.1^9,K.1,K.1^9,K.1^5,K.1^5,K.1^9,-1*K.1^9,K.1^5,K.1^5,K.1^9,K.1^11,-1*K.1^9,K.1^7,-1*K.1^13,-1*K.1^3,K.1^13,-1*K.1^15,-1*K.1^7,-1*K.1^3,K.1^7,K.1,-1*K.1,-1*K.1^13,K.1^13,-1*K.1^15,K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^15,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,K.1^13,-1*K.1^9,K.1^7,K.1,K.1^9,K.1,-1*K.1^5,-1*K.1^11,K.1^15,-1*K.1^15,-1*K.1^3,-1*K.1,-1*K.1,K.1^11,K.1^11,K.1^13,-1*K.1^13,K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^10,K.1^6,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^6,K.1^10,K.1^2,-1*K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^15,K.1,-1*K.1^11,K.1^5,K.1^13,-1*K.1^3,-1*K.1^9,K.1^7,K.1^15,-1*K.1,-1*K.1^5,K.1^11,-1*K.1^7,K.1^9,K.1^3,-1*K.1^13,K.1^3,-1*K.1^13,K.1^9,-1*K.1^7,K.1^11,-1*K.1^5,-1*K.1,K.1^15,K.1^7,-1*K.1^9,-1*K.1^3,K.1^13,K.1^5,-1*K.1^11,K.1,-1*K.1^15,K.1^6,K.1^10,K.1^10,K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^14,K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,K.1^14,-1*K.1^6,K.1^2,K.1^2,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^9,-1*K.1^11,K.1,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^7,K.1^15,K.1^7,K.1^11,K.1^11,K.1^7,-1*K.1^7,K.1^11,K.1^11,K.1^7,K.1^5,-1*K.1^7,K.1^9,-1*K.1^3,-1*K.1^13,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^13,K.1^9,K.1^15,-1*K.1^15,-1*K.1^3,K.1^3,-1*K.1,K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^15,K.1^3,-1*K.1^7,K.1^9,K.1^15,K.1^7,K.1^15,-1*K.1^11,-1*K.1^5,K.1,-1*K.1,-1*K.1^13,-1*K.1^15,-1*K.1^15,K.1^5,K.1^5,K.1^3,-1*K.1^3,K.1^13,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^6,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1,-1*K.1^15,K.1^5,-1*K.1^11,-1*K.1^3,K.1^13,K.1^7,-1*K.1^9,-1*K.1,K.1^15,K.1^11,-1*K.1^5,K.1^9,-1*K.1^7,-1*K.1^13,K.1^3,-1*K.1^13,K.1^3,-1*K.1^7,K.1^9,-1*K.1^5,K.1^11,K.1^15,-1*K.1,-1*K.1^9,K.1^7,K.1^13,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1^15,K.1,-1*K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^2,K.1^10,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,K.1^6,-1*K.1^2,K.1^10,-1*K.1^14,-1*K.1^14,-1*K.1^15,K.1^11,K.1^15,-1*K.1^11,K.1^7,K.1^5,-1*K.1^15,K.1^5,K.1^13,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^9,K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1^7,K.1^13,K.1^3,-1*K.1^13,K.1^15,K.1^7,K.1^3,-1*K.1^7,-1*K.1,K.1,K.1^13,-1*K.1^13,K.1^15,-1*K.1^3,K.1^11,K.1^11,K.1^7,-1*K.1^15,K.1^7,K.1^5,K.1^3,K.1,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^9,-1*K.1,K.1^5,K.1^11,-1*K.1^15,K.1^15,K.1^3,K.1,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,K.1^10,-1*K.1^14,K.1^22,K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^2,-1*K.1^22,K.1^10,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^2,K.1^10,-1*K.1^2,K.1^22,-1*K.1^10,K.1^10,K.1^14,-1*K.1^22,-1*K.1^7,K.1^11,-1*K.1^7,K.1^11,K.1^23,-1*K.1^13,-1*K.1^7,K.1^5,K.1^13,K.1^23,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1^13,-1*K.1^17,-1*K.1^17,K.1^5,-1*K.1^13,-1*K.1^17,-1*K.1^19,-1*K.1,K.1^23,K.1^13,K.1^19,-1*K.1^5,-1*K.1^23,K.1^7,-1*K.1^11,K.1^7,K.1^17,K.1,-1*K.1^5,K.1^13,-1*K.1^23,K.1^19,-1*K.1^19,-1*K.1^19,K.1^7,-1*K.1^23,K.1^23,-1*K.1^13,K.1^19,K.1^17,K.1^13,-1*K.1^17,K.1^7,K.1^17,-1*K.1,K.1,K.1^5,K.1^11,-1*K.1^23,-1*K.1^7,-1*K.1^11,K.1^17,K.1,-1*K.1^19,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1^11,-1*K.1^11,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,-1*K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^22,-1*K.1^22,K.1^22,-1*K.1^2,K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^10,-1*K.1^22,K.1^2,-1*K.1^14,K.1^14,-1*K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^22,-1*K.1^14,K.1^22,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^10,K.1^2,K.1^17,-1*K.1^13,K.1^17,-1*K.1^13,-1*K.1,K.1^11,K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1,K.1^23,-1*K.1^23,K.1^23,-1*K.1^19,K.1^11,K.1^7,K.1^7,-1*K.1^19,K.1^11,K.1^7,K.1^5,K.1^23,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^19,K.1,-1*K.1^17,K.1^13,-1*K.1^17,-1*K.1^7,-1*K.1^23,K.1^19,-1*K.1^11,K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^17,K.1,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^17,-1*K.1^7,K.1^23,-1*K.1^23,-1*K.1^19,-1*K.1^13,K.1,K.1^17,K.1^13,-1*K.1^7,-1*K.1^23,K.1^5,-1*K.1^13,K.1^19,K.1^19,K.1^13,K.1^13,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,K.1^10,-1*K.1^14,K.1^22,K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^2,-1*K.1^22,K.1^10,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^2,K.1^10,-1*K.1^2,K.1^22,-1*K.1^10,K.1^10,K.1^14,-1*K.1^22,K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1^23,K.1^13,K.1^7,-1*K.1^5,-1*K.1^13,-1*K.1^23,K.1,-1*K.1,K.1,-1*K.1^5,K.1^13,K.1^17,K.1^17,-1*K.1^5,K.1^13,K.1^17,K.1^19,K.1,-1*K.1^23,-1*K.1^13,-1*K.1^19,K.1^5,K.1^23,-1*K.1^7,K.1^11,-1*K.1^7,-1*K.1^17,-1*K.1,K.1^5,-1*K.1^13,K.1^23,-1*K.1^19,K.1^19,K.1^19,-1*K.1^7,K.1^23,-1*K.1^23,K.1^13,-1*K.1^19,-1*K.1^17,-1*K.1^13,K.1^17,-1*K.1^7,-1*K.1^17,K.1,-1*K.1,-1*K.1^5,-1*K.1^11,K.1^23,K.1^7,K.1^11,-1*K.1^17,-1*K.1,K.1^19,-1*K.1^11,K.1^5,K.1^5,K.1^11,K.1^11,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,-1*K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^22,-1*K.1^22,K.1^22,-1*K.1^2,K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^10,-1*K.1^22,K.1^2,-1*K.1^14,K.1^14,-1*K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^22,-1*K.1^14,K.1^22,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^10,K.1^2,-1*K.1^17,K.1^13,-1*K.1^17,K.1^13,K.1,-1*K.1^11,-1*K.1^17,K.1^19,K.1^11,K.1,-1*K.1^23,K.1^23,-1*K.1^23,K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^23,K.1,K.1^11,K.1^5,-1*K.1^19,-1*K.1,K.1^17,-1*K.1^13,K.1^17,K.1^7,K.1^23,-1*K.1^19,K.1^11,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^17,-1*K.1,K.1,-1*K.1^11,K.1^5,K.1^7,K.1^11,-1*K.1^7,K.1^17,K.1^7,-1*K.1^23,K.1^23,K.1^19,K.1^13,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^7,K.1^23,-1*K.1^5,K.1^13,-1*K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1^13,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^22,K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^2,K.1^22,-1*K.1^10,K.1^10,-1*K.1^14,K.1^22,K.1^14,-1*K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^2,-1*K.1^10,K.1^2,-1*K.1^22,K.1^10,-1*K.1^10,-1*K.1^14,K.1^22,-1*K.1^19,K.1^23,-1*K.1^19,K.1^23,-1*K.1^11,-1*K.1,-1*K.1^19,-1*K.1^17,K.1,-1*K.1^11,K.1^13,-1*K.1^13,K.1^13,-1*K.1^17,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^17,-1*K.1,-1*K.1^5,K.1^7,K.1^13,-1*K.1^11,K.1,-1*K.1^7,K.1^17,K.1^11,K.1^19,-1*K.1^23,K.1^19,K.1^5,-1*K.1^13,K.1^17,K.1,K.1^11,-1*K.1^7,K.1^7,K.1^7,K.1^19,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^7,K.1^5,K.1,-1*K.1^5,K.1^19,K.1^5,K.1^13,-1*K.1^13,-1*K.1^17,K.1^23,K.1^11,-1*K.1^19,-1*K.1^23,K.1^5,-1*K.1^13,K.1^7,K.1^23,K.1^17,K.1^17,-1*K.1^23,-1*K.1^23,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,K.1^14,-1*K.1^10,K.1^2,K.1^10,K.1^22,K.1^22,-1*K.1^22,K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^10,K.1^22,-1*K.1^2,K.1^14,-1*K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,K.1^14,-1*K.1^22,K.1^2,-1*K.1^14,K.1^14,K.1^10,-1*K.1^2,K.1^5,-1*K.1,K.1^5,-1*K.1,K.1^13,K.1^23,K.1^5,K.1^7,-1*K.1^23,K.1^13,-1*K.1^11,K.1^11,-1*K.1^11,K.1^7,K.1^23,K.1^19,K.1^19,K.1^7,K.1^23,K.1^19,-1*K.1^17,-1*K.1^11,K.1^13,-1*K.1^23,K.1^17,-1*K.1^7,-1*K.1^13,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^23,-1*K.1^13,K.1^17,-1*K.1^17,-1*K.1^17,-1*K.1^5,-1*K.1^13,K.1^13,K.1^23,K.1^17,-1*K.1^19,-1*K.1^23,K.1^19,-1*K.1^5,-1*K.1^19,-1*K.1^11,K.1^11,K.1^7,-1*K.1,-1*K.1^13,K.1^5,K.1,-1*K.1^19,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^22,K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^2,K.1^22,-1*K.1^10,K.1^10,-1*K.1^14,K.1^22,K.1^14,-1*K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^2,-1*K.1^10,K.1^2,-1*K.1^22,K.1^10,-1*K.1^10,-1*K.1^14,K.1^22,K.1^19,-1*K.1^23,K.1^19,-1*K.1^23,K.1^11,K.1,K.1^19,K.1^17,-1*K.1,K.1^11,-1*K.1^13,K.1^13,-1*K.1^13,K.1^17,K.1,K.1^5,K.1^5,K.1^17,K.1,K.1^5,-1*K.1^7,-1*K.1^13,K.1^11,-1*K.1,K.1^7,-1*K.1^17,-1*K.1^11,-1*K.1^19,K.1^23,-1*K.1^19,-1*K.1^5,K.1^13,-1*K.1^17,-1*K.1,-1*K.1^11,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^19,-1*K.1^11,K.1^11,K.1,K.1^7,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^19,-1*K.1^5,-1*K.1^13,K.1^13,K.1^17,-1*K.1^23,-1*K.1^11,K.1^19,K.1^23,-1*K.1^5,K.1^13,-1*K.1^7,-1*K.1^23,-1*K.1^17,-1*K.1^17,K.1^23,K.1^23,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^20,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,K.1^14,-1*K.1^10,K.1^2,K.1^10,K.1^22,K.1^22,-1*K.1^22,K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^10,K.1^22,-1*K.1^2,K.1^14,-1*K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,K.1^14,-1*K.1^22,K.1^2,-1*K.1^14,K.1^14,K.1^10,-1*K.1^2,-1*K.1^5,K.1,-1*K.1^5,K.1,-1*K.1^13,-1*K.1^23,-1*K.1^5,-1*K.1^7,K.1^23,-1*K.1^13,K.1^11,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^19,K.1^17,K.1^11,-1*K.1^13,K.1^23,-1*K.1^17,K.1^7,K.1^13,K.1^5,-1*K.1,K.1^5,K.1^19,-1*K.1^11,K.1^7,K.1^23,K.1^13,-1*K.1^17,K.1^17,K.1^17,K.1^5,K.1^13,-1*K.1^13,-1*K.1^23,-1*K.1^17,K.1^19,K.1^23,-1*K.1^19,K.1^5,K.1^19,K.1^11,-1*K.1^11,-1*K.1^7,K.1,K.1^13,-1*K.1^5,-1*K.1,K.1^19,-1*K.1^11,K.1^17,K.1,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,K.1^22,-1*K.1^2,K.1^10,K.1^2,K.1^14,K.1^14,-1*K.1^14,K.1^10,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,K.1^22,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,K.1^2,-1*K.1^10,K.1,K.1^5,K.1,K.1^5,-1*K.1^17,-1*K.1^19,K.1,K.1^11,K.1^19,-1*K.1^17,K.1^7,-1*K.1^7,K.1^7,K.1^11,-1*K.1^19,K.1^23,K.1^23,K.1^11,-1*K.1^19,K.1^23,-1*K.1^13,K.1^7,-1*K.1^17,K.1^19,K.1^13,-1*K.1^11,K.1^17,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^23,-1*K.1^7,-1*K.1^11,K.1^19,K.1^17,K.1^13,-1*K.1^13,-1*K.1^13,-1*K.1,K.1^17,-1*K.1^17,-1*K.1^19,K.1^13,-1*K.1^23,K.1^19,K.1^23,-1*K.1,-1*K.1^23,K.1^7,-1*K.1^7,K.1^11,K.1^5,K.1^17,K.1,-1*K.1^5,-1*K.1^23,-1*K.1^7,-1*K.1^13,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^5,-1*K.1^5,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^14,K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^22,-1*K.1^10,K.1^14,-1*K.1^2,K.1^2,-1*K.1^22,K.1^14,K.1^22,-1*K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^22,K.1^14,-1*K.1^23,-1*K.1^19,-1*K.1^23,-1*K.1^19,K.1^7,K.1^5,-1*K.1^23,-1*K.1^13,-1*K.1^5,K.1^7,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^13,K.1^5,-1*K.1,-1*K.1,-1*K.1^13,K.1^5,-1*K.1,K.1^11,-1*K.1^17,K.1^7,-1*K.1^5,-1*K.1^11,K.1^13,-1*K.1^7,K.1^23,K.1^19,K.1^23,K.1,K.1^17,K.1^13,-1*K.1^5,-1*K.1^7,-1*K.1^11,K.1^11,K.1^11,K.1^23,-1*K.1^7,K.1^7,K.1^5,-1*K.1^11,K.1,-1*K.1^5,-1*K.1,K.1^23,K.1,-1*K.1^17,K.1^17,-1*K.1^13,-1*K.1^19,-1*K.1^7,-1*K.1^23,K.1^19,K.1,K.1^17,K.1^11,-1*K.1^19,K.1^13,K.1^13,K.1^19,K.1^19,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^4,K.1^20,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,K.1^22,-1*K.1^2,K.1^10,K.1^2,K.1^14,K.1^14,-1*K.1^14,K.1^10,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,K.1^22,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,K.1^2,-1*K.1^10,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^17,K.1^19,-1*K.1,-1*K.1^11,-1*K.1^19,K.1^17,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^23,-1*K.1^23,-1*K.1^11,K.1^19,-1*K.1^23,K.1^13,-1*K.1^7,K.1^17,-1*K.1^19,-1*K.1^13,K.1^11,-1*K.1^17,K.1,K.1^5,K.1,K.1^23,K.1^7,K.1^11,-1*K.1^19,-1*K.1^17,-1*K.1^13,K.1^13,K.1^13,K.1,-1*K.1^17,K.1^17,K.1^19,-1*K.1^13,K.1^23,-1*K.1^19,-1*K.1^23,K.1,K.1^23,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^5,-1*K.1^17,-1*K.1,K.1^5,K.1^23,K.1^7,K.1^13,-1*K.1^5,K.1^11,K.1^11,K.1^5,K.1^5,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^14,K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^22,-1*K.1^10,K.1^14,-1*K.1^2,K.1^2,-1*K.1^22,K.1^14,K.1^22,-1*K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^22,K.1^14,K.1^23,K.1^19,K.1^23,K.1^19,-1*K.1^7,-1*K.1^5,K.1^23,K.1^13,K.1^5,-1*K.1^7,K.1^17,-1*K.1^17,K.1^17,K.1^13,-1*K.1^5,K.1,K.1,K.1^13,-1*K.1^5,K.1,-1*K.1^11,K.1^17,-1*K.1^7,K.1^5,K.1^11,-1*K.1^13,K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^23,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^5,K.1^7,K.1^11,-1*K.1^11,-1*K.1^11,-1*K.1^23,K.1^7,-1*K.1^7,-1*K.1^5,K.1^11,-1*K.1,K.1^5,K.1,-1*K.1^23,-1*K.1,K.1^17,-1*K.1^17,K.1^13,K.1^19,K.1^7,K.1^23,-1*K.1^19,-1*K.1,-1*K.1^17,-1*K.1^11,K.1^19,-1*K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^19,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^4,K.1^20,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,-1*K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^10,K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,-1*K.1^2,K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^14,-1*K.1^22,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^2,K.1^10,-1*K.1^13,-1*K.1^17,-1*K.1^13,-1*K.1^17,-1*K.1^5,K.1^7,-1*K.1^13,K.1^23,-1*K.1^7,-1*K.1^5,K.1^19,-1*K.1^19,K.1^19,K.1^23,K.1^7,-1*K.1^11,-1*K.1^11,K.1^23,K.1^7,-1*K.1^11,-1*K.1,K.1^19,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^23,K.1^5,K.1^13,K.1^17,K.1^13,K.1^11,-1*K.1^19,-1*K.1^23,-1*K.1^7,K.1^5,K.1,-1*K.1,-1*K.1,K.1^13,K.1^5,-1*K.1^5,K.1^7,K.1,K.1^11,-1*K.1^7,-1*K.1^11,K.1^13,K.1^11,K.1^19,-1*K.1^19,K.1^23,-1*K.1^17,K.1^5,-1*K.1^13,K.1^17,K.1^11,-1*K.1^19,-1*K.1,-1*K.1^17,-1*K.1^23,-1*K.1^23,K.1^17,K.1^17,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,K.1^2,-1*K.1^22,K.1^14,K.1^22,K.1^10,K.1^10,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^22,K.1^10,-1*K.1^14,K.1^2,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,K.1^14,-1*K.1^2,K.1^2,K.1^22,-1*K.1^14,K.1^11,K.1^7,K.1^11,K.1^7,K.1^19,-1*K.1^17,K.1^11,-1*K.1,K.1^17,K.1^19,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^17,K.1^13,K.1^13,-1*K.1,-1*K.1^17,K.1^13,K.1^23,-1*K.1^5,K.1^19,K.1^17,-1*K.1^23,K.1,-1*K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^5,K.1,K.1^17,-1*K.1^19,-1*K.1^23,K.1^23,K.1^23,-1*K.1^11,-1*K.1^19,K.1^19,-1*K.1^17,-1*K.1^23,-1*K.1^13,K.1^17,K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1^5,K.1^5,-1*K.1,K.1^7,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^13,K.1^5,K.1^23,K.1^7,K.1,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,-1*K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^10,K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,-1*K.1^2,K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^14,-1*K.1^22,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^2,K.1^10,K.1^13,K.1^17,K.1^13,K.1^17,K.1^5,-1*K.1^7,K.1^13,-1*K.1^23,K.1^7,K.1^5,-1*K.1^19,K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^7,K.1^11,K.1^11,-1*K.1^23,-1*K.1^7,K.1^11,K.1,-1*K.1^19,K.1^5,K.1^7,-1*K.1,K.1^23,-1*K.1^5,-1*K.1^13,-1*K.1^17,-1*K.1^13,-1*K.1^11,K.1^19,K.1^23,K.1^7,-1*K.1^5,-1*K.1,K.1,K.1,-1*K.1^13,-1*K.1^5,K.1^5,-1*K.1^7,-1*K.1,-1*K.1^11,K.1^7,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^19,K.1^19,-1*K.1^23,K.1^17,-1*K.1^5,K.1^13,-1*K.1^17,-1*K.1^11,K.1^19,K.1,K.1^17,K.1^23,K.1^23,-1*K.1^17,-1*K.1^17,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^20,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^9,-1*K.1^15,-1*K.1^3,K.1^21,-1*K.1^9,K.1^15,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,K.1^2,-1*K.1^22,K.1^14,K.1^22,K.1^10,K.1^10,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^22,K.1^10,-1*K.1^14,K.1^2,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,K.1^14,-1*K.1^2,K.1^2,K.1^22,-1*K.1^14,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^19,K.1^17,-1*K.1^11,K.1,-1*K.1^17,-1*K.1^19,K.1^5,-1*K.1^5,K.1^5,K.1,K.1^17,-1*K.1^13,-1*K.1^13,K.1,K.1^17,-1*K.1^13,-1*K.1^23,K.1^5,-1*K.1^19,-1*K.1^17,K.1^23,-1*K.1,K.1^19,K.1^11,K.1^7,K.1^11,K.1^13,-1*K.1^5,-1*K.1,-1*K.1^17,K.1^19,K.1^23,-1*K.1^23,-1*K.1^23,K.1^11,K.1^19,-1*K.1^19,K.1^17,K.1^23,K.1^13,-1*K.1^17,-1*K.1^13,K.1^11,K.1^13,K.1^5,-1*K.1^5,K.1,-1*K.1^7,K.1^19,-1*K.1^11,K.1^7,K.1^13,-1*K.1^5,-1*K.1^23,-1*K.1^7,-1*K.1,-1*K.1,K.1^7,K.1^7,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,K.1^20,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,K.1^22,-1*K.1^10,K.1^14,-1*K.1^18,-1*K.1^14,K.1^18,K.1^10,-1*K.1^22,-1*K.1^30,K.1^2,K.1^26,K.1^6,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^20,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,K.1^20,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^3,-1*K.1^29,K.1^15,-1*K.1^17,K.1^25,-1*K.1^7,K.1^21,-1*K.1^11,-1*K.1^19,K.1^13,-1*K.1,K.1^31,-1*K.1^27,K.1^5,K.1^23,-1*K.1^9,-1*K.1^23,K.1^9,-1*K.1^5,K.1^27,-1*K.1^31,K.1,-1*K.1^13,K.1^19,K.1^11,-1*K.1^21,K.1^7,-1*K.1^25,K.1^17,-1*K.1^15,K.1^29,K.1^3,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^6,K.1^30,-1*K.1^18,K.1^6,-1*K.1^30,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^22,K.1^10,K.1^14,-1*K.1^22,K.1^10,K.1^26,K.1^18,-1*K.1^10,-1*K.1^10,K.1^2,K.1^6,K.1^14,K.1^30,-1*K.1^14,K.1^18,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^26,K.1^29,K.1,-1*K.1^13,K.1^17,K.1^21,-1*K.1^15,-1*K.1^29,K.1^15,-1*K.1^7,-1*K.1^5,K.1^27,K.1^19,-1*K.1^11,-1*K.1^31,K.1^31,K.1^11,-1*K.1^27,K.1^31,-1*K.1^31,-1*K.1^11,-1*K.1^17,-1*K.1^27,K.1^5,K.1^7,-1*K.1^9,K.1^23,K.1^13,K.1^21,-1*K.1^9,K.1^5,-1*K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^23,-1*K.1^13,-1*K.1^25,-1*K.1,K.1,-1*K.1^21,K.1^29,-1*K.1^21,K.1^15,K.1^9,K.1^3,K.1^23,K.1^27,-1*K.1^5,K.1^19,K.1^11,-1*K.1^19,-1*K.1^15,-1*K.1,-1*K.1^29,K.1^13,K.1^9,-1*K.1^3,K.1^3,K.1^17,-1*K.1^17,-1*K.1^23,K.1^7,-1*K.1^25,K.1^25,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,-1*K.1^12,-1*K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^26,K.1^6,K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^18,K.1^14,K.1^18,-1*K.1^14,-1*K.1^22,K.1^10,K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^26,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,-1*K.1^4,K.1^12,-1*K.1^20,K.1^20,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^29,K.1^3,-1*K.1^17,K.1^15,-1*K.1^7,K.1^25,-1*K.1^11,K.1^21,K.1^13,-1*K.1^19,K.1^31,-1*K.1,K.1^5,-1*K.1^27,-1*K.1^9,K.1^23,K.1^9,-1*K.1^23,K.1^27,-1*K.1^5,K.1,-1*K.1^31,K.1^19,-1*K.1^13,-1*K.1^21,K.1^11,-1*K.1^25,K.1^7,-1*K.1^15,K.1^17,-1*K.1^3,-1*K.1^29,K.1^18,K.1^30,K.1^30,-1*K.1^6,-1*K.1^10,K.1^26,-1*K.1^2,K.1^14,-1*K.1^26,K.1^2,K.1^26,-1*K.1^30,K.1^14,K.1^10,-1*K.1^22,-1*K.1^18,K.1^10,-1*K.1^22,-1*K.1^6,-1*K.1^14,K.1^22,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,-1*K.1^10,K.1^2,K.1^6,K.1^6,-1*K.1^3,-1*K.1^31,K.1^19,-1*K.1^15,-1*K.1^11,K.1^17,K.1^3,-1*K.1^17,K.1^25,K.1^27,-1*K.1^5,-1*K.1^13,K.1^21,K.1,-1*K.1,-1*K.1^21,K.1^5,-1*K.1,K.1,K.1^21,K.1^15,K.1^5,-1*K.1^27,-1*K.1^25,K.1^23,-1*K.1^9,-1*K.1^19,-1*K.1^11,K.1^23,-1*K.1^27,K.1^13,K.1^29,K.1^25,K.1^9,K.1^19,K.1^7,K.1^31,-1*K.1^31,K.1^11,-1*K.1^3,K.1^11,-1*K.1^17,-1*K.1^23,-1*K.1^29,-1*K.1^9,-1*K.1^5,K.1^27,-1*K.1^13,-1*K.1^21,K.1^13,K.1^17,K.1^31,K.1^3,-1*K.1^19,-1*K.1^23,K.1^29,-1*K.1^29,-1*K.1^15,K.1^15,K.1^9,-1*K.1^25,K.1^7,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,K.1^20,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,K.1^22,-1*K.1^10,K.1^14,-1*K.1^18,-1*K.1^14,K.1^18,K.1^10,-1*K.1^22,-1*K.1^30,K.1^2,K.1^26,K.1^6,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^20,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,K.1^20,-1*K.1^20,-1*K.1^28,K.1^20,K.1^3,K.1^29,-1*K.1^15,K.1^17,-1*K.1^25,K.1^7,-1*K.1^21,K.1^11,K.1^19,-1*K.1^13,K.1,-1*K.1^31,K.1^27,-1*K.1^5,-1*K.1^23,K.1^9,K.1^23,-1*K.1^9,K.1^5,-1*K.1^27,K.1^31,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^11,K.1^21,-1*K.1^7,K.1^25,-1*K.1^17,K.1^15,-1*K.1^29,-1*K.1^3,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^6,K.1^30,-1*K.1^18,K.1^6,-1*K.1^30,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^22,K.1^10,K.1^14,-1*K.1^22,K.1^10,K.1^26,K.1^18,-1*K.1^10,-1*K.1^10,K.1^2,K.1^6,K.1^14,K.1^30,-1*K.1^14,K.1^18,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^26,-1*K.1^29,-1*K.1,K.1^13,-1*K.1^17,-1*K.1^21,K.1^15,K.1^29,-1*K.1^15,K.1^7,K.1^5,-1*K.1^27,-1*K.1^19,K.1^11,K.1^31,-1*K.1^31,-1*K.1^11,K.1^27,-1*K.1^31,K.1^31,K.1^11,K.1^17,K.1^27,-1*K.1^5,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^13,-1*K.1^21,K.1^9,-1*K.1^5,K.1^19,K.1^3,K.1^7,K.1^23,K.1^13,K.1^25,K.1,-1*K.1,K.1^21,-1*K.1^29,K.1^21,-1*K.1^15,-1*K.1^9,-1*K.1^3,-1*K.1^23,-1*K.1^27,K.1^5,-1*K.1^19,-1*K.1^11,K.1^19,K.1^15,K.1,K.1^29,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^17,K.1^17,K.1^23,-1*K.1^7,K.1^25,-1*K.1^25,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,-1*K.1^12,-1*K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^26,K.1^6,K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^18,K.1^14,K.1^18,-1*K.1^14,-1*K.1^22,K.1^10,K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^26,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,-1*K.1^4,K.1^12,-1*K.1^20,K.1^20,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^29,-1*K.1^3,K.1^17,-1*K.1^15,K.1^7,-1*K.1^25,K.1^11,-1*K.1^21,-1*K.1^13,K.1^19,-1*K.1^31,K.1,-1*K.1^5,K.1^27,K.1^9,-1*K.1^23,-1*K.1^9,K.1^23,-1*K.1^27,K.1^5,-1*K.1,K.1^31,-1*K.1^19,K.1^13,K.1^21,-1*K.1^11,K.1^25,-1*K.1^7,K.1^15,-1*K.1^17,K.1^3,K.1^29,K.1^18,K.1^30,K.1^30,-1*K.1^6,-1*K.1^10,K.1^26,-1*K.1^2,K.1^14,-1*K.1^26,K.1^2,K.1^26,-1*K.1^30,K.1^14,K.1^10,-1*K.1^22,-1*K.1^18,K.1^10,-1*K.1^22,-1*K.1^6,-1*K.1^14,K.1^22,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,-1*K.1^10,K.1^2,K.1^6,K.1^6,K.1^3,K.1^31,-1*K.1^19,K.1^15,K.1^11,-1*K.1^17,-1*K.1^3,K.1^17,-1*K.1^25,-1*K.1^27,K.1^5,K.1^13,-1*K.1^21,-1*K.1,K.1,K.1^21,-1*K.1^5,K.1,-1*K.1,-1*K.1^21,-1*K.1^15,-1*K.1^5,K.1^27,K.1^25,-1*K.1^23,K.1^9,K.1^19,K.1^11,-1*K.1^23,K.1^27,-1*K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^9,-1*K.1^19,-1*K.1^7,-1*K.1^31,K.1^31,-1*K.1^11,K.1^3,-1*K.1^11,K.1^17,K.1^23,K.1^29,K.1^9,K.1^5,-1*K.1^27,K.1^13,K.1^21,-1*K.1^13,-1*K.1^17,-1*K.1^31,-1*K.1^3,K.1^19,K.1^23,-1*K.1^29,K.1^29,K.1^15,-1*K.1^15,-1*K.1^9,K.1^25,-1*K.1^7,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,K.1^20,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,K.1^6,K.1^26,K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,-1*K.1^14,K.1^18,K.1^14,-1*K.1^18,-1*K.1^10,K.1^22,K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^20,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,K.1^20,-1*K.1^20,-1*K.1^28,K.1^20,K.1^19,K.1^13,-1*K.1^31,K.1,-1*K.1^9,K.1^23,-1*K.1^5,K.1^27,-1*K.1^3,K.1^29,-1*K.1^17,K.1^15,-1*K.1^11,K.1^21,K.1^7,-1*K.1^25,-1*K.1^7,K.1^25,-1*K.1^21,K.1^11,-1*K.1^15,K.1^17,-1*K.1^29,K.1^3,-1*K.1^27,K.1^5,-1*K.1^23,K.1^9,-1*K.1,K.1^31,-1*K.1^13,-1*K.1^19,K.1^14,K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^6,-1*K.1^30,K.1^18,-1*K.1^6,K.1^30,K.1^6,-1*K.1^2,K.1^18,K.1^22,-1*K.1^10,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^18,K.1^10,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^30,K.1^14,-1*K.1^18,-1*K.1^22,K.1^30,K.1^26,K.1^26,-1*K.1^13,K.1^17,-1*K.1^29,-1*K.1,-1*K.1^5,K.1^31,K.1^13,-1*K.1^31,K.1^23,-1*K.1^21,K.1^11,K.1^3,K.1^27,-1*K.1^15,K.1^15,-1*K.1^27,-1*K.1^11,K.1^15,-1*K.1^15,K.1^27,K.1,-1*K.1^11,K.1^21,-1*K.1^23,-1*K.1^25,K.1^7,K.1^29,-1*K.1^5,-1*K.1^25,K.1^21,-1*K.1^3,K.1^19,K.1^23,-1*K.1^7,-1*K.1^29,K.1^9,-1*K.1^17,K.1^17,K.1^5,-1*K.1^13,K.1^5,-1*K.1^31,K.1^25,-1*K.1^19,K.1^7,K.1^11,-1*K.1^21,K.1^3,-1*K.1^27,-1*K.1^3,K.1^31,-1*K.1^17,K.1^13,K.1^29,K.1^25,K.1^19,-1*K.1^19,-1*K.1,K.1,-1*K.1^7,-1*K.1^23,K.1^9,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,-1*K.1^12,-1*K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,K.1^10,-1*K.1^22,K.1^18,-1*K.1^14,-1*K.1^18,K.1^14,K.1^22,-1*K.1^10,-1*K.1^2,K.1^30,K.1^6,K.1^26,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,-1*K.1^4,K.1^12,-1*K.1^20,K.1^20,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^13,-1*K.1^19,K.1,-1*K.1^31,K.1^23,-1*K.1^9,K.1^27,-1*K.1^5,K.1^29,-1*K.1^3,K.1^15,-1*K.1^17,K.1^21,-1*K.1^11,-1*K.1^25,K.1^7,K.1^25,-1*K.1^7,K.1^11,-1*K.1^21,K.1^17,-1*K.1^15,K.1^3,-1*K.1^29,K.1^5,-1*K.1^27,K.1^9,-1*K.1^23,K.1^31,-1*K.1,K.1^19,K.1^13,-1*K.1^18,-1*K.1^30,-1*K.1^30,K.1^6,K.1^10,-1*K.1^26,K.1^2,-1*K.1^14,K.1^26,-1*K.1^2,-1*K.1^26,K.1^30,-1*K.1^14,-1*K.1^10,K.1^22,K.1^18,-1*K.1^10,K.1^22,K.1^6,K.1^14,-1*K.1^22,-1*K.1^22,K.1^30,K.1^26,K.1^18,K.1^2,-1*K.1^18,K.1^14,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^19,-1*K.1^15,K.1^3,K.1^31,K.1^27,-1*K.1,-1*K.1^19,K.1,-1*K.1^9,K.1^11,-1*K.1^21,-1*K.1^29,-1*K.1^5,K.1^17,-1*K.1^17,K.1^5,K.1^21,-1*K.1^17,K.1^17,-1*K.1^5,-1*K.1^31,K.1^21,-1*K.1^11,K.1^9,K.1^7,-1*K.1^25,-1*K.1^3,K.1^27,K.1^7,-1*K.1^11,K.1^29,-1*K.1^13,-1*K.1^9,K.1^25,K.1^3,-1*K.1^23,K.1^15,-1*K.1^15,-1*K.1^27,K.1^19,-1*K.1^27,K.1,-1*K.1^7,K.1^13,-1*K.1^25,-1*K.1^21,K.1^11,-1*K.1^29,K.1^5,K.1^29,-1*K.1,K.1^15,-1*K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^13,K.1^31,-1*K.1^31,K.1^25,K.1^9,-1*K.1^23,K.1^23,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,K.1^20,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,K.1^6,K.1^26,K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,-1*K.1^14,K.1^18,K.1^14,-1*K.1^18,-1*K.1^10,K.1^22,K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^20,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,K.1^20,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^19,-1*K.1^13,K.1^31,-1*K.1,K.1^9,-1*K.1^23,K.1^5,-1*K.1^27,K.1^3,-1*K.1^29,K.1^17,-1*K.1^15,K.1^11,-1*K.1^21,-1*K.1^7,K.1^25,K.1^7,-1*K.1^25,K.1^21,-1*K.1^11,K.1^15,-1*K.1^17,K.1^29,-1*K.1^3,K.1^27,-1*K.1^5,K.1^23,-1*K.1^9,K.1,-1*K.1^31,K.1^13,K.1^19,K.1^14,K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^6,-1*K.1^30,K.1^18,-1*K.1^6,K.1^30,K.1^6,-1*K.1^2,K.1^18,K.1^22,-1*K.1^10,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^18,K.1^10,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^30,K.1^14,-1*K.1^18,-1*K.1^22,K.1^30,K.1^26,K.1^26,K.1^13,-1*K.1^17,K.1^29,K.1,K.1^5,-1*K.1^31,-1*K.1^13,K.1^31,-1*K.1^23,K.1^21,-1*K.1^11,-1*K.1^3,-1*K.1^27,K.1^15,-1*K.1^15,K.1^27,K.1^11,-1*K.1^15,K.1^15,-1*K.1^27,-1*K.1,K.1^11,-1*K.1^21,K.1^23,K.1^25,-1*K.1^7,-1*K.1^29,K.1^5,K.1^25,-1*K.1^21,K.1^3,-1*K.1^19,-1*K.1^23,K.1^7,K.1^29,-1*K.1^9,K.1^17,-1*K.1^17,-1*K.1^5,K.1^13,-1*K.1^5,K.1^31,-1*K.1^25,K.1^19,-1*K.1^7,-1*K.1^11,K.1^21,-1*K.1^3,K.1^27,K.1^3,-1*K.1^31,K.1^17,-1*K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^19,K.1,-1*K.1,K.1^7,K.1^23,-1*K.1^9,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,-1*K.1^12,-1*K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,K.1^10,-1*K.1^22,K.1^18,-1*K.1^14,-1*K.1^18,K.1^14,K.1^22,-1*K.1^10,-1*K.1^2,K.1^30,K.1^6,K.1^26,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,-1*K.1^4,K.1^12,-1*K.1^20,K.1^20,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^13,K.1^19,-1*K.1,K.1^31,-1*K.1^23,K.1^9,-1*K.1^27,K.1^5,-1*K.1^29,K.1^3,-1*K.1^15,K.1^17,-1*K.1^21,K.1^11,K.1^25,-1*K.1^7,-1*K.1^25,K.1^7,-1*K.1^11,K.1^21,-1*K.1^17,K.1^15,-1*K.1^3,K.1^29,-1*K.1^5,K.1^27,-1*K.1^9,K.1^23,-1*K.1^31,K.1,-1*K.1^19,-1*K.1^13,-1*K.1^18,-1*K.1^30,-1*K.1^30,K.1^6,K.1^10,-1*K.1^26,K.1^2,-1*K.1^14,K.1^26,-1*K.1^2,-1*K.1^26,K.1^30,-1*K.1^14,-1*K.1^10,K.1^22,K.1^18,-1*K.1^10,K.1^22,K.1^6,K.1^14,-1*K.1^22,-1*K.1^22,K.1^30,K.1^26,K.1^18,K.1^2,-1*K.1^18,K.1^14,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^19,K.1^15,-1*K.1^3,-1*K.1^31,-1*K.1^27,K.1,K.1^19,-1*K.1,K.1^9,-1*K.1^11,K.1^21,K.1^29,K.1^5,-1*K.1^17,K.1^17,-1*K.1^5,-1*K.1^21,K.1^17,-1*K.1^17,K.1^5,K.1^31,-1*K.1^21,K.1^11,-1*K.1^9,-1*K.1^7,K.1^25,K.1^3,-1*K.1^27,-1*K.1^7,K.1^11,-1*K.1^29,K.1^13,K.1^9,-1*K.1^25,-1*K.1^3,K.1^23,-1*K.1^15,K.1^15,K.1^27,-1*K.1^19,K.1^27,-1*K.1,K.1^7,-1*K.1^13,K.1^25,K.1^21,-1*K.1^11,K.1^29,-1*K.1^5,-1*K.1^29,K.1,-1*K.1^15,K.1^19,K.1^3,K.1^7,K.1^13,-1*K.1^13,-1*K.1^31,K.1^31,-1*K.1^25,-1*K.1^9,K.1^23,-1*K.1^23,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,K.1^22,K.1^10,-1*K.1^18,K.1^14,K.1^6,-1*K.1^26,-1*K.1^30,K.1^2,K.1^30,-1*K.1^2,K.1^26,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,-1*K.1^28,K.1^20,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^20,K.1^28,-1*K.1^20,K.1^27,K.1^5,-1*K.1^7,K.1^25,K.1,-1*K.1^31,K.1^29,-1*K.1^3,-1*K.1^11,K.1^21,K.1^9,-1*K.1^23,-1*K.1^19,K.1^13,-1*K.1^15,K.1^17,K.1^15,-1*K.1^17,-1*K.1^13,K.1^19,K.1^23,-1*K.1^9,-1*K.1^21,K.1^11,K.1^3,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^25,K.1^7,-1*K.1^5,-1*K.1^27,K.1^30,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^6,K.1^22,K.1^14,K.1^2,-1*K.1^22,-1*K.1^14,K.1^22,K.1^18,K.1^2,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^6,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,-1*K.1^26,K.1^18,-1*K.1^22,-1*K.1^30,K.1^14,K.1^30,-1*K.1^2,K.1^6,-1*K.1^14,K.1^10,K.1^10,-1*K.1^5,-1*K.1^9,-1*K.1^21,-1*K.1^25,K.1^29,K.1^7,K.1^5,-1*K.1^7,-1*K.1^31,-1*K.1^13,K.1^19,K.1^11,-1*K.1^3,K.1^23,-1*K.1^23,K.1^3,-1*K.1^19,-1*K.1^23,K.1^23,-1*K.1^3,K.1^25,-1*K.1^19,K.1^13,K.1^31,K.1^17,-1*K.1^15,K.1^21,K.1^29,K.1^17,K.1^13,-1*K.1^11,K.1^27,-1*K.1^31,K.1^15,-1*K.1^21,-1*K.1,K.1^9,-1*K.1^9,-1*K.1^29,-1*K.1^5,-1*K.1^29,-1*K.1^7,-1*K.1^17,-1*K.1^27,-1*K.1^15,K.1^19,-1*K.1^13,K.1^11,K.1^3,-1*K.1^11,K.1^7,K.1^9,K.1^5,K.1^21,-1*K.1^17,K.1^27,-1*K.1^27,-1*K.1^25,K.1^25,K.1^15,K.1^31,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,K.1^12,K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,K.1^2,-1*K.1^30,-1*K.1^2,K.1^30,-1*K.1^6,K.1^26,K.1^18,-1*K.1^14,K.1^22,K.1^10,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,K.1^4,-1*K.1^12,K.1^20,-1*K.1^20,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^5,-1*K.1^27,K.1^25,-1*K.1^7,-1*K.1^31,K.1,-1*K.1^3,K.1^29,K.1^21,-1*K.1^11,-1*K.1^23,K.1^9,K.1^13,-1*K.1^19,K.1^17,-1*K.1^15,-1*K.1^17,K.1^15,K.1^19,-1*K.1^13,-1*K.1^9,K.1^23,K.1^11,-1*K.1^21,-1*K.1^29,K.1^3,-1*K.1,K.1^31,K.1^7,-1*K.1^25,K.1^27,K.1^5,-1*K.1^2,K.1^14,K.1^14,K.1^22,-1*K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^30,K.1^10,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^26,-1*K.1^6,K.1^22,K.1^30,K.1^6,K.1^6,-1*K.1^14,K.1^10,K.1^2,-1*K.1^18,-1*K.1^2,K.1^30,-1*K.1^26,K.1^18,-1*K.1^22,-1*K.1^22,K.1^27,K.1^23,K.1^11,K.1^7,-1*K.1^3,-1*K.1^25,-1*K.1^27,K.1^25,K.1,K.1^19,-1*K.1^13,-1*K.1^21,K.1^29,-1*K.1^9,K.1^9,-1*K.1^29,K.1^13,K.1^9,-1*K.1^9,K.1^29,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1,-1*K.1^15,K.1^17,-1*K.1^11,-1*K.1^3,-1*K.1^15,-1*K.1^19,K.1^21,-1*K.1^5,K.1,-1*K.1^17,K.1^11,K.1^31,-1*K.1^23,K.1^23,K.1^3,K.1^27,K.1^3,K.1^25,K.1^15,K.1^5,K.1^17,-1*K.1^13,K.1^19,-1*K.1^21,-1*K.1^29,K.1^21,-1*K.1^25,-1*K.1^23,-1*K.1^27,-1*K.1^11,K.1^15,-1*K.1^5,K.1^5,K.1^7,-1*K.1^7,-1*K.1^17,-1*K.1,K.1^31,-1*K.1^31,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,K.1^22,K.1^10,-1*K.1^18,K.1^14,K.1^6,-1*K.1^26,-1*K.1^30,K.1^2,K.1^30,-1*K.1^2,K.1^26,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,-1*K.1^28,K.1^20,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^20,K.1^28,-1*K.1^20,-1*K.1^27,-1*K.1^5,K.1^7,-1*K.1^25,-1*K.1,K.1^31,-1*K.1^29,K.1^3,K.1^11,-1*K.1^21,-1*K.1^9,K.1^23,K.1^19,-1*K.1^13,K.1^15,-1*K.1^17,-1*K.1^15,K.1^17,K.1^13,-1*K.1^19,-1*K.1^23,K.1^9,K.1^21,-1*K.1^11,-1*K.1^3,K.1^29,-1*K.1^31,K.1,K.1^25,-1*K.1^7,K.1^5,K.1^27,K.1^30,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^6,K.1^22,K.1^14,K.1^2,-1*K.1^22,-1*K.1^14,K.1^22,K.1^18,K.1^2,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^6,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,-1*K.1^26,K.1^18,-1*K.1^22,-1*K.1^30,K.1^14,K.1^30,-1*K.1^2,K.1^6,-1*K.1^14,K.1^10,K.1^10,K.1^5,K.1^9,K.1^21,K.1^25,-1*K.1^29,-1*K.1^7,-1*K.1^5,K.1^7,K.1^31,K.1^13,-1*K.1^19,-1*K.1^11,K.1^3,-1*K.1^23,K.1^23,-1*K.1^3,K.1^19,K.1^23,-1*K.1^23,K.1^3,-1*K.1^25,K.1^19,-1*K.1^13,-1*K.1^31,-1*K.1^17,K.1^15,-1*K.1^21,-1*K.1^29,-1*K.1^17,-1*K.1^13,K.1^11,-1*K.1^27,K.1^31,-1*K.1^15,K.1^21,K.1,-1*K.1^9,K.1^9,K.1^29,K.1^5,K.1^29,K.1^7,K.1^17,K.1^27,K.1^15,-1*K.1^19,K.1^13,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^7,-1*K.1^9,-1*K.1^5,-1*K.1^21,K.1^17,-1*K.1^27,K.1^27,K.1^25,-1*K.1^25,-1*K.1^15,-1*K.1^31,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,K.1^12,K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,K.1^2,-1*K.1^30,-1*K.1^2,K.1^30,-1*K.1^6,K.1^26,K.1^18,-1*K.1^14,K.1^22,K.1^10,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,K.1^4,-1*K.1^12,K.1^20,-1*K.1^20,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^5,K.1^27,-1*K.1^25,K.1^7,K.1^31,-1*K.1,K.1^3,-1*K.1^29,-1*K.1^21,K.1^11,K.1^23,-1*K.1^9,-1*K.1^13,K.1^19,-1*K.1^17,K.1^15,K.1^17,-1*K.1^15,-1*K.1^19,K.1^13,K.1^9,-1*K.1^23,-1*K.1^11,K.1^21,K.1^29,-1*K.1^3,K.1,-1*K.1^31,-1*K.1^7,K.1^25,-1*K.1^27,-1*K.1^5,-1*K.1^2,K.1^14,K.1^14,K.1^22,-1*K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^30,K.1^10,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^26,-1*K.1^6,K.1^22,K.1^30,K.1^6,K.1^6,-1*K.1^14,K.1^10,K.1^2,-1*K.1^18,-1*K.1^2,K.1^30,-1*K.1^26,K.1^18,-1*K.1^22,-1*K.1^22,-1*K.1^27,-1*K.1^23,-1*K.1^11,-1*K.1^7,K.1^3,K.1^25,K.1^27,-1*K.1^25,-1*K.1,-1*K.1^19,K.1^13,K.1^21,-1*K.1^29,K.1^9,-1*K.1^9,K.1^29,-1*K.1^13,-1*K.1^9,K.1^9,-1*K.1^29,K.1^7,-1*K.1^13,K.1^19,K.1,K.1^15,-1*K.1^17,K.1^11,K.1^3,K.1^15,K.1^19,-1*K.1^21,K.1^5,-1*K.1,K.1^17,-1*K.1^11,-1*K.1^31,K.1^23,-1*K.1^23,-1*K.1^3,-1*K.1^27,-1*K.1^3,-1*K.1^25,-1*K.1^15,-1*K.1^5,-1*K.1^17,K.1^13,-1*K.1^19,K.1^21,K.1^29,-1*K.1^21,K.1^25,K.1^23,K.1^27,K.1^11,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^7,K.1^7,K.1^17,K.1,-1*K.1^31,K.1^31,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,K.1^30,-1*K.1^2,-1*K.1^30,K.1^2,-1*K.1^26,K.1^6,K.1^14,-1*K.1^18,K.1^10,K.1^22,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,-1*K.1^28,K.1^20,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^20,K.1^28,-1*K.1^20,-1*K.1^11,-1*K.1^21,-1*K.1^23,K.1^9,-1*K.1^17,K.1^15,K.1^13,-1*K.1^19,-1*K.1^27,K.1^5,-1*K.1^25,K.1^7,K.1^3,-1*K.1^29,-1*K.1^31,K.1,K.1^31,-1*K.1,K.1^29,-1*K.1^3,-1*K.1^7,K.1^25,-1*K.1^5,K.1^27,K.1^19,-1*K.1^13,-1*K.1^15,K.1^17,-1*K.1^9,K.1^23,K.1^21,K.1^11,-1*K.1^30,K.1^18,K.1^18,K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^22,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^2,K.1^6,-1*K.1^26,K.1^30,K.1^6,-1*K.1^26,K.1^10,K.1^2,K.1^26,K.1^26,-1*K.1^18,K.1^22,K.1^30,-1*K.1^14,-1*K.1^30,K.1^2,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^10,K.1^21,K.1^25,-1*K.1^5,-1*K.1^9,K.1^13,K.1^23,-1*K.1^21,-1*K.1^23,K.1^15,K.1^29,-1*K.1^3,K.1^27,-1*K.1^19,-1*K.1^7,K.1^7,K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^19,K.1^9,K.1^3,-1*K.1^29,-1*K.1^15,K.1,-1*K.1^31,K.1^5,K.1^13,K.1,-1*K.1^29,-1*K.1^27,-1*K.1^11,K.1^15,K.1^31,-1*K.1^5,K.1^17,-1*K.1^25,K.1^25,-1*K.1^13,K.1^21,-1*K.1^13,-1*K.1^23,-1*K.1,K.1^11,-1*K.1^31,-1*K.1^3,K.1^29,K.1^27,K.1^19,-1*K.1^27,K.1^23,-1*K.1^25,-1*K.1^21,K.1^5,-1*K.1,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,K.1^31,-1*K.1^15,K.1^17,-1*K.1^17,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,K.1^12,K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^10,K.1^22,-1*K.1^14,K.1^18,K.1^26,-1*K.1^6,-1*K.1^2,K.1^30,K.1^2,-1*K.1^30,K.1^6,-1*K.1^26,-1*K.1^18,K.1^14,-1*K.1^22,-1*K.1^10,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,K.1^4,-1*K.1^12,K.1^20,-1*K.1^20,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^21,K.1^11,K.1^9,-1*K.1^23,K.1^15,-1*K.1^17,-1*K.1^19,K.1^13,K.1^5,-1*K.1^27,K.1^7,-1*K.1^25,-1*K.1^29,K.1^3,K.1,-1*K.1^31,-1*K.1,K.1^31,-1*K.1^3,K.1^29,K.1^25,-1*K.1^7,K.1^27,-1*K.1^5,-1*K.1^13,K.1^19,K.1^17,-1*K.1^15,K.1^23,-1*K.1^9,-1*K.1^11,-1*K.1^21,K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^26,K.1^10,K.1^18,K.1^30,-1*K.1^10,-1*K.1^18,K.1^10,K.1^14,K.1^30,-1*K.1^26,K.1^6,-1*K.1^2,-1*K.1^26,K.1^6,-1*K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^2,K.1^18,K.1^2,-1*K.1^30,K.1^26,-1*K.1^18,K.1^22,K.1^22,-1*K.1^11,-1*K.1^7,K.1^27,K.1^23,-1*K.1^19,-1*K.1^9,K.1^11,K.1^9,-1*K.1^17,-1*K.1^3,K.1^29,-1*K.1^5,K.1^13,K.1^25,-1*K.1^25,-1*K.1^13,-1*K.1^29,-1*K.1^25,K.1^25,K.1^13,-1*K.1^23,-1*K.1^29,K.1^3,K.1^17,-1*K.1^31,K.1,-1*K.1^27,-1*K.1^19,-1*K.1^31,K.1^3,K.1^5,K.1^21,-1*K.1^17,-1*K.1,K.1^27,-1*K.1^15,K.1^7,-1*K.1^7,K.1^19,-1*K.1^11,K.1^19,K.1^9,K.1^31,-1*K.1^21,K.1,K.1^29,-1*K.1^3,-1*K.1^5,-1*K.1^13,K.1^5,-1*K.1^9,K.1^7,K.1^11,-1*K.1^27,K.1^31,K.1^21,-1*K.1^21,K.1^23,-1*K.1^23,-1*K.1,K.1^17,-1*K.1^15,K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,K.1^30,-1*K.1^2,-1*K.1^30,K.1^2,-1*K.1^26,K.1^6,K.1^14,-1*K.1^18,K.1^10,K.1^22,-1*K.1^12,-1*K.1^4,K.1^4,K.1^28,-1*K.1^28,K.1^20,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^20,K.1^28,-1*K.1^20,K.1^11,K.1^21,K.1^23,-1*K.1^9,K.1^17,-1*K.1^15,-1*K.1^13,K.1^19,K.1^27,-1*K.1^5,K.1^25,-1*K.1^7,-1*K.1^3,K.1^29,K.1^31,-1*K.1,-1*K.1^31,K.1,-1*K.1^29,K.1^3,K.1^7,-1*K.1^25,K.1^5,-1*K.1^27,-1*K.1^19,K.1^13,K.1^15,-1*K.1^17,K.1^9,-1*K.1^23,-1*K.1^21,-1*K.1^11,-1*K.1^30,K.1^18,K.1^18,K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^22,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^2,K.1^6,-1*K.1^26,K.1^30,K.1^6,-1*K.1^26,K.1^10,K.1^2,K.1^26,K.1^26,-1*K.1^18,K.1^22,K.1^30,-1*K.1^14,-1*K.1^30,K.1^2,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^10,-1*K.1^21,-1*K.1^25,K.1^5,K.1^9,-1*K.1^13,-1*K.1^23,K.1^21,K.1^23,-1*K.1^15,-1*K.1^29,K.1^3,-1*K.1^27,K.1^19,K.1^7,-1*K.1^7,-1*K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^19,-1*K.1^9,-1*K.1^3,K.1^29,K.1^15,-1*K.1,K.1^31,-1*K.1^5,-1*K.1^13,-1*K.1,K.1^29,K.1^27,K.1^11,-1*K.1^15,-1*K.1^31,K.1^5,-1*K.1^17,K.1^25,-1*K.1^25,K.1^13,-1*K.1^21,K.1^13,K.1^23,K.1,-1*K.1^11,K.1^31,K.1^3,-1*K.1^29,-1*K.1^27,-1*K.1^19,K.1^27,-1*K.1^23,K.1^25,K.1^21,-1*K.1^5,K.1,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^31,K.1^15,-1*K.1^17,K.1^17,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,K.1^12,K.1^20,K.1^8,K.1^24,K.1^8,K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^10,K.1^22,-1*K.1^14,K.1^18,K.1^26,-1*K.1^6,-1*K.1^2,K.1^30,K.1^2,-1*K.1^30,K.1^6,-1*K.1^26,-1*K.1^18,K.1^14,-1*K.1^22,-1*K.1^10,K.1^20,K.1^28,-1*K.1^28,-1*K.1^4,K.1^4,-1*K.1^12,K.1^20,-1*K.1^20,-1*K.1^20,-1*K.1^28,K.1^28,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^21,-1*K.1^11,-1*K.1^9,K.1^23,-1*K.1^15,K.1^17,K.1^19,-1*K.1^13,-1*K.1^5,K.1^27,-1*K.1^7,K.1^25,K.1^29,-1*K.1^3,-1*K.1,K.1^31,K.1,-1*K.1^31,K.1^3,-1*K.1^29,-1*K.1^25,K.1^7,-1*K.1^27,K.1^5,K.1^13,-1*K.1^19,-1*K.1^17,K.1^15,-1*K.1^23,K.1^9,K.1^11,K.1^21,K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^26,K.1^10,K.1^18,K.1^30,-1*K.1^10,-1*K.1^18,K.1^10,K.1^14,K.1^30,-1*K.1^26,K.1^6,-1*K.1^2,-1*K.1^26,K.1^6,-1*K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^2,K.1^18,K.1^2,-1*K.1^30,K.1^26,-1*K.1^18,K.1^22,K.1^22,K.1^11,K.1^7,-1*K.1^27,-1*K.1^23,K.1^19,K.1^9,-1*K.1^11,-1*K.1^9,K.1^17,K.1^3,-1*K.1^29,K.1^5,-1*K.1^13,-1*K.1^25,K.1^25,K.1^13,K.1^29,K.1^25,-1*K.1^25,-1*K.1^13,K.1^23,K.1^29,-1*K.1^3,-1*K.1^17,K.1^31,-1*K.1,K.1^27,K.1^19,K.1^31,-1*K.1^3,-1*K.1^5,-1*K.1^21,K.1^17,K.1,-1*K.1^27,K.1^15,-1*K.1^7,K.1^7,-1*K.1^19,K.1^11,-1*K.1^19,-1*K.1^9,-1*K.1^31,K.1^21,-1*K.1,-1*K.1^29,K.1^3,K.1^5,K.1^13,-1*K.1^5,K.1^9,-1*K.1^7,-1*K.1^11,K.1^27,-1*K.1^31,-1*K.1^21,K.1^21,-1*K.1^23,K.1^23,K.1,-1*K.1^17,K.1^15,-1*K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^30,K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,-1*K.1^6,K.1^26,K.1^6,-1*K.1^26,K.1^18,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^30,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^12,K.1^4,-1*K.1^28,K.1^28,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^31,K.1,-1*K.1^27,K.1^5,K.1^13,-1*K.1^19,-1*K.1^25,K.1^7,-1*K.1^15,K.1^17,-1*K.1^21,K.1^11,K.1^23,-1*K.1^9,-1*K.1^3,K.1^29,K.1^3,-1*K.1^29,K.1^9,-1*K.1^23,-1*K.1^11,K.1^21,-1*K.1^17,K.1^15,-1*K.1^7,K.1^25,K.1^19,-1*K.1^13,-1*K.1^5,K.1^27,-1*K.1,-1*K.1^31,K.1^6,K.1^10,K.1^10,-1*K.1^2,K.1^14,K.1^30,-1*K.1^22,K.1^26,-1*K.1^30,K.1^22,K.1^30,-1*K.1^10,K.1^26,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^18,-1*K.1^10,-1*K.1^30,-1*K.1^6,-1*K.1^22,K.1^6,-1*K.1^26,K.1^14,K.1^22,K.1^2,K.1^2,-1*K.1,K.1^21,-1*K.1^17,-1*K.1^5,-1*K.1^25,K.1^27,K.1,-1*K.1^27,-1*K.1^19,K.1^9,-1*K.1^23,K.1^15,K.1^7,-1*K.1^11,K.1^11,-1*K.1^7,K.1^23,K.1^11,-1*K.1^11,K.1^7,K.1^5,K.1^23,-1*K.1^9,K.1^19,K.1^29,-1*K.1^3,K.1^17,-1*K.1^25,K.1^29,-1*K.1^9,-1*K.1^15,K.1^31,-1*K.1^19,K.1^3,-1*K.1^17,-1*K.1^13,-1*K.1^21,K.1^21,K.1^25,-1*K.1,K.1^25,-1*K.1^27,-1*K.1^29,-1*K.1^31,-1*K.1^3,-1*K.1^23,K.1^9,K.1^15,-1*K.1^7,-1*K.1^15,K.1^27,-1*K.1^21,K.1,K.1^17,-1*K.1^29,K.1^31,-1*K.1^31,-1*K.1^5,K.1^5,K.1^3,K.1^19,-1*K.1^13,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,-1*K.1^18,K.1^14,K.1^26,-1*K.1^6,-1*K.1^26,K.1^6,-1*K.1^14,K.1^18,-1*K.1^10,K.1^22,K.1^30,K.1^2,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^20,-1*K.1^28,K.1^4,-1*K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^28,-1*K.1^28,K.1^20,K.1^28,-1*K.1,-1*K.1^31,K.1^5,-1*K.1^27,-1*K.1^19,K.1^13,K.1^7,-1*K.1^25,K.1^17,-1*K.1^15,K.1^11,-1*K.1^21,-1*K.1^9,K.1^23,K.1^29,-1*K.1^3,-1*K.1^29,K.1^3,-1*K.1^23,K.1^9,K.1^21,-1*K.1^11,K.1^15,-1*K.1^17,K.1^25,-1*K.1^7,-1*K.1^13,K.1^19,K.1^27,-1*K.1^5,K.1^31,K.1,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^30,-1*K.1^18,-1*K.1^2,K.1^10,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^22,-1*K.1^6,K.1^18,-1*K.1^14,K.1^26,K.1^18,-1*K.1^14,K.1^30,K.1^6,K.1^14,K.1^14,K.1^22,K.1^2,K.1^26,K.1^10,-1*K.1^26,K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^30,-1*K.1^30,K.1^31,-1*K.1^11,K.1^15,K.1^27,K.1^7,-1*K.1^5,-1*K.1^31,K.1^5,K.1^13,-1*K.1^23,K.1^9,-1*K.1^17,-1*K.1^25,K.1^21,-1*K.1^21,K.1^25,-1*K.1^9,-1*K.1^21,K.1^21,-1*K.1^25,-1*K.1^27,-1*K.1^9,K.1^23,-1*K.1^13,-1*K.1^3,K.1^29,-1*K.1^15,K.1^7,-1*K.1^3,K.1^23,K.1^17,-1*K.1,K.1^13,-1*K.1^29,K.1^15,K.1^19,K.1^11,-1*K.1^11,-1*K.1^7,K.1^31,-1*K.1^7,K.1^5,K.1^3,K.1,K.1^29,K.1^9,-1*K.1^23,-1*K.1^17,K.1^25,K.1^17,-1*K.1^5,K.1^11,-1*K.1^31,-1*K.1^15,K.1^3,-1*K.1,K.1,K.1^27,-1*K.1^27,-1*K.1^29,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^30,K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,-1*K.1^6,K.1^26,K.1^6,-1*K.1^26,K.1^18,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^30,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^12,K.1^4,-1*K.1^28,K.1^28,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^31,-1*K.1,K.1^27,-1*K.1^5,-1*K.1^13,K.1^19,K.1^25,-1*K.1^7,K.1^15,-1*K.1^17,K.1^21,-1*K.1^11,-1*K.1^23,K.1^9,K.1^3,-1*K.1^29,-1*K.1^3,K.1^29,-1*K.1^9,K.1^23,K.1^11,-1*K.1^21,K.1^17,-1*K.1^15,K.1^7,-1*K.1^25,-1*K.1^19,K.1^13,K.1^5,-1*K.1^27,K.1,K.1^31,K.1^6,K.1^10,K.1^10,-1*K.1^2,K.1^14,K.1^30,-1*K.1^22,K.1^26,-1*K.1^30,K.1^22,K.1^30,-1*K.1^10,K.1^26,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^18,-1*K.1^10,-1*K.1^30,-1*K.1^6,-1*K.1^22,K.1^6,-1*K.1^26,K.1^14,K.1^22,K.1^2,K.1^2,K.1,-1*K.1^21,K.1^17,K.1^5,K.1^25,-1*K.1^27,-1*K.1,K.1^27,K.1^19,-1*K.1^9,K.1^23,-1*K.1^15,-1*K.1^7,K.1^11,-1*K.1^11,K.1^7,-1*K.1^23,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^23,K.1^9,-1*K.1^19,-1*K.1^29,K.1^3,-1*K.1^17,K.1^25,-1*K.1^29,K.1^9,K.1^15,-1*K.1^31,K.1^19,-1*K.1^3,K.1^17,K.1^13,K.1^21,-1*K.1^21,-1*K.1^25,K.1,-1*K.1^25,K.1^27,K.1^29,K.1^31,K.1^3,K.1^23,-1*K.1^9,-1*K.1^15,K.1^7,K.1^15,-1*K.1^27,K.1^21,-1*K.1,-1*K.1^17,K.1^29,-1*K.1^31,K.1^31,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^19,K.1^13,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,-1*K.1^18,K.1^14,K.1^26,-1*K.1^6,-1*K.1^26,K.1^6,-1*K.1^14,K.1^18,-1*K.1^10,K.1^22,K.1^30,K.1^2,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^20,-1*K.1^28,K.1^4,-1*K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^28,-1*K.1^28,K.1^20,K.1^28,K.1,K.1^31,-1*K.1^5,K.1^27,K.1^19,-1*K.1^13,-1*K.1^7,K.1^25,-1*K.1^17,K.1^15,-1*K.1^11,K.1^21,K.1^9,-1*K.1^23,-1*K.1^29,K.1^3,K.1^29,-1*K.1^3,K.1^23,-1*K.1^9,-1*K.1^21,K.1^11,-1*K.1^15,K.1^17,-1*K.1^25,K.1^7,K.1^13,-1*K.1^19,-1*K.1^27,K.1^5,-1*K.1^31,-1*K.1,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^30,-1*K.1^18,-1*K.1^2,K.1^10,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^22,-1*K.1^6,K.1^18,-1*K.1^14,K.1^26,K.1^18,-1*K.1^14,K.1^30,K.1^6,K.1^14,K.1^14,K.1^22,K.1^2,K.1^26,K.1^10,-1*K.1^26,K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^31,K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^7,K.1^5,K.1^31,-1*K.1^5,-1*K.1^13,K.1^23,-1*K.1^9,K.1^17,K.1^25,-1*K.1^21,K.1^21,-1*K.1^25,K.1^9,K.1^21,-1*K.1^21,K.1^25,K.1^27,K.1^9,-1*K.1^23,K.1^13,K.1^3,-1*K.1^29,K.1^15,-1*K.1^7,K.1^3,-1*K.1^23,-1*K.1^17,K.1,-1*K.1^13,K.1^29,-1*K.1^15,-1*K.1^19,-1*K.1^11,K.1^11,K.1^7,-1*K.1^31,K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^29,-1*K.1^9,K.1^23,K.1^17,-1*K.1^25,-1*K.1^17,K.1^5,-1*K.1^11,K.1^31,K.1^15,-1*K.1^3,K.1,-1*K.1,-1*K.1^27,K.1^27,K.1^29,K.1^13,-1*K.1^19,K.1^19,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^18,K.1^6,-1*K.1^26,-1*K.1^6,K.1^26,-1*K.1^18,K.1^14,-1*K.1^22,K.1^10,K.1^2,K.1^30,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^12,K.1^4,-1*K.1^28,K.1^28,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^15,-1*K.1^17,K.1^11,-1*K.1^21,-1*K.1^29,K.1^3,-1*K.1^9,K.1^23,-1*K.1^31,K.1,-1*K.1^5,K.1^27,-1*K.1^7,K.1^25,-1*K.1^19,K.1^13,K.1^19,-1*K.1^13,-1*K.1^25,K.1^7,-1*K.1^27,K.1^5,-1*K.1,K.1^31,-1*K.1^23,K.1^9,-1*K.1^3,K.1^29,K.1^21,-1*K.1^11,K.1^17,K.1^15,-1*K.1^6,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^30,K.1^22,-1*K.1^26,K.1^30,-1*K.1^22,-1*K.1^30,K.1^10,-1*K.1^26,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^26,K.1^18,K.1^18,K.1^10,K.1^30,K.1^6,K.1^22,-1*K.1^6,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^2,-1*K.1^2,K.1^17,K.1^5,-1*K.1,K.1^21,-1*K.1^9,-1*K.1^11,-1*K.1^17,K.1^11,K.1^3,-1*K.1^25,K.1^7,K.1^31,K.1^23,-1*K.1^27,K.1^27,-1*K.1^23,-1*K.1^7,K.1^27,-1*K.1^27,K.1^23,-1*K.1^21,-1*K.1^7,K.1^25,-1*K.1^3,K.1^13,-1*K.1^19,K.1,-1*K.1^9,K.1^13,K.1^25,-1*K.1^31,-1*K.1^15,K.1^3,K.1^19,-1*K.1,K.1^29,-1*K.1^5,K.1^5,K.1^9,K.1^17,K.1^9,K.1^11,-1*K.1^13,K.1^15,-1*K.1^19,K.1^7,-1*K.1^25,K.1^31,-1*K.1^23,-1*K.1^31,-1*K.1^11,-1*K.1^5,-1*K.1^17,K.1,-1*K.1^13,-1*K.1^15,K.1^15,K.1^21,-1*K.1^21,K.1^19,-1*K.1^3,K.1^29,-1*K.1^29,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,K.1^2,K.1^30,K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,-1*K.1^26,K.1^6,K.1^26,-1*K.1^6,K.1^14,-1*K.1^18,K.1^10,-1*K.1^22,-1*K.1^30,-1*K.1^2,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^20,-1*K.1^28,K.1^4,-1*K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^28,-1*K.1^28,K.1^20,K.1^28,K.1^17,K.1^15,-1*K.1^21,K.1^11,K.1^3,-1*K.1^29,K.1^23,-1*K.1^9,K.1,-1*K.1^31,K.1^27,-1*K.1^5,K.1^25,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^13,K.1^19,K.1^7,-1*K.1^25,K.1^5,-1*K.1^27,K.1^31,-1*K.1,K.1^9,-1*K.1^23,K.1^29,-1*K.1^3,-1*K.1^11,K.1^21,-1*K.1^15,-1*K.1^17,K.1^26,K.1^22,K.1^22,-1*K.1^30,K.1^18,K.1^2,-1*K.1^10,K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^22,K.1^6,-1*K.1^18,K.1^14,-1*K.1^26,-1*K.1^18,K.1^14,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,-1*K.1^6,K.1^18,K.1^10,K.1^30,K.1^30,-1*K.1^15,-1*K.1^27,K.1^31,-1*K.1^11,K.1^23,K.1^21,K.1^15,-1*K.1^21,-1*K.1^29,K.1^7,-1*K.1^25,-1*K.1,-1*K.1^9,K.1^5,-1*K.1^5,K.1^9,K.1^25,-1*K.1^5,K.1^5,-1*K.1^9,K.1^11,K.1^25,-1*K.1^7,K.1^29,-1*K.1^19,K.1^13,-1*K.1^31,K.1^23,-1*K.1^19,-1*K.1^7,K.1,K.1^17,-1*K.1^29,-1*K.1^13,K.1^31,-1*K.1^3,K.1^27,-1*K.1^27,-1*K.1^23,-1*K.1^15,-1*K.1^23,-1*K.1^21,K.1^19,-1*K.1^17,K.1^13,-1*K.1^25,K.1^7,-1*K.1,K.1^9,K.1,K.1^21,K.1^27,K.1^15,-1*K.1^31,K.1^19,K.1^17,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^13,K.1^29,-1*K.1^3,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^18,K.1^6,-1*K.1^26,-1*K.1^6,K.1^26,-1*K.1^18,K.1^14,-1*K.1^22,K.1^10,K.1^2,K.1^30,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^12,K.1^4,-1*K.1^28,K.1^28,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^15,K.1^17,-1*K.1^11,K.1^21,K.1^29,-1*K.1^3,K.1^9,-1*K.1^23,K.1^31,-1*K.1,K.1^5,-1*K.1^27,K.1^7,-1*K.1^25,K.1^19,-1*K.1^13,-1*K.1^19,K.1^13,K.1^25,-1*K.1^7,K.1^27,-1*K.1^5,K.1,-1*K.1^31,K.1^23,-1*K.1^9,K.1^3,-1*K.1^29,-1*K.1^21,K.1^11,-1*K.1^17,-1*K.1^15,-1*K.1^6,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^30,K.1^22,-1*K.1^26,K.1^30,-1*K.1^22,-1*K.1^30,K.1^10,-1*K.1^26,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^26,K.1^18,K.1^18,K.1^10,K.1^30,K.1^6,K.1^22,-1*K.1^6,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^17,-1*K.1^5,K.1,-1*K.1^21,K.1^9,K.1^11,K.1^17,-1*K.1^11,-1*K.1^3,K.1^25,-1*K.1^7,-1*K.1^31,-1*K.1^23,K.1^27,-1*K.1^27,K.1^23,K.1^7,-1*K.1^27,K.1^27,-1*K.1^23,K.1^21,K.1^7,-1*K.1^25,K.1^3,-1*K.1^13,K.1^19,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^25,K.1^31,K.1^15,-1*K.1^3,-1*K.1^19,K.1,-1*K.1^29,K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^17,-1*K.1^9,-1*K.1^11,K.1^13,-1*K.1^15,K.1^19,-1*K.1^7,K.1^25,-1*K.1^31,K.1^23,K.1^31,K.1^11,K.1^5,K.1^17,-1*K.1,K.1^13,K.1^15,-1*K.1^15,-1*K.1^21,K.1^21,-1*K.1^19,K.1^3,-1*K.1^29,K.1^29,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,K.1^2,K.1^30,K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,-1*K.1^26,K.1^6,K.1^26,-1*K.1^6,K.1^14,-1*K.1^18,K.1^10,-1*K.1^22,-1*K.1^30,-1*K.1^2,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^20,-1*K.1^28,K.1^4,-1*K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^28,-1*K.1^28,K.1^20,K.1^28,-1*K.1^17,-1*K.1^15,K.1^21,-1*K.1^11,-1*K.1^3,K.1^29,-1*K.1^23,K.1^9,-1*K.1,K.1^31,-1*K.1^27,K.1^5,-1*K.1^25,K.1^7,-1*K.1^13,K.1^19,K.1^13,-1*K.1^19,-1*K.1^7,K.1^25,-1*K.1^5,K.1^27,-1*K.1^31,K.1,-1*K.1^9,K.1^23,-1*K.1^29,K.1^3,K.1^11,-1*K.1^21,K.1^15,K.1^17,K.1^26,K.1^22,K.1^22,-1*K.1^30,K.1^18,K.1^2,-1*K.1^10,K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^22,K.1^6,-1*K.1^18,K.1^14,-1*K.1^26,-1*K.1^18,K.1^14,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,-1*K.1^6,K.1^18,K.1^10,K.1^30,K.1^30,K.1^15,K.1^27,-1*K.1^31,K.1^11,-1*K.1^23,-1*K.1^21,-1*K.1^15,K.1^21,K.1^29,-1*K.1^7,K.1^25,K.1,K.1^9,-1*K.1^5,K.1^5,-1*K.1^9,-1*K.1^25,K.1^5,-1*K.1^5,K.1^9,-1*K.1^11,-1*K.1^25,K.1^7,-1*K.1^29,K.1^19,-1*K.1^13,K.1^31,-1*K.1^23,K.1^19,K.1^7,-1*K.1,-1*K.1^17,K.1^29,K.1^13,-1*K.1^31,K.1^3,-1*K.1^27,K.1^27,K.1^23,K.1^15,K.1^23,K.1^21,-1*K.1^19,K.1^17,-1*K.1^13,K.1^25,-1*K.1^7,K.1,-1*K.1^9,-1*K.1,-1*K.1^21,-1*K.1^27,-1*K.1^15,K.1^31,-1*K.1^19,-1*K.1^17,K.1^17,K.1^11,-1*K.1^11,K.1^13,-1*K.1^29,K.1^3,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,K.1^4,K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,K.1^30,-1*K.1^2,-1*K.1^22,K.1^10,K.1^22,-1*K.1^10,K.1^2,-1*K.1^30,-1*K.1^6,K.1^26,K.1^18,K.1^14,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^12,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^7,-1*K.1^25,-1*K.1^3,K.1^29,-1*K.1^5,K.1^27,-1*K.1^17,K.1^15,-1*K.1^23,K.1^9,K.1^13,-1*K.1^19,K.1^31,-1*K.1,K.1^11,-1*K.1^21,-1*K.1^11,K.1^21,K.1,-1*K.1^31,K.1^19,-1*K.1^13,-1*K.1^9,K.1^23,-1*K.1^15,K.1^17,-1*K.1^27,K.1^5,-1*K.1^29,K.1^3,K.1^25,K.1^7,K.1^22,-1*K.1^26,-1*K.1^26,K.1^18,K.1^30,-1*K.1^14,K.1^6,K.1^10,K.1^14,-1*K.1^6,-1*K.1^14,K.1^26,K.1^10,-1*K.1^30,K.1^2,-1*K.1^22,-1*K.1^30,K.1^2,K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^26,K.1^14,-1*K.1^22,K.1^6,K.1^22,-1*K.1^10,K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^25,-1*K.1^13,-1*K.1^9,-1*K.1^29,-1*K.1^17,K.1^3,-1*K.1^25,-1*K.1^3,K.1^27,K.1,-1*K.1^31,K.1^23,K.1^15,K.1^19,-1*K.1^19,-1*K.1^15,K.1^31,-1*K.1^19,K.1^19,K.1^15,K.1^29,K.1^31,-1*K.1,-1*K.1^27,-1*K.1^21,K.1^11,K.1^9,-1*K.1^17,-1*K.1^21,-1*K.1,-1*K.1^23,-1*K.1^7,K.1^27,-1*K.1^11,-1*K.1^9,K.1^5,K.1^13,-1*K.1^13,K.1^17,K.1^25,K.1^17,-1*K.1^3,K.1^21,K.1^7,K.1^11,-1*K.1^31,K.1,K.1^23,-1*K.1^15,-1*K.1^23,K.1^3,K.1^13,-1*K.1^25,K.1^9,K.1^21,-1*K.1^7,K.1^7,-1*K.1^29,K.1^29,-1*K.1^11,-1*K.1^27,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,K.1^18,K.1^14,K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,K.1^10,-1*K.1^22,-1*K.1^10,K.1^22,-1*K.1^30,K.1^2,K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^20,K.1^28,-1*K.1^4,K.1^4,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^28,K.1^28,-1*K.1^20,-1*K.1^28,K.1^25,K.1^7,K.1^29,-1*K.1^3,K.1^27,-1*K.1^5,K.1^15,-1*K.1^17,K.1^9,-1*K.1^23,-1*K.1^19,K.1^13,-1*K.1,K.1^31,-1*K.1^21,K.1^11,K.1^21,-1*K.1^11,-1*K.1^31,K.1,-1*K.1^13,K.1^19,K.1^23,-1*K.1^9,K.1^17,-1*K.1^15,K.1^5,-1*K.1^27,K.1^3,-1*K.1^29,-1*K.1^7,-1*K.1^25,-1*K.1^10,K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^26,K.1^18,-1*K.1^6,-1*K.1^22,K.1^2,-1*K.1^30,K.1^10,K.1^2,-1*K.1^30,-1*K.1^14,K.1^22,K.1^30,K.1^30,-1*K.1^6,-1*K.1^18,K.1^10,-1*K.1^26,-1*K.1^10,K.1^22,-1*K.1^2,K.1^26,K.1^14,K.1^14,-1*K.1^7,K.1^19,K.1^23,K.1^3,K.1^15,-1*K.1^29,K.1^7,K.1^29,-1*K.1^5,-1*K.1^31,K.1,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^13,K.1^17,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1^3,-1*K.1,K.1^31,K.1^5,K.1^11,-1*K.1^21,-1*K.1^23,K.1^15,K.1^11,K.1^31,K.1^9,K.1^25,-1*K.1^5,K.1^21,K.1^23,-1*K.1^27,-1*K.1^19,K.1^19,-1*K.1^15,-1*K.1^7,-1*K.1^15,K.1^29,-1*K.1^11,-1*K.1^25,-1*K.1^21,K.1,-1*K.1^31,-1*K.1^9,K.1^17,K.1^9,-1*K.1^29,-1*K.1^19,K.1^7,-1*K.1^23,-1*K.1^11,K.1^25,-1*K.1^25,K.1^3,-1*K.1^3,K.1^21,K.1^5,-1*K.1^27,K.1^27,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,K.1^4,K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,K.1^30,-1*K.1^2,-1*K.1^22,K.1^10,K.1^22,-1*K.1^10,K.1^2,-1*K.1^30,-1*K.1^6,K.1^26,K.1^18,K.1^14,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^12,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^7,K.1^25,K.1^3,-1*K.1^29,K.1^5,-1*K.1^27,K.1^17,-1*K.1^15,K.1^23,-1*K.1^9,-1*K.1^13,K.1^19,-1*K.1^31,K.1,-1*K.1^11,K.1^21,K.1^11,-1*K.1^21,-1*K.1,K.1^31,-1*K.1^19,K.1^13,K.1^9,-1*K.1^23,K.1^15,-1*K.1^17,K.1^27,-1*K.1^5,K.1^29,-1*K.1^3,-1*K.1^25,-1*K.1^7,K.1^22,-1*K.1^26,-1*K.1^26,K.1^18,K.1^30,-1*K.1^14,K.1^6,K.1^10,K.1^14,-1*K.1^6,-1*K.1^14,K.1^26,K.1^10,-1*K.1^30,K.1^2,-1*K.1^22,-1*K.1^30,K.1^2,K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^26,K.1^14,-1*K.1^22,K.1^6,K.1^22,-1*K.1^10,K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^25,K.1^13,K.1^9,K.1^29,K.1^17,-1*K.1^3,K.1^25,K.1^3,-1*K.1^27,-1*K.1,K.1^31,-1*K.1^23,-1*K.1^15,-1*K.1^19,K.1^19,K.1^15,-1*K.1^31,K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^29,-1*K.1^31,K.1,K.1^27,K.1^21,-1*K.1^11,-1*K.1^9,K.1^17,K.1^21,K.1,K.1^23,K.1^7,-1*K.1^27,K.1^11,K.1^9,-1*K.1^5,-1*K.1^13,K.1^13,-1*K.1^17,-1*K.1^25,-1*K.1^17,K.1^3,-1*K.1^21,-1*K.1^7,-1*K.1^11,K.1^31,-1*K.1,-1*K.1^23,K.1^15,K.1^23,-1*K.1^3,-1*K.1^13,K.1^25,-1*K.1^9,-1*K.1^21,K.1^7,-1*K.1^7,K.1^29,-1*K.1^29,K.1^11,K.1^27,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,K.1^18,K.1^14,K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,K.1^10,-1*K.1^22,-1*K.1^10,K.1^22,-1*K.1^30,K.1^2,K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^20,K.1^28,-1*K.1^4,K.1^4,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^28,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^25,-1*K.1^7,-1*K.1^29,K.1^3,-1*K.1^27,K.1^5,-1*K.1^15,K.1^17,-1*K.1^9,K.1^23,K.1^19,-1*K.1^13,K.1,-1*K.1^31,K.1^21,-1*K.1^11,-1*K.1^21,K.1^11,K.1^31,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^23,K.1^9,-1*K.1^17,K.1^15,-1*K.1^5,K.1^27,-1*K.1^3,K.1^29,K.1^7,K.1^25,-1*K.1^10,K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^26,K.1^18,-1*K.1^6,-1*K.1^22,K.1^2,-1*K.1^30,K.1^10,K.1^2,-1*K.1^30,-1*K.1^14,K.1^22,K.1^30,K.1^30,-1*K.1^6,-1*K.1^18,K.1^10,-1*K.1^26,-1*K.1^10,K.1^22,-1*K.1^2,K.1^26,K.1^14,K.1^14,K.1^7,-1*K.1^19,-1*K.1^23,-1*K.1^3,-1*K.1^15,K.1^29,-1*K.1^7,-1*K.1^29,K.1^5,K.1^31,-1*K.1,K.1^9,K.1^17,K.1^13,-1*K.1^13,-1*K.1^17,K.1,-1*K.1^13,K.1^13,K.1^17,K.1^3,K.1,-1*K.1^31,-1*K.1^5,-1*K.1^11,K.1^21,K.1^23,-1*K.1^15,-1*K.1^11,-1*K.1^31,-1*K.1^9,-1*K.1^25,K.1^5,-1*K.1^21,-1*K.1^23,K.1^27,K.1^19,-1*K.1^19,K.1^15,K.1^7,K.1^15,-1*K.1^29,K.1^11,K.1^25,K.1^21,-1*K.1,K.1^31,K.1^9,-1*K.1^17,-1*K.1^9,K.1^29,K.1^19,-1*K.1^7,K.1^23,K.1^11,-1*K.1^25,K.1^25,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^5,K.1^27,-1*K.1^27,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,K.1^4,K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^14,K.1^18,K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,K.1^22,-1*K.1^10,-1*K.1^22,K.1^10,-1*K.1^2,K.1^30,K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^12,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,K.1^4,K.1^23,K.1^9,K.1^19,-1*K.1^13,-1*K.1^21,K.1^11,K.1,-1*K.1^31,-1*K.1^7,K.1^25,K.1^29,-1*K.1^3,K.1^15,-1*K.1^17,-1*K.1^27,K.1^5,K.1^27,-1*K.1^5,K.1^17,-1*K.1^15,K.1^3,-1*K.1^29,-1*K.1^25,K.1^7,K.1^31,-1*K.1,-1*K.1^11,K.1^21,K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^23,-1*K.1^22,K.1^26,K.1^26,-1*K.1^18,-1*K.1^30,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^6,K.1^14,-1*K.1^26,-1*K.1^10,K.1^30,-1*K.1^2,K.1^22,K.1^30,-1*K.1^2,-1*K.1^18,K.1^10,K.1^2,K.1^2,-1*K.1^26,-1*K.1^14,K.1^22,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^30,K.1^6,K.1^18,K.1^18,-1*K.1^9,-1*K.1^29,-1*K.1^25,K.1^13,K.1,-1*K.1^19,K.1^9,K.1^19,K.1^11,K.1^17,-1*K.1^15,K.1^7,-1*K.1^31,K.1^3,-1*K.1^3,K.1^31,K.1^15,-1*K.1^3,K.1^3,-1*K.1^31,-1*K.1^13,K.1^15,-1*K.1^17,-1*K.1^11,K.1^5,-1*K.1^27,K.1^25,K.1,K.1^5,-1*K.1^17,-1*K.1^7,K.1^23,K.1^11,K.1^27,-1*K.1^25,K.1^21,K.1^29,-1*K.1^29,-1*K.1,-1*K.1^9,-1*K.1,K.1^19,-1*K.1^5,-1*K.1^23,-1*K.1^27,-1*K.1^15,K.1^17,K.1^7,K.1^31,-1*K.1^7,-1*K.1^19,K.1^29,K.1^9,K.1^25,-1*K.1^5,K.1^23,-1*K.1^23,K.1^13,-1*K.1^13,K.1^27,-1*K.1^11,K.1^21,-1*K.1^21,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,K.1^2,-1*K.1^30,-1*K.1^10,K.1^22,K.1^10,-1*K.1^22,K.1^30,-1*K.1^2,-1*K.1^26,K.1^6,K.1^14,K.1^18,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^20,K.1^28,-1*K.1^4,K.1^4,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^28,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^9,-1*K.1^23,-1*K.1^13,K.1^19,K.1^11,-1*K.1^21,-1*K.1^31,K.1,K.1^25,-1*K.1^7,-1*K.1^3,K.1^29,-1*K.1^17,K.1^15,K.1^5,-1*K.1^27,-1*K.1^5,K.1^27,-1*K.1^15,K.1^17,-1*K.1^29,K.1^3,K.1^7,-1*K.1^25,-1*K.1,K.1^31,K.1^21,-1*K.1^11,-1*K.1^19,K.1^13,K.1^23,K.1^9,K.1^10,-1*K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^18,K.1^26,K.1^22,K.1^18,-1*K.1^26,-1*K.1^18,K.1^6,K.1^22,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^2,K.1^30,K.1^14,-1*K.1^22,-1*K.1^30,-1*K.1^30,K.1^6,K.1^18,-1*K.1^10,K.1^26,K.1^10,-1*K.1^22,K.1^2,-1*K.1^26,-1*K.1^14,-1*K.1^14,K.1^23,K.1^3,K.1^7,-1*K.1^19,-1*K.1^31,K.1^13,-1*K.1^23,-1*K.1^13,-1*K.1^21,-1*K.1^15,K.1^17,-1*K.1^25,K.1,-1*K.1^29,K.1^29,-1*K.1,-1*K.1^17,K.1^29,-1*K.1^29,K.1,K.1^19,-1*K.1^17,K.1^15,K.1^21,-1*K.1^27,K.1^5,-1*K.1^7,-1*K.1^31,-1*K.1^27,K.1^15,K.1^25,-1*K.1^9,-1*K.1^21,-1*K.1^5,K.1^7,-1*K.1^11,-1*K.1^3,K.1^3,K.1^31,K.1^23,K.1^31,-1*K.1^13,K.1^27,K.1^9,K.1^5,K.1^17,-1*K.1^15,-1*K.1^25,-1*K.1,K.1^25,K.1^13,-1*K.1^3,-1*K.1^23,-1*K.1^7,K.1^27,-1*K.1^9,K.1^9,-1*K.1^19,K.1^19,-1*K.1^5,K.1^21,-1*K.1^11,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,K.1^4,K.1^28,K.1^24,K.1^8,K.1^24,K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^14,K.1^18,K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,K.1^22,-1*K.1^10,-1*K.1^22,K.1^10,-1*K.1^2,K.1^30,K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^28,-1*K.1^20,K.1^20,K.1^12,-1*K.1^12,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^20,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^23,-1*K.1^9,-1*K.1^19,K.1^13,K.1^21,-1*K.1^11,-1*K.1,K.1^31,K.1^7,-1*K.1^25,-1*K.1^29,K.1^3,-1*K.1^15,K.1^17,K.1^27,-1*K.1^5,-1*K.1^27,K.1^5,-1*K.1^17,K.1^15,-1*K.1^3,K.1^29,K.1^25,-1*K.1^7,-1*K.1^31,K.1,K.1^11,-1*K.1^21,-1*K.1^13,K.1^19,K.1^9,K.1^23,-1*K.1^22,K.1^26,K.1^26,-1*K.1^18,-1*K.1^30,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^6,K.1^14,-1*K.1^26,-1*K.1^10,K.1^30,-1*K.1^2,K.1^22,K.1^30,-1*K.1^2,-1*K.1^18,K.1^10,K.1^2,K.1^2,-1*K.1^26,-1*K.1^14,K.1^22,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^30,K.1^6,K.1^18,K.1^18,K.1^9,K.1^29,K.1^25,-1*K.1^13,-1*K.1,K.1^19,-1*K.1^9,-1*K.1^19,-1*K.1^11,-1*K.1^17,K.1^15,-1*K.1^7,K.1^31,-1*K.1^3,K.1^3,-1*K.1^31,-1*K.1^15,K.1^3,-1*K.1^3,K.1^31,K.1^13,-1*K.1^15,K.1^17,K.1^11,-1*K.1^5,K.1^27,-1*K.1^25,-1*K.1,-1*K.1^5,K.1^17,K.1^7,-1*K.1^23,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^21,-1*K.1^29,K.1^29,K.1,K.1^9,K.1,-1*K.1^19,K.1^5,K.1^23,K.1^27,K.1^15,-1*K.1^17,-1*K.1^7,-1*K.1^31,K.1^7,K.1^19,-1*K.1^29,-1*K.1^9,-1*K.1^25,K.1^5,-1*K.1^23,K.1^23,-1*K.1^13,K.1^13,-1*K.1^27,K.1^11,-1*K.1^21,K.1^21,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,K.1^2,-1*K.1^30,-1*K.1^10,K.1^22,K.1^10,-1*K.1^22,K.1^30,-1*K.1^2,-1*K.1^26,K.1^6,K.1^14,K.1^18,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^20,K.1^20,K.1^28,-1*K.1^4,K.1^4,K.1^4,-1*K.1^12,K.1^12,K.1^20,-1*K.1^28,K.1^28,-1*K.1^20,-1*K.1^28,K.1^9,K.1^23,K.1^13,-1*K.1^19,-1*K.1^11,K.1^21,K.1^31,-1*K.1,-1*K.1^25,K.1^7,K.1^3,-1*K.1^29,K.1^17,-1*K.1^15,-1*K.1^5,K.1^27,K.1^5,-1*K.1^27,K.1^15,-1*K.1^17,K.1^29,-1*K.1^3,-1*K.1^7,K.1^25,K.1,-1*K.1^31,-1*K.1^21,K.1^11,K.1^19,-1*K.1^13,-1*K.1^23,-1*K.1^9,K.1^10,-1*K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^18,K.1^26,K.1^22,K.1^18,-1*K.1^26,-1*K.1^18,K.1^6,K.1^22,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^2,K.1^30,K.1^14,-1*K.1^22,-1*K.1^30,-1*K.1^30,K.1^6,K.1^18,-1*K.1^10,K.1^26,K.1^10,-1*K.1^22,K.1^2,-1*K.1^26,-1*K.1^14,-1*K.1^14,-1*K.1^23,-1*K.1^3,-1*K.1^7,K.1^19,K.1^31,-1*K.1^13,K.1^23,K.1^13,K.1^21,K.1^15,-1*K.1^17,K.1^25,-1*K.1,K.1^29,-1*K.1^29,K.1,K.1^17,-1*K.1^29,K.1^29,-1*K.1,-1*K.1^19,K.1^17,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^5,K.1^7,K.1^31,K.1^27,-1*K.1^15,-1*K.1^25,K.1^9,K.1^21,K.1^5,-1*K.1^7,K.1^11,K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^23,-1*K.1^31,K.1^13,-1*K.1^27,-1*K.1^9,-1*K.1^5,-1*K.1^17,K.1^15,K.1^25,K.1,-1*K.1^25,-1*K.1^13,K.1^3,K.1^23,K.1^7,-1*K.1^27,K.1^9,-1*K.1^9,K.1^19,-1*K.1^19,K.1^5,-1*K.1^21,K.1^11,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^20,K.1^44,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^44,K.1^4,-1*K.1^20,K.1^4,K.1^44,-1*K.1^28,-1*K.1^4,-1*K.1^44,K.1^28,K.1^20,K.1^28,K.1^33,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^39,-1*K.1^9,-1*K.1^33,K.1^15,-1*K.1^27,K.1^21,K.1^9,-1*K.1^39,-1*K.1^45,K.1^3,-1*K.1^45,K.1^3,-1*K.1^39,K.1^9,K.1^21,-1*K.1^27,K.1^15,-1*K.1^33,-1*K.1^9,K.1^39,K.1^45,-1*K.1^3,K.1^27,-1*K.1^21,-1*K.1^15,K.1^33,K.1^26,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^34,K.1^34,K.1^10,K.1^38,K.1^2,K.1^10,K.1^2,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^14,K.1^26,-1*K.1^2,K.1^46,-1*K.1^14,-1*K.1^22,K.1^46,K.1^14,K.1^22,K.1^34,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^46,-1*K.1^14,-1*K.1^47,K.1^43,K.1^47,-1*K.1^43,K.1^7,K.1^5,-1*K.1^47,K.1^37,-1*K.1^29,-1*K.1^7,K.1^41,K.1^17,-1*K.1^41,-1*K.1^37,-1*K.1^5,K.1^25,-1*K.1^25,-1*K.1^37,-1*K.1^5,K.1^25,-1*K.1^11,K.1^41,-1*K.1^7,-1*K.1^29,K.1^35,-1*K.1^13,-1*K.1^31,-1*K.1^23,-1*K.1^19,K.1^23,-1*K.1,-1*K.1^17,K.1^13,K.1^29,-1*K.1^31,-1*K.1^35,K.1^11,K.1^11,-1*K.1^23,K.1^31,K.1^7,K.1^5,K.1^35,K.1,K.1^29,-1*K.1^25,K.1^23,-1*K.1,-1*K.1^41,K.1^17,K.1^37,K.1^43,K.1^31,K.1^47,-1*K.1^19,K.1,-1*K.1^17,-1*K.1^11,-1*K.1^43,-1*K.1^13,K.1^13,K.1^19,K.1^19,-1*K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^28,-1*K.1^4,K.1^20,K.1^44,-1*K.1^28,K.1^4,-1*K.1^44,K.1^28,-1*K.1^44,-1*K.1^4,K.1^20,K.1^44,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^15,K.1^33,K.1^27,-1*K.1^21,K.1^45,-1*K.1^3,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^3,-1*K.1^45,K.1^3,-1*K.1^45,K.1^9,-1*K.1^39,-1*K.1^27,K.1^21,-1*K.1^33,K.1^15,K.1^39,-1*K.1^9,-1*K.1^3,K.1^45,-1*K.1^21,K.1^27,K.1^33,-1*K.1^15,-1*K.1^22,-1*K.1^26,K.1^10,K.1^2,K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^10,-1*K.1^46,-1*K.1^38,-1*K.1^46,K.1^10,K.1^26,K.1^14,-1*K.1^34,-1*K.1^22,K.1^46,-1*K.1^2,K.1^34,K.1^26,-1*K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^14,K.1^38,K.1^22,K.1^38,-1*K.1^10,K.1^46,K.1^22,K.1^2,K.1^34,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^41,-1*K.1^43,K.1,-1*K.1^11,K.1^19,K.1^41,-1*K.1^7,-1*K.1^31,K.1^7,K.1^11,K.1^43,-1*K.1^23,K.1^23,K.1^11,K.1^43,-1*K.1^23,K.1^37,-1*K.1^7,K.1^41,K.1^19,-1*K.1^13,K.1^35,K.1^17,K.1^25,K.1^29,-1*K.1^25,K.1^47,K.1^31,-1*K.1^35,-1*K.1^19,K.1^17,K.1^13,-1*K.1^37,-1*K.1^37,K.1^25,-1*K.1^17,-1*K.1^41,-1*K.1^43,-1*K.1^13,-1*K.1^47,-1*K.1^19,K.1^23,-1*K.1^25,K.1^47,K.1^7,-1*K.1^31,-1*K.1^11,-1*K.1^5,-1*K.1^17,-1*K.1,K.1^29,-1*K.1^47,K.1^31,K.1^37,K.1^5,K.1^35,-1*K.1^35,-1*K.1^29,-1*K.1^29,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^20,K.1^44,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^44,K.1^4,-1*K.1^20,K.1^4,K.1^44,-1*K.1^28,-1*K.1^4,-1*K.1^44,K.1^28,K.1^20,K.1^28,-1*K.1^33,K.1^15,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^39,K.1^9,K.1^33,-1*K.1^15,K.1^27,-1*K.1^21,-1*K.1^9,K.1^39,K.1^45,-1*K.1^3,K.1^45,-1*K.1^3,K.1^39,-1*K.1^9,-1*K.1^21,K.1^27,-1*K.1^15,K.1^33,K.1^9,-1*K.1^39,-1*K.1^45,K.1^3,-1*K.1^27,K.1^21,K.1^15,-1*K.1^33,K.1^26,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^34,K.1^34,K.1^10,K.1^38,K.1^2,K.1^10,K.1^2,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^14,K.1^26,-1*K.1^2,K.1^46,-1*K.1^14,-1*K.1^22,K.1^46,K.1^14,K.1^22,K.1^34,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^46,-1*K.1^14,K.1^47,-1*K.1^43,-1*K.1^47,K.1^43,-1*K.1^7,-1*K.1^5,K.1^47,-1*K.1^37,K.1^29,K.1^7,-1*K.1^41,-1*K.1^17,K.1^41,K.1^37,K.1^5,-1*K.1^25,K.1^25,K.1^37,K.1^5,-1*K.1^25,K.1^11,-1*K.1^41,K.1^7,K.1^29,-1*K.1^35,K.1^13,K.1^31,K.1^23,K.1^19,-1*K.1^23,K.1,K.1^17,-1*K.1^13,-1*K.1^29,K.1^31,K.1^35,-1*K.1^11,-1*K.1^11,K.1^23,-1*K.1^31,-1*K.1^7,-1*K.1^5,-1*K.1^35,-1*K.1,-1*K.1^29,K.1^25,-1*K.1^23,K.1,K.1^41,-1*K.1^17,-1*K.1^37,-1*K.1^43,-1*K.1^31,-1*K.1^47,K.1^19,-1*K.1,K.1^17,K.1^11,K.1^43,K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^19,K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^28,-1*K.1^4,K.1^20,K.1^44,-1*K.1^28,K.1^4,-1*K.1^44,K.1^28,-1*K.1^44,-1*K.1^4,K.1^20,K.1^44,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,K.1^15,-1*K.1^33,-1*K.1^27,K.1^21,-1*K.1^45,K.1^3,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^3,K.1^45,-1*K.1^3,K.1^45,-1*K.1^9,K.1^39,K.1^27,-1*K.1^21,K.1^33,-1*K.1^15,-1*K.1^39,K.1^9,K.1^3,-1*K.1^45,K.1^21,-1*K.1^27,-1*K.1^33,K.1^15,-1*K.1^22,-1*K.1^26,K.1^10,K.1^2,K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^10,-1*K.1^46,-1*K.1^38,-1*K.1^46,K.1^10,K.1^26,K.1^14,-1*K.1^34,-1*K.1^22,K.1^46,-1*K.1^2,K.1^34,K.1^26,-1*K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^14,K.1^38,K.1^22,K.1^38,-1*K.1^10,K.1^46,K.1^22,K.1^2,K.1^34,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1^41,K.1^43,-1*K.1,K.1^11,-1*K.1^19,-1*K.1^41,K.1^7,K.1^31,-1*K.1^7,-1*K.1^11,-1*K.1^43,K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^43,K.1^23,-1*K.1^37,K.1^7,-1*K.1^41,-1*K.1^19,K.1^13,-1*K.1^35,-1*K.1^17,-1*K.1^25,-1*K.1^29,K.1^25,-1*K.1^47,-1*K.1^31,K.1^35,K.1^19,-1*K.1^17,-1*K.1^13,K.1^37,K.1^37,-1*K.1^25,K.1^17,K.1^41,K.1^43,K.1^13,K.1^47,K.1^19,-1*K.1^23,K.1^25,-1*K.1^47,-1*K.1^7,K.1^31,K.1^11,K.1^5,K.1^17,K.1,-1*K.1^29,K.1^47,-1*K.1^31,-1*K.1^37,-1*K.1^5,-1*K.1^35,K.1^35,K.1^29,K.1^29,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,-1*K.1^20,K.1^44,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^44,K.1^4,-1*K.1^20,K.1^4,K.1^44,-1*K.1^28,-1*K.1^4,-1*K.1^44,K.1^28,K.1^20,K.1^28,-1*K.1^9,K.1^39,-1*K.1^45,K.1^3,K.1^27,-1*K.1^21,K.1^15,-1*K.1^33,K.1^9,-1*K.1^39,-1*K.1^3,K.1^45,K.1^33,-1*K.1^15,K.1^21,-1*K.1^27,K.1^21,-1*K.1^27,-1*K.1^15,K.1^33,K.1^45,-1*K.1^3,-1*K.1^39,K.1^9,-1*K.1^33,K.1^15,-1*K.1^21,K.1^27,K.1^3,-1*K.1^45,K.1^39,-1*K.1^9,-1*K.1^26,-1*K.1^22,K.1^38,K.1^46,K.1^34,-1*K.1^34,-1*K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^38,K.1^22,K.1^34,-1*K.1^14,-1*K.1^26,K.1^2,-1*K.1^46,K.1^14,K.1^22,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^34,K.1^10,K.1^26,K.1^10,-1*K.1^38,K.1^2,K.1^26,K.1^46,K.1^14,-1*K.1^23,K.1^19,K.1^23,-1*K.1^19,-1*K.1^31,K.1^29,-1*K.1^23,-1*K.1^13,K.1^5,K.1^31,-1*K.1^17,K.1^41,K.1^17,K.1^13,-1*K.1^29,-1*K.1,K.1,K.1^13,-1*K.1^29,-1*K.1,K.1^35,-1*K.1^17,K.1^31,K.1^5,K.1^11,-1*K.1^37,-1*K.1^7,K.1^47,K.1^43,-1*K.1^47,-1*K.1^25,-1*K.1^41,K.1^37,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^35,-1*K.1^35,K.1^47,K.1^7,-1*K.1^31,K.1^29,K.1^11,K.1^25,-1*K.1^5,K.1,-1*K.1^47,-1*K.1^25,K.1^17,K.1^41,-1*K.1^13,K.1^19,K.1^7,K.1^23,K.1^43,K.1^25,-1*K.1^41,K.1^35,-1*K.1^19,-1*K.1^37,K.1^37,-1*K.1^43,-1*K.1^43,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,K.1^28,-1*K.1^4,K.1^20,K.1^44,-1*K.1^28,K.1^4,-1*K.1^44,K.1^28,-1*K.1^44,-1*K.1^4,K.1^20,K.1^44,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,K.1^39,-1*K.1^9,K.1^3,-1*K.1^45,-1*K.1^21,K.1^27,-1*K.1^33,K.1^15,-1*K.1^39,K.1^9,K.1^45,-1*K.1^3,-1*K.1^15,K.1^33,-1*K.1^27,K.1^21,-1*K.1^27,K.1^21,K.1^33,-1*K.1^15,-1*K.1^3,K.1^45,K.1^9,-1*K.1^39,K.1^15,-1*K.1^33,K.1^27,-1*K.1^21,-1*K.1^45,K.1^3,-1*K.1^9,K.1^39,K.1^22,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^14,K.1^38,K.1^10,K.1^46,K.1^38,K.1^46,-1*K.1^10,-1*K.1^26,-1*K.1^14,K.1^34,K.1^22,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^26,K.1^2,K.1^34,K.1^26,K.1^14,-1*K.1^38,-1*K.1^22,-1*K.1^38,K.1^10,-1*K.1^46,-1*K.1^22,-1*K.1^2,-1*K.1^34,K.1^25,-1*K.1^29,-1*K.1^25,K.1^29,K.1^17,-1*K.1^19,K.1^25,K.1^35,-1*K.1^43,-1*K.1^17,K.1^31,-1*K.1^7,-1*K.1^31,-1*K.1^35,K.1^19,K.1^47,-1*K.1^47,-1*K.1^35,K.1^19,K.1^47,-1*K.1^13,K.1^31,-1*K.1^17,-1*K.1^43,-1*K.1^37,K.1^11,K.1^41,-1*K.1,-1*K.1^5,K.1,K.1^23,K.1^7,-1*K.1^11,K.1^43,K.1^41,K.1^37,K.1^13,K.1^13,-1*K.1,-1*K.1^41,K.1^17,-1*K.1^19,-1*K.1^37,-1*K.1^23,K.1^43,-1*K.1^47,K.1,K.1^23,-1*K.1^31,-1*K.1^7,K.1^35,-1*K.1^29,-1*K.1^41,-1*K.1^25,-1*K.1^5,-1*K.1^23,K.1^7,-1*K.1^13,K.1^29,K.1^11,-1*K.1^11,K.1^5,K.1^5,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,-1*K.1^20,K.1^44,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^44,K.1^4,-1*K.1^20,K.1^4,K.1^44,-1*K.1^28,-1*K.1^4,-1*K.1^44,K.1^28,K.1^20,K.1^28,K.1^9,-1*K.1^39,K.1^45,-1*K.1^3,-1*K.1^27,K.1^21,-1*K.1^15,K.1^33,-1*K.1^9,K.1^39,K.1^3,-1*K.1^45,-1*K.1^33,K.1^15,-1*K.1^21,K.1^27,-1*K.1^21,K.1^27,K.1^15,-1*K.1^33,-1*K.1^45,K.1^3,K.1^39,-1*K.1^9,K.1^33,-1*K.1^15,K.1^21,-1*K.1^27,-1*K.1^3,K.1^45,-1*K.1^39,K.1^9,-1*K.1^26,-1*K.1^22,K.1^38,K.1^46,K.1^34,-1*K.1^34,-1*K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^38,K.1^22,K.1^34,-1*K.1^14,-1*K.1^26,K.1^2,-1*K.1^46,K.1^14,K.1^22,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^34,K.1^10,K.1^26,K.1^10,-1*K.1^38,K.1^2,K.1^26,K.1^46,K.1^14,K.1^23,-1*K.1^19,-1*K.1^23,K.1^19,K.1^31,-1*K.1^29,K.1^23,K.1^13,-1*K.1^5,-1*K.1^31,K.1^17,-1*K.1^41,-1*K.1^17,-1*K.1^13,K.1^29,K.1,-1*K.1,-1*K.1^13,K.1^29,K.1,-1*K.1^35,K.1^17,-1*K.1^31,-1*K.1^5,-1*K.1^11,K.1^37,K.1^7,-1*K.1^47,-1*K.1^43,K.1^47,K.1^25,K.1^41,-1*K.1^37,K.1^5,K.1^7,K.1^11,K.1^35,K.1^35,-1*K.1^47,-1*K.1^7,K.1^31,-1*K.1^29,-1*K.1^11,-1*K.1^25,K.1^5,-1*K.1,K.1^47,K.1^25,-1*K.1^17,-1*K.1^41,K.1^13,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^43,-1*K.1^25,K.1^41,-1*K.1^35,K.1^19,K.1^37,-1*K.1^37,K.1^43,K.1^43,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,K.1^28,-1*K.1^4,K.1^20,K.1^44,-1*K.1^28,K.1^4,-1*K.1^44,K.1^28,-1*K.1^44,-1*K.1^4,K.1^20,K.1^44,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^39,K.1^9,-1*K.1^3,K.1^45,K.1^21,-1*K.1^27,K.1^33,-1*K.1^15,K.1^39,-1*K.1^9,-1*K.1^45,K.1^3,K.1^15,-1*K.1^33,K.1^27,-1*K.1^21,K.1^27,-1*K.1^21,-1*K.1^33,K.1^15,K.1^3,-1*K.1^45,-1*K.1^9,K.1^39,-1*K.1^15,K.1^33,-1*K.1^27,K.1^21,K.1^45,-1*K.1^3,K.1^9,-1*K.1^39,K.1^22,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^14,K.1^38,K.1^10,K.1^46,K.1^38,K.1^46,-1*K.1^10,-1*K.1^26,-1*K.1^14,K.1^34,K.1^22,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^26,K.1^2,K.1^34,K.1^26,K.1^14,-1*K.1^38,-1*K.1^22,-1*K.1^38,K.1^10,-1*K.1^46,-1*K.1^22,-1*K.1^2,-1*K.1^34,-1*K.1^25,K.1^29,K.1^25,-1*K.1^29,-1*K.1^17,K.1^19,-1*K.1^25,-1*K.1^35,K.1^43,K.1^17,-1*K.1^31,K.1^7,K.1^31,K.1^35,-1*K.1^19,-1*K.1^47,K.1^47,K.1^35,-1*K.1^19,-1*K.1^47,K.1^13,-1*K.1^31,K.1^17,K.1^43,K.1^37,-1*K.1^11,-1*K.1^41,K.1,K.1^5,-1*K.1,-1*K.1^23,-1*K.1^7,K.1^11,-1*K.1^43,-1*K.1^41,-1*K.1^37,-1*K.1^13,-1*K.1^13,K.1,K.1^41,-1*K.1^17,K.1^19,K.1^37,K.1^23,-1*K.1^43,K.1^47,-1*K.1,-1*K.1^23,K.1^31,K.1^7,-1*K.1^35,K.1^29,K.1^41,K.1^25,K.1^5,K.1^23,-1*K.1^7,K.1^13,-1*K.1^29,-1*K.1^11,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,K.1^20,-1*K.1^44,K.1^28,K.1^4,-1*K.1^20,K.1^44,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^44,K.1^28,K.1^4,K.1^44,-1*K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^21,K.1^27,-1*K.1^9,K.1^39,-1*K.1^15,K.1^33,K.1^3,-1*K.1^45,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^45,-1*K.1^3,-1*K.1^33,K.1^15,-1*K.1^33,K.1^15,-1*K.1^3,K.1^45,K.1^9,-1*K.1^39,-1*K.1^27,K.1^21,-1*K.1^45,K.1^3,K.1^33,-1*K.1^15,K.1^39,-1*K.1^9,K.1^27,-1*K.1^21,K.1^2,K.1^46,K.1^14,K.1^22,-1*K.1^10,K.1^10,-1*K.1^34,-1*K.1^14,-1*K.1^26,-1*K.1^34,-1*K.1^26,K.1^14,-1*K.1^46,-1*K.1^10,K.1^38,K.1^2,K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^22,K.1^38,K.1^46,K.1^10,K.1^34,-1*K.1^2,K.1^34,-1*K.1^14,K.1^26,-1*K.1^2,K.1^22,-1*K.1^38,-1*K.1^11,-1*K.1^7,K.1^11,K.1^7,-1*K.1^19,-1*K.1^41,-1*K.1^11,K.1^25,-1*K.1^17,K.1^19,-1*K.1^29,-1*K.1^5,K.1^29,-1*K.1^25,K.1^41,-1*K.1^13,K.1^13,-1*K.1^25,K.1^41,-1*K.1^13,-1*K.1^23,-1*K.1^29,K.1^19,-1*K.1^17,K.1^47,-1*K.1,K.1^43,K.1^35,-1*K.1^31,-1*K.1^35,-1*K.1^37,K.1^5,K.1,K.1^17,K.1^43,-1*K.1^47,K.1^23,K.1^23,K.1^35,-1*K.1^43,-1*K.1^19,-1*K.1^41,K.1^47,K.1^37,K.1^17,K.1^13,-1*K.1^35,-1*K.1^37,K.1^29,-1*K.1^5,K.1^25,-1*K.1^7,-1*K.1^43,K.1^11,-1*K.1^31,K.1^37,K.1^5,-1*K.1^23,K.1^7,-1*K.1,K.1,K.1^31,K.1^31,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^44,K.1^28,-1*K.1^4,K.1^44,-1*K.1^28,K.1^44,K.1^4,-1*K.1^20,-1*K.1^44,-1*K.1^4,K.1^20,K.1^28,K.1^20,K.1^27,-1*K.1^21,K.1^39,-1*K.1^9,K.1^33,-1*K.1^15,-1*K.1^45,K.1^3,-1*K.1^27,K.1^21,K.1^9,-1*K.1^39,-1*K.1^3,K.1^45,K.1^15,-1*K.1^33,K.1^15,-1*K.1^33,K.1^45,-1*K.1^3,-1*K.1^39,K.1^9,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^15,K.1^33,-1*K.1^9,K.1^39,-1*K.1^21,K.1^27,-1*K.1^46,-1*K.1^2,-1*K.1^34,-1*K.1^26,K.1^38,-1*K.1^38,K.1^14,K.1^34,K.1^22,K.1^14,K.1^22,-1*K.1^34,K.1^2,K.1^38,-1*K.1^10,-1*K.1^46,-1*K.1^22,K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^38,-1*K.1^14,K.1^46,-1*K.1^14,K.1^34,-1*K.1^22,K.1^46,-1*K.1^26,K.1^10,K.1^37,K.1^41,-1*K.1^37,-1*K.1^41,K.1^29,K.1^7,K.1^37,-1*K.1^23,K.1^31,-1*K.1^29,K.1^19,K.1^43,-1*K.1^19,K.1^23,-1*K.1^7,K.1^35,-1*K.1^35,K.1^23,-1*K.1^7,K.1^35,K.1^25,K.1^19,-1*K.1^29,K.1^31,-1*K.1,K.1^47,-1*K.1^5,-1*K.1^13,K.1^17,K.1^13,K.1^11,-1*K.1^43,-1*K.1^47,-1*K.1^31,-1*K.1^5,K.1,-1*K.1^25,-1*K.1^25,-1*K.1^13,K.1^5,K.1^29,K.1^7,-1*K.1,-1*K.1^11,-1*K.1^31,-1*K.1^35,K.1^13,K.1^11,-1*K.1^19,K.1^43,-1*K.1^23,K.1^41,K.1^5,-1*K.1^37,K.1^17,-1*K.1^11,-1*K.1^43,K.1^25,-1*K.1^41,K.1^47,-1*K.1^47,-1*K.1^17,-1*K.1^17,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,K.1^20,-1*K.1^44,K.1^28,K.1^4,-1*K.1^20,K.1^44,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^44,K.1^28,K.1^4,K.1^44,-1*K.1^28,-1*K.1^20,-1*K.1^28,K.1^21,-1*K.1^27,K.1^9,-1*K.1^39,K.1^15,-1*K.1^33,-1*K.1^3,K.1^45,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^45,K.1^3,K.1^33,-1*K.1^15,K.1^33,-1*K.1^15,K.1^3,-1*K.1^45,-1*K.1^9,K.1^39,K.1^27,-1*K.1^21,K.1^45,-1*K.1^3,-1*K.1^33,K.1^15,-1*K.1^39,K.1^9,-1*K.1^27,K.1^21,K.1^2,K.1^46,K.1^14,K.1^22,-1*K.1^10,K.1^10,-1*K.1^34,-1*K.1^14,-1*K.1^26,-1*K.1^34,-1*K.1^26,K.1^14,-1*K.1^46,-1*K.1^10,K.1^38,K.1^2,K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^22,K.1^38,K.1^46,K.1^10,K.1^34,-1*K.1^2,K.1^34,-1*K.1^14,K.1^26,-1*K.1^2,K.1^22,-1*K.1^38,K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,K.1^19,K.1^41,K.1^11,-1*K.1^25,K.1^17,-1*K.1^19,K.1^29,K.1^5,-1*K.1^29,K.1^25,-1*K.1^41,K.1^13,-1*K.1^13,K.1^25,-1*K.1^41,K.1^13,K.1^23,K.1^29,-1*K.1^19,K.1^17,-1*K.1^47,K.1,-1*K.1^43,-1*K.1^35,K.1^31,K.1^35,K.1^37,-1*K.1^5,-1*K.1,-1*K.1^17,-1*K.1^43,K.1^47,-1*K.1^23,-1*K.1^23,-1*K.1^35,K.1^43,K.1^19,K.1^41,-1*K.1^47,-1*K.1^37,-1*K.1^17,-1*K.1^13,K.1^35,K.1^37,-1*K.1^29,K.1^5,-1*K.1^25,K.1^7,K.1^43,-1*K.1^11,K.1^31,-1*K.1^37,-1*K.1^5,K.1^23,-1*K.1^7,K.1,-1*K.1,-1*K.1^31,-1*K.1^31,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^44,K.1^28,-1*K.1^4,K.1^44,-1*K.1^28,K.1^44,K.1^4,-1*K.1^20,-1*K.1^44,-1*K.1^4,K.1^20,K.1^28,K.1^20,-1*K.1^27,K.1^21,-1*K.1^39,K.1^9,-1*K.1^33,K.1^15,K.1^45,-1*K.1^3,K.1^27,-1*K.1^21,-1*K.1^9,K.1^39,K.1^3,-1*K.1^45,-1*K.1^15,K.1^33,-1*K.1^15,K.1^33,-1*K.1^45,K.1^3,K.1^39,-1*K.1^9,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^15,-1*K.1^33,K.1^9,-1*K.1^39,K.1^21,-1*K.1^27,-1*K.1^46,-1*K.1^2,-1*K.1^34,-1*K.1^26,K.1^38,-1*K.1^38,K.1^14,K.1^34,K.1^22,K.1^14,K.1^22,-1*K.1^34,K.1^2,K.1^38,-1*K.1^10,-1*K.1^46,-1*K.1^22,K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^38,-1*K.1^14,K.1^46,-1*K.1^14,K.1^34,-1*K.1^22,K.1^46,-1*K.1^26,K.1^10,-1*K.1^37,-1*K.1^41,K.1^37,K.1^41,-1*K.1^29,-1*K.1^7,-1*K.1^37,K.1^23,-1*K.1^31,K.1^29,-1*K.1^19,-1*K.1^43,K.1^19,-1*K.1^23,K.1^7,-1*K.1^35,K.1^35,-1*K.1^23,K.1^7,-1*K.1^35,-1*K.1^25,-1*K.1^19,K.1^29,-1*K.1^31,K.1,-1*K.1^47,K.1^5,K.1^13,-1*K.1^17,-1*K.1^13,-1*K.1^11,K.1^43,K.1^47,K.1^31,K.1^5,-1*K.1,K.1^25,K.1^25,K.1^13,-1*K.1^5,-1*K.1^29,-1*K.1^7,K.1,K.1^11,K.1^31,K.1^35,-1*K.1^13,-1*K.1^11,K.1^19,-1*K.1^43,K.1^23,-1*K.1^41,-1*K.1^5,K.1^37,-1*K.1^17,K.1^11,K.1^43,-1*K.1^25,K.1^41,-1*K.1^47,K.1^47,K.1^17,K.1^17,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^20,-1*K.1^44,K.1^28,K.1^4,-1*K.1^20,K.1^44,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^44,K.1^28,K.1^4,K.1^44,-1*K.1^28,-1*K.1^20,-1*K.1^28,K.1^45,-1*K.1^3,K.1^33,-1*K.1^15,-1*K.1^39,K.1^9,K.1^27,-1*K.1^21,-1*K.1^45,K.1^3,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^9,K.1^39,-1*K.1^9,K.1^39,-1*K.1^27,K.1^21,-1*K.1^33,K.1^15,K.1^3,-1*K.1^45,-1*K.1^21,K.1^27,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,-1*K.1^3,K.1^45,-1*K.1^2,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,K.1^34,K.1^14,K.1^26,K.1^34,K.1^26,-1*K.1^14,K.1^46,K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^22,K.1^38,K.1^46,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^10,-1*K.1^34,K.1^2,-1*K.1^34,K.1^14,-1*K.1^26,K.1^2,-1*K.1^22,K.1^38,-1*K.1^35,-1*K.1^31,K.1^35,K.1^31,-1*K.1^43,-1*K.1^17,-1*K.1^35,K.1,K.1^41,K.1^43,-1*K.1^5,K.1^29,K.1^5,-1*K.1,K.1^17,K.1^37,-1*K.1^37,-1*K.1,K.1^17,K.1^37,-1*K.1^47,-1*K.1^5,K.1^43,K.1^41,-1*K.1^23,K.1^25,-1*K.1^19,-1*K.1^11,K.1^7,K.1^11,-1*K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^41,-1*K.1^19,K.1^23,K.1^47,K.1^47,-1*K.1^11,K.1^19,-1*K.1^43,-1*K.1^17,-1*K.1^23,K.1^13,-1*K.1^41,-1*K.1^37,K.1^11,-1*K.1^13,K.1^5,K.1^29,K.1,-1*K.1^31,K.1^19,K.1^35,K.1^7,K.1^13,-1*K.1^29,-1*K.1^47,K.1^31,K.1^25,-1*K.1^25,-1*K.1^7,-1*K.1^7,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^44,K.1^28,-1*K.1^4,K.1^44,-1*K.1^28,K.1^44,K.1^4,-1*K.1^20,-1*K.1^44,-1*K.1^4,K.1^20,K.1^28,K.1^20,-1*K.1^3,K.1^45,-1*K.1^15,K.1^33,K.1^9,-1*K.1^39,-1*K.1^21,K.1^27,K.1^3,-1*K.1^45,-1*K.1^33,K.1^15,-1*K.1^27,K.1^21,K.1^39,-1*K.1^9,K.1^39,-1*K.1^9,K.1^21,-1*K.1^27,K.1^15,-1*K.1^33,-1*K.1^45,K.1^3,K.1^27,-1*K.1^21,-1*K.1^39,K.1^9,K.1^33,-1*K.1^15,K.1^45,-1*K.1^3,K.1^46,K.1^2,K.1^34,K.1^26,-1*K.1^38,K.1^38,-1*K.1^14,-1*K.1^34,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^34,-1*K.1^2,-1*K.1^38,K.1^10,K.1^46,K.1^22,-1*K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^10,K.1^2,K.1^38,K.1^14,-1*K.1^46,K.1^14,-1*K.1^34,K.1^22,-1*K.1^46,K.1^26,-1*K.1^10,K.1^13,K.1^17,-1*K.1^13,-1*K.1^17,K.1^5,K.1^31,K.1^13,-1*K.1^47,-1*K.1^7,-1*K.1^5,K.1^43,-1*K.1^19,-1*K.1^43,K.1^47,-1*K.1^31,-1*K.1^11,K.1^11,K.1^47,-1*K.1^31,-1*K.1^11,K.1,K.1^43,-1*K.1^5,-1*K.1^7,K.1^25,-1*K.1^23,K.1^29,K.1^37,-1*K.1^41,-1*K.1^37,K.1^35,K.1^19,K.1^23,K.1^7,K.1^29,-1*K.1^25,-1*K.1,-1*K.1,K.1^37,-1*K.1^29,K.1^5,K.1^31,K.1^25,-1*K.1^35,K.1^7,K.1^11,-1*K.1^37,K.1^35,-1*K.1^43,-1*K.1^19,-1*K.1^47,K.1^17,-1*K.1^29,-1*K.1^13,-1*K.1^41,-1*K.1^35,K.1^19,K.1,-1*K.1^17,-1*K.1^23,K.1^23,K.1^41,K.1^41,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^40,-1*K.1^8,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^20,-1*K.1^44,K.1^28,K.1^4,-1*K.1^20,K.1^44,-1*K.1^4,K.1^20,-1*K.1^4,-1*K.1^44,K.1^28,K.1^4,K.1^44,-1*K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^45,K.1^3,-1*K.1^33,K.1^15,K.1^39,-1*K.1^9,-1*K.1^27,K.1^21,K.1^45,-1*K.1^3,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^9,-1*K.1^39,K.1^9,-1*K.1^39,K.1^27,-1*K.1^21,K.1^33,-1*K.1^15,-1*K.1^3,K.1^45,K.1^21,-1*K.1^27,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,K.1^3,-1*K.1^45,-1*K.1^2,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,K.1^34,K.1^14,K.1^26,K.1^34,K.1^26,-1*K.1^14,K.1^46,K.1^10,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^22,K.1^38,K.1^46,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^10,-1*K.1^34,K.1^2,-1*K.1^34,K.1^14,-1*K.1^26,K.1^2,-1*K.1^22,K.1^38,K.1^35,K.1^31,-1*K.1^35,-1*K.1^31,K.1^43,K.1^17,K.1^35,-1*K.1,-1*K.1^41,-1*K.1^43,K.1^5,-1*K.1^29,-1*K.1^5,K.1,-1*K.1^17,-1*K.1^37,K.1^37,K.1,-1*K.1^17,-1*K.1^37,K.1^47,K.1^5,-1*K.1^43,-1*K.1^41,K.1^23,-1*K.1^25,K.1^19,K.1^11,-1*K.1^7,-1*K.1^11,K.1^13,K.1^29,K.1^25,K.1^41,K.1^19,-1*K.1^23,-1*K.1^47,-1*K.1^47,K.1^11,-1*K.1^19,K.1^43,K.1^17,K.1^23,-1*K.1^13,K.1^41,K.1^37,-1*K.1^11,K.1^13,-1*K.1^5,-1*K.1^29,-1*K.1,K.1^31,-1*K.1^19,-1*K.1^35,-1*K.1^7,-1*K.1^13,K.1^29,K.1^47,-1*K.1^31,-1*K.1^25,K.1^25,K.1^7,K.1^7,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^8,K.1^40,-1*K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^8,K.1^40,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^28,K.1^4,-1*K.1^20,-1*K.1^44,K.1^28,-1*K.1^4,K.1^44,-1*K.1^28,K.1^44,K.1^4,-1*K.1^20,-1*K.1^44,-1*K.1^4,K.1^20,K.1^28,K.1^20,K.1^3,-1*K.1^45,K.1^15,-1*K.1^33,-1*K.1^9,K.1^39,K.1^21,-1*K.1^27,-1*K.1^3,K.1^45,K.1^33,-1*K.1^15,K.1^27,-1*K.1^21,-1*K.1^39,K.1^9,-1*K.1^39,K.1^9,-1*K.1^21,K.1^27,-1*K.1^15,K.1^33,K.1^45,-1*K.1^3,-1*K.1^27,K.1^21,K.1^39,-1*K.1^9,-1*K.1^33,K.1^15,-1*K.1^45,K.1^3,K.1^46,K.1^2,K.1^34,K.1^26,-1*K.1^38,K.1^38,-1*K.1^14,-1*K.1^34,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^34,-1*K.1^2,-1*K.1^38,K.1^10,K.1^46,K.1^22,-1*K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^10,K.1^2,K.1^38,K.1^14,-1*K.1^46,K.1^14,-1*K.1^34,K.1^22,-1*K.1^46,K.1^26,-1*K.1^10,-1*K.1^13,-1*K.1^17,K.1^13,K.1^17,-1*K.1^5,-1*K.1^31,-1*K.1^13,K.1^47,K.1^7,K.1^5,-1*K.1^43,K.1^19,K.1^43,-1*K.1^47,K.1^31,K.1^11,-1*K.1^11,-1*K.1^47,K.1^31,K.1^11,-1*K.1,-1*K.1^43,K.1^5,K.1^7,-1*K.1^25,K.1^23,-1*K.1^29,-1*K.1^37,K.1^41,K.1^37,-1*K.1^35,-1*K.1^19,-1*K.1^23,-1*K.1^7,-1*K.1^29,K.1^25,K.1,K.1,-1*K.1^37,K.1^29,-1*K.1^5,-1*K.1^31,-1*K.1^25,K.1^35,-1*K.1^7,-1*K.1^11,K.1^37,-1*K.1^35,K.1^43,K.1^19,K.1^47,-1*K.1^17,K.1^29,K.1^13,K.1^41,K.1^35,-1*K.1^19,-1*K.1,K.1^17,K.1^23,-1*K.1^23,-1*K.1^41,-1*K.1^41,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^20,K.1^28,-1*K.1^44,K.1^28,K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^4,K.1^44,K.1^4,-1*K.1^15,K.1^33,K.1^27,-1*K.1^21,K.1^45,-1*K.1^3,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^3,-1*K.1^45,K.1^3,-1*K.1^45,K.1^9,-1*K.1^39,-1*K.1^27,K.1^21,-1*K.1^33,K.1^15,K.1^39,-1*K.1^9,-1*K.1^3,K.1^45,-1*K.1^21,K.1^27,K.1^33,-1*K.1^15,K.1^38,K.1^10,-1*K.1^26,K.1^34,K.1^46,-1*K.1^46,K.1^22,K.1^26,-1*K.1^14,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^46,-1*K.1^2,K.1^38,K.1^14,-1*K.1^34,K.1^2,-1*K.1^10,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^46,-1*K.1^22,-1*K.1^38,-1*K.1^22,K.1^26,K.1^14,-1*K.1^38,K.1^34,K.1^2,-1*K.1^17,-1*K.1^37,K.1^17,K.1^37,K.1^25,-1*K.1^11,-1*K.1^17,-1*K.1^43,-1*K.1^35,-1*K.1^25,K.1^23,K.1^47,-1*K.1^23,K.1^43,K.1^11,K.1^7,-1*K.1^7,K.1^43,K.1^11,K.1^7,K.1^5,K.1^23,-1*K.1^25,-1*K.1^35,K.1^29,-1*K.1^19,-1*K.1,-1*K.1^41,-1*K.1^13,K.1^41,-1*K.1^31,-1*K.1^47,K.1^19,K.1^35,-1*K.1,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^41,K.1,K.1^25,-1*K.1^11,K.1^29,K.1^31,K.1^35,-1*K.1^7,K.1^41,-1*K.1^31,-1*K.1^23,K.1^47,-1*K.1^43,-1*K.1^37,K.1,K.1^17,-1*K.1^13,K.1^31,-1*K.1^47,K.1^5,K.1^37,-1*K.1^19,K.1^19,K.1^13,K.1^13,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,K.1^4,-1*K.1^28,K.1^44,K.1^20,-1*K.1^4,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^44,K.1^20,K.1^28,-1*K.1^44,-1*K.1^4,-1*K.1^44,K.1^33,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^39,-1*K.1^9,-1*K.1^33,K.1^15,-1*K.1^27,K.1^21,K.1^9,-1*K.1^39,-1*K.1^45,K.1^3,-1*K.1^45,K.1^3,-1*K.1^39,K.1^9,K.1^21,-1*K.1^27,K.1^15,-1*K.1^33,-1*K.1^9,K.1^39,K.1^45,-1*K.1^3,K.1^27,-1*K.1^21,-1*K.1^15,K.1^33,-1*K.1^10,-1*K.1^38,K.1^22,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^34,-1*K.1^26,K.1^34,K.1^22,K.1^38,-1*K.1^2,K.1^46,-1*K.1^10,-1*K.1^34,K.1^14,-1*K.1^46,K.1^38,K.1^14,K.1^46,-1*K.1^38,K.1^2,K.1^26,K.1^10,K.1^26,-1*K.1^22,-1*K.1^34,K.1^10,-1*K.1^14,-1*K.1^46,K.1^31,K.1^11,-1*K.1^31,-1*K.1^11,-1*K.1^23,K.1^37,K.1^31,K.1^5,K.1^13,K.1^23,-1*K.1^25,-1*K.1,K.1^25,-1*K.1^5,-1*K.1^37,-1*K.1^41,K.1^41,-1*K.1^5,-1*K.1^37,-1*K.1^41,-1*K.1^43,-1*K.1^25,K.1^23,K.1^13,-1*K.1^19,K.1^29,K.1^47,K.1^7,K.1^35,-1*K.1^7,K.1^17,K.1,-1*K.1^29,-1*K.1^13,K.1^47,K.1^19,K.1^43,K.1^43,K.1^7,-1*K.1^47,-1*K.1^23,K.1^37,-1*K.1^19,-1*K.1^17,-1*K.1^13,K.1^41,-1*K.1^7,K.1^17,K.1^25,-1*K.1,K.1^5,K.1^11,-1*K.1^47,-1*K.1^31,K.1^35,-1*K.1^17,K.1,-1*K.1^43,-1*K.1^11,K.1^29,-1*K.1^29,-1*K.1^35,-1*K.1^35,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^20,K.1^28,-1*K.1^44,K.1^28,K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^4,K.1^44,K.1^4,K.1^15,-1*K.1^33,-1*K.1^27,K.1^21,-1*K.1^45,K.1^3,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^3,K.1^45,-1*K.1^3,K.1^45,-1*K.1^9,K.1^39,K.1^27,-1*K.1^21,K.1^33,-1*K.1^15,-1*K.1^39,K.1^9,K.1^3,-1*K.1^45,K.1^21,-1*K.1^27,-1*K.1^33,K.1^15,K.1^38,K.1^10,-1*K.1^26,K.1^34,K.1^46,-1*K.1^46,K.1^22,K.1^26,-1*K.1^14,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^46,-1*K.1^2,K.1^38,K.1^14,-1*K.1^34,K.1^2,-1*K.1^10,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^46,-1*K.1^22,-1*K.1^38,-1*K.1^22,K.1^26,K.1^14,-1*K.1^38,K.1^34,K.1^2,K.1^17,K.1^37,-1*K.1^17,-1*K.1^37,-1*K.1^25,K.1^11,K.1^17,K.1^43,K.1^35,K.1^25,-1*K.1^23,-1*K.1^47,K.1^23,-1*K.1^43,-1*K.1^11,-1*K.1^7,K.1^7,-1*K.1^43,-1*K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^23,K.1^25,K.1^35,-1*K.1^29,K.1^19,K.1,K.1^41,K.1^13,-1*K.1^41,K.1^31,K.1^47,-1*K.1^19,-1*K.1^35,K.1,K.1^29,K.1^5,K.1^5,K.1^41,-1*K.1,-1*K.1^25,K.1^11,-1*K.1^29,-1*K.1^31,-1*K.1^35,K.1^7,-1*K.1^41,K.1^31,K.1^23,-1*K.1^47,K.1^43,K.1^37,-1*K.1,-1*K.1^17,K.1^13,-1*K.1^31,K.1^47,-1*K.1^5,-1*K.1^37,K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1^13,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,K.1^4,-1*K.1^28,K.1^44,K.1^20,-1*K.1^4,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^44,K.1^20,K.1^28,-1*K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^33,K.1^15,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^39,K.1^9,K.1^33,-1*K.1^15,K.1^27,-1*K.1^21,-1*K.1^9,K.1^39,K.1^45,-1*K.1^3,K.1^45,-1*K.1^3,K.1^39,-1*K.1^9,-1*K.1^21,K.1^27,-1*K.1^15,K.1^33,K.1^9,-1*K.1^39,-1*K.1^45,K.1^3,-1*K.1^27,K.1^21,K.1^15,-1*K.1^33,-1*K.1^10,-1*K.1^38,K.1^22,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^34,-1*K.1^26,K.1^34,K.1^22,K.1^38,-1*K.1^2,K.1^46,-1*K.1^10,-1*K.1^34,K.1^14,-1*K.1^46,K.1^38,K.1^14,K.1^46,-1*K.1^38,K.1^2,K.1^26,K.1^10,K.1^26,-1*K.1^22,-1*K.1^34,K.1^10,-1*K.1^14,-1*K.1^46,-1*K.1^31,-1*K.1^11,K.1^31,K.1^11,K.1^23,-1*K.1^37,-1*K.1^31,-1*K.1^5,-1*K.1^13,-1*K.1^23,K.1^25,K.1,-1*K.1^25,K.1^5,K.1^37,K.1^41,-1*K.1^41,K.1^5,K.1^37,K.1^41,K.1^43,K.1^25,-1*K.1^23,-1*K.1^13,K.1^19,-1*K.1^29,-1*K.1^47,-1*K.1^7,-1*K.1^35,K.1^7,-1*K.1^17,-1*K.1,K.1^29,K.1^13,-1*K.1^47,-1*K.1^19,-1*K.1^43,-1*K.1^43,-1*K.1^7,K.1^47,K.1^23,-1*K.1^37,K.1^19,K.1^17,K.1^13,-1*K.1^41,K.1^7,-1*K.1^17,-1*K.1^25,K.1,-1*K.1^5,-1*K.1^11,K.1^47,K.1^31,-1*K.1^35,K.1^17,-1*K.1,K.1^43,K.1^11,-1*K.1^29,K.1^29,K.1^35,K.1^35,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^20,K.1^28,-1*K.1^44,K.1^28,K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^4,K.1^44,K.1^4,K.1^39,-1*K.1^9,K.1^3,-1*K.1^45,-1*K.1^21,K.1^27,-1*K.1^33,K.1^15,-1*K.1^39,K.1^9,K.1^45,-1*K.1^3,-1*K.1^15,K.1^33,-1*K.1^27,K.1^21,-1*K.1^27,K.1^21,K.1^33,-1*K.1^15,-1*K.1^3,K.1^45,K.1^9,-1*K.1^39,K.1^15,-1*K.1^33,K.1^27,-1*K.1^21,-1*K.1^45,K.1^3,-1*K.1^9,K.1^39,-1*K.1^38,-1*K.1^10,K.1^26,-1*K.1^34,-1*K.1^46,K.1^46,-1*K.1^22,-1*K.1^26,K.1^14,-1*K.1^22,K.1^14,K.1^26,K.1^10,-1*K.1^46,K.1^2,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^2,K.1^10,K.1^34,K.1^2,-1*K.1^10,K.1^46,K.1^22,K.1^38,K.1^22,-1*K.1^26,-1*K.1^14,K.1^38,-1*K.1^34,-1*K.1^2,-1*K.1^41,K.1^13,K.1^41,-1*K.1^13,-1*K.1,K.1^35,-1*K.1^41,-1*K.1^19,-1*K.1^11,K.1,-1*K.1^47,K.1^23,K.1^47,K.1^19,-1*K.1^35,-1*K.1^31,K.1^31,K.1^19,-1*K.1^35,-1*K.1^31,K.1^29,-1*K.1^47,K.1,-1*K.1^11,-1*K.1^5,K.1^43,-1*K.1^25,K.1^17,-1*K.1^37,-1*K.1^17,-1*K.1^7,-1*K.1^23,-1*K.1^43,K.1^11,-1*K.1^25,K.1^5,-1*K.1^29,-1*K.1^29,K.1^17,K.1^25,-1*K.1,K.1^35,-1*K.1^5,K.1^7,K.1^11,K.1^31,-1*K.1^17,-1*K.1^7,K.1^47,K.1^23,-1*K.1^19,K.1^13,K.1^25,K.1^41,-1*K.1^37,K.1^7,-1*K.1^23,K.1^29,-1*K.1^13,K.1^43,-1*K.1^43,K.1^37,K.1^37,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^4,-1*K.1^28,K.1^44,K.1^20,-1*K.1^4,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^44,K.1^20,K.1^28,-1*K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^9,K.1^39,-1*K.1^45,K.1^3,K.1^27,-1*K.1^21,K.1^15,-1*K.1^33,K.1^9,-1*K.1^39,-1*K.1^3,K.1^45,K.1^33,-1*K.1^15,K.1^21,-1*K.1^27,K.1^21,-1*K.1^27,-1*K.1^15,K.1^33,K.1^45,-1*K.1^3,-1*K.1^39,K.1^9,-1*K.1^33,K.1^15,-1*K.1^21,K.1^27,K.1^3,-1*K.1^45,K.1^39,-1*K.1^9,K.1^10,K.1^38,-1*K.1^22,K.1^14,K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^34,K.1^26,-1*K.1^34,-1*K.1^22,-1*K.1^38,K.1^2,-1*K.1^46,K.1^10,K.1^34,-1*K.1^14,K.1^46,-1*K.1^38,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^10,-1*K.1^26,K.1^22,K.1^34,-1*K.1^10,K.1^14,K.1^46,K.1^7,-1*K.1^35,-1*K.1^7,K.1^35,K.1^47,-1*K.1^13,K.1^7,K.1^29,K.1^37,-1*K.1^47,K.1,-1*K.1^25,-1*K.1,-1*K.1^29,K.1^13,K.1^17,-1*K.1^17,-1*K.1^29,K.1^13,K.1^17,-1*K.1^19,K.1,-1*K.1^47,K.1^37,K.1^43,-1*K.1^5,K.1^23,-1*K.1^31,K.1^11,K.1^31,K.1^41,K.1^25,K.1^5,-1*K.1^37,K.1^23,-1*K.1^43,K.1^19,K.1^19,-1*K.1^31,-1*K.1^23,K.1^47,-1*K.1^13,K.1^43,-1*K.1^41,-1*K.1^37,-1*K.1^17,K.1^31,K.1^41,-1*K.1,-1*K.1^25,K.1^29,-1*K.1^35,-1*K.1^23,-1*K.1^7,K.1^11,-1*K.1^41,K.1^25,-1*K.1^19,K.1^35,-1*K.1^5,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^20,K.1^28,-1*K.1^44,K.1^28,K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^20,K.1^4,K.1^44,K.1^4,-1*K.1^39,K.1^9,-1*K.1^3,K.1^45,K.1^21,-1*K.1^27,K.1^33,-1*K.1^15,K.1^39,-1*K.1^9,-1*K.1^45,K.1^3,K.1^15,-1*K.1^33,K.1^27,-1*K.1^21,K.1^27,-1*K.1^21,-1*K.1^33,K.1^15,K.1^3,-1*K.1^45,-1*K.1^9,K.1^39,-1*K.1^15,K.1^33,-1*K.1^27,K.1^21,K.1^45,-1*K.1^3,K.1^9,-1*K.1^39,-1*K.1^38,-1*K.1^10,K.1^26,-1*K.1^34,-1*K.1^46,K.1^46,-1*K.1^22,-1*K.1^26,K.1^14,-1*K.1^22,K.1^14,K.1^26,K.1^10,-1*K.1^46,K.1^2,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^2,K.1^10,K.1^34,K.1^2,-1*K.1^10,K.1^46,K.1^22,K.1^38,K.1^22,-1*K.1^26,-1*K.1^14,K.1^38,-1*K.1^34,-1*K.1^2,K.1^41,-1*K.1^13,-1*K.1^41,K.1^13,K.1,-1*K.1^35,K.1^41,K.1^19,K.1^11,-1*K.1,K.1^47,-1*K.1^23,-1*K.1^47,-1*K.1^19,K.1^35,K.1^31,-1*K.1^31,-1*K.1^19,K.1^35,K.1^31,-1*K.1^29,K.1^47,-1*K.1,K.1^11,K.1^5,-1*K.1^43,K.1^25,-1*K.1^17,K.1^37,K.1^17,K.1^7,K.1^23,K.1^43,-1*K.1^11,K.1^25,-1*K.1^5,K.1^29,K.1^29,-1*K.1^17,-1*K.1^25,K.1,-1*K.1^35,K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^31,K.1^17,K.1^7,-1*K.1^47,-1*K.1^23,K.1^19,-1*K.1^13,-1*K.1^25,-1*K.1^41,K.1^37,-1*K.1^7,K.1^23,-1*K.1^29,K.1^13,-1*K.1^43,K.1^43,-1*K.1^37,-1*K.1^37,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^4,-1*K.1^28,K.1^44,K.1^20,-1*K.1^4,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^44,K.1^20,K.1^28,-1*K.1^44,-1*K.1^4,-1*K.1^44,K.1^9,-1*K.1^39,K.1^45,-1*K.1^3,-1*K.1^27,K.1^21,-1*K.1^15,K.1^33,-1*K.1^9,K.1^39,K.1^3,-1*K.1^45,-1*K.1^33,K.1^15,-1*K.1^21,K.1^27,-1*K.1^21,K.1^27,K.1^15,-1*K.1^33,-1*K.1^45,K.1^3,K.1^39,-1*K.1^9,K.1^33,-1*K.1^15,K.1^21,-1*K.1^27,-1*K.1^3,K.1^45,-1*K.1^39,K.1^9,K.1^10,K.1^38,-1*K.1^22,K.1^14,K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^34,K.1^26,-1*K.1^34,-1*K.1^22,-1*K.1^38,K.1^2,-1*K.1^46,K.1^10,K.1^34,-1*K.1^14,K.1^46,-1*K.1^38,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^2,-1*K.1^26,-1*K.1^10,-1*K.1^26,K.1^22,K.1^34,-1*K.1^10,K.1^14,K.1^46,-1*K.1^7,K.1^35,K.1^7,-1*K.1^35,-1*K.1^47,K.1^13,-1*K.1^7,-1*K.1^29,-1*K.1^37,K.1^47,-1*K.1,K.1^25,K.1,K.1^29,-1*K.1^13,-1*K.1^17,K.1^17,K.1^29,-1*K.1^13,-1*K.1^17,K.1^19,-1*K.1,K.1^47,-1*K.1^37,-1*K.1^43,K.1^5,-1*K.1^23,K.1^31,-1*K.1^11,-1*K.1^31,-1*K.1^41,-1*K.1^25,-1*K.1^5,K.1^37,-1*K.1^23,K.1^43,-1*K.1^19,-1*K.1^19,K.1^31,K.1^23,-1*K.1^47,K.1^13,-1*K.1^43,K.1^41,K.1^37,K.1^17,-1*K.1^31,-1*K.1^41,K.1,K.1^25,-1*K.1^29,K.1^35,K.1^23,K.1^7,-1*K.1^11,K.1^41,-1*K.1^25,K.1^19,-1*K.1^35,K.1^5,-1*K.1^5,K.1^11,K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^44,-1*K.1^20,K.1^4,K.1^28,-1*K.1^44,K.1^20,-1*K.1^28,K.1^44,-1*K.1^28,-1*K.1^20,K.1^4,K.1^28,K.1^20,-1*K.1^4,-1*K.1^44,-1*K.1^4,K.1^27,-1*K.1^21,K.1^39,-1*K.1^9,K.1^33,-1*K.1^15,-1*K.1^45,K.1^3,-1*K.1^27,K.1^21,K.1^9,-1*K.1^39,-1*K.1^3,K.1^45,K.1^15,-1*K.1^33,K.1^15,-1*K.1^33,K.1^45,-1*K.1^3,-1*K.1^39,K.1^9,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^15,K.1^33,-1*K.1^9,K.1^39,-1*K.1^21,K.1^27,-1*K.1^14,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^22,K.1^22,K.1^46,K.1^2,-1*K.1^38,K.1^46,-1*K.1^38,-1*K.1^2,K.1^34,-1*K.1^22,K.1^26,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^26,K.1^34,-1*K.1^10,K.1^26,-1*K.1^34,K.1^22,-1*K.1^46,K.1^14,-1*K.1^46,K.1^2,K.1^38,K.1^14,K.1^10,-1*K.1^26,K.1^5,-1*K.1^25,-1*K.1^5,K.1^25,-1*K.1^13,-1*K.1^23,K.1^5,K.1^7,-1*K.1^47,K.1^13,-1*K.1^35,K.1^11,K.1^35,-1*K.1^7,K.1^23,-1*K.1^19,K.1^19,-1*K.1^7,K.1^23,-1*K.1^19,-1*K.1^41,-1*K.1^35,K.1^13,-1*K.1^47,K.1^17,-1*K.1^31,-1*K.1^37,K.1^29,-1*K.1,-1*K.1^29,K.1^43,-1*K.1^11,K.1^31,K.1^47,-1*K.1^37,-1*K.1^17,K.1^41,K.1^41,K.1^29,K.1^37,-1*K.1^13,-1*K.1^23,K.1^17,-1*K.1^43,K.1^47,K.1^19,-1*K.1^29,K.1^43,K.1^35,K.1^11,K.1^7,-1*K.1^25,K.1^37,-1*K.1^5,-1*K.1,-1*K.1^43,-1*K.1^11,-1*K.1^41,K.1^25,-1*K.1^31,K.1^31,K.1,K.1,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^4,K.1^28,-1*K.1^44,-1*K.1^20,K.1^4,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^44,-1*K.1^20,-1*K.1^28,K.1^44,K.1^4,K.1^44,-1*K.1^21,K.1^27,-1*K.1^9,K.1^39,-1*K.1^15,K.1^33,K.1^3,-1*K.1^45,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^45,-1*K.1^3,-1*K.1^33,K.1^15,-1*K.1^33,K.1^15,-1*K.1^3,K.1^45,K.1^9,-1*K.1^39,-1*K.1^27,K.1^21,-1*K.1^45,K.1^3,K.1^33,-1*K.1^15,K.1^39,-1*K.1^9,K.1^27,-1*K.1^21,K.1^34,K.1^14,K.1^46,-1*K.1^38,K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^10,-1*K.1^2,K.1^10,K.1^46,-1*K.1^14,K.1^26,-1*K.1^22,K.1^34,-1*K.1^10,K.1^38,K.1^22,-1*K.1^14,K.1^38,-1*K.1^22,K.1^14,-1*K.1^26,K.1^2,-1*K.1^34,K.1^2,-1*K.1^46,-1*K.1^10,-1*K.1^34,-1*K.1^38,K.1^22,-1*K.1^43,K.1^23,K.1^43,-1*K.1^23,K.1^35,K.1^25,-1*K.1^43,-1*K.1^41,K.1,-1*K.1^35,K.1^13,-1*K.1^37,-1*K.1^13,K.1^41,-1*K.1^25,K.1^29,-1*K.1^29,K.1^41,-1*K.1^25,K.1^29,K.1^7,K.1^13,-1*K.1^35,K.1,-1*K.1^31,K.1^17,K.1^11,-1*K.1^19,K.1^47,K.1^19,-1*K.1^5,K.1^37,-1*K.1^17,-1*K.1,K.1^11,K.1^31,-1*K.1^7,-1*K.1^7,-1*K.1^19,-1*K.1^11,K.1^35,K.1^25,-1*K.1^31,K.1^5,-1*K.1,-1*K.1^29,K.1^19,-1*K.1^5,-1*K.1^13,-1*K.1^37,-1*K.1^41,K.1^23,-1*K.1^11,K.1^43,K.1^47,K.1^5,K.1^37,K.1^7,-1*K.1^23,K.1^17,-1*K.1^17,-1*K.1^47,-1*K.1^47,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^44,-1*K.1^20,K.1^4,K.1^28,-1*K.1^44,K.1^20,-1*K.1^28,K.1^44,-1*K.1^28,-1*K.1^20,K.1^4,K.1^28,K.1^20,-1*K.1^4,-1*K.1^44,-1*K.1^4,-1*K.1^27,K.1^21,-1*K.1^39,K.1^9,-1*K.1^33,K.1^15,K.1^45,-1*K.1^3,K.1^27,-1*K.1^21,-1*K.1^9,K.1^39,K.1^3,-1*K.1^45,-1*K.1^15,K.1^33,-1*K.1^15,K.1^33,-1*K.1^45,K.1^3,K.1^39,-1*K.1^9,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^15,-1*K.1^33,K.1^9,-1*K.1^39,K.1^21,-1*K.1^27,-1*K.1^14,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^22,K.1^22,K.1^46,K.1^2,-1*K.1^38,K.1^46,-1*K.1^38,-1*K.1^2,K.1^34,-1*K.1^22,K.1^26,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^26,K.1^34,-1*K.1^10,K.1^26,-1*K.1^34,K.1^22,-1*K.1^46,K.1^14,-1*K.1^46,K.1^2,K.1^38,K.1^14,K.1^10,-1*K.1^26,-1*K.1^5,K.1^25,K.1^5,-1*K.1^25,K.1^13,K.1^23,-1*K.1^5,-1*K.1^7,K.1^47,-1*K.1^13,K.1^35,-1*K.1^11,-1*K.1^35,K.1^7,-1*K.1^23,K.1^19,-1*K.1^19,K.1^7,-1*K.1^23,K.1^19,K.1^41,K.1^35,-1*K.1^13,K.1^47,-1*K.1^17,K.1^31,K.1^37,-1*K.1^29,K.1,K.1^29,-1*K.1^43,K.1^11,-1*K.1^31,-1*K.1^47,K.1^37,K.1^17,-1*K.1^41,-1*K.1^41,-1*K.1^29,-1*K.1^37,K.1^13,K.1^23,-1*K.1^17,K.1^43,-1*K.1^47,-1*K.1^19,K.1^29,-1*K.1^43,-1*K.1^35,-1*K.1^11,-1*K.1^7,K.1^25,-1*K.1^37,K.1^5,K.1,K.1^43,K.1^11,K.1^41,-1*K.1^25,K.1^31,-1*K.1^31,-1*K.1,-1*K.1,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^4,K.1^28,-1*K.1^44,-1*K.1^20,K.1^4,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^44,-1*K.1^20,-1*K.1^28,K.1^44,K.1^4,K.1^44,K.1^21,-1*K.1^27,K.1^9,-1*K.1^39,K.1^15,-1*K.1^33,-1*K.1^3,K.1^45,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^45,K.1^3,K.1^33,-1*K.1^15,K.1^33,-1*K.1^15,K.1^3,-1*K.1^45,-1*K.1^9,K.1^39,K.1^27,-1*K.1^21,K.1^45,-1*K.1^3,-1*K.1^33,K.1^15,-1*K.1^39,K.1^9,-1*K.1^27,K.1^21,K.1^34,K.1^14,K.1^46,-1*K.1^38,K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^10,-1*K.1^2,K.1^10,K.1^46,-1*K.1^14,K.1^26,-1*K.1^22,K.1^34,-1*K.1^10,K.1^38,K.1^22,-1*K.1^14,K.1^38,-1*K.1^22,K.1^14,-1*K.1^26,K.1^2,-1*K.1^34,K.1^2,-1*K.1^46,-1*K.1^10,-1*K.1^34,-1*K.1^38,K.1^22,K.1^43,-1*K.1^23,-1*K.1^43,K.1^23,-1*K.1^35,-1*K.1^25,K.1^43,K.1^41,-1*K.1,K.1^35,-1*K.1^13,K.1^37,K.1^13,-1*K.1^41,K.1^25,-1*K.1^29,K.1^29,-1*K.1^41,K.1^25,-1*K.1^29,-1*K.1^7,-1*K.1^13,K.1^35,-1*K.1,K.1^31,-1*K.1^17,-1*K.1^11,K.1^19,-1*K.1^47,-1*K.1^19,K.1^5,-1*K.1^37,K.1^17,K.1,-1*K.1^11,-1*K.1^31,K.1^7,K.1^7,K.1^19,K.1^11,-1*K.1^35,-1*K.1^25,K.1^31,-1*K.1^5,K.1,K.1^29,-1*K.1^19,K.1^5,K.1^13,K.1^37,K.1^41,-1*K.1^23,K.1^11,-1*K.1^43,-1*K.1^47,-1*K.1^5,-1*K.1^37,-1*K.1^7,K.1^23,-1*K.1^17,K.1^17,K.1^47,K.1^47,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,K.1^44,-1*K.1^20,K.1^4,K.1^28,-1*K.1^44,K.1^20,-1*K.1^28,K.1^44,-1*K.1^28,-1*K.1^20,K.1^4,K.1^28,K.1^20,-1*K.1^4,-1*K.1^44,-1*K.1^4,-1*K.1^3,K.1^45,-1*K.1^15,K.1^33,K.1^9,-1*K.1^39,-1*K.1^21,K.1^27,K.1^3,-1*K.1^45,-1*K.1^33,K.1^15,-1*K.1^27,K.1^21,K.1^39,-1*K.1^9,K.1^39,-1*K.1^9,K.1^21,-1*K.1^27,K.1^15,-1*K.1^33,-1*K.1^45,K.1^3,K.1^27,-1*K.1^21,-1*K.1^39,K.1^9,K.1^33,-1*K.1^15,K.1^45,-1*K.1^3,K.1^14,K.1^34,K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^38,-1*K.1^46,K.1^38,K.1^2,-1*K.1^34,K.1^22,-1*K.1^26,K.1^14,-1*K.1^38,K.1^10,K.1^26,-1*K.1^34,K.1^10,-1*K.1^26,K.1^34,-1*K.1^22,K.1^46,-1*K.1^14,K.1^46,-1*K.1^2,-1*K.1^38,-1*K.1^14,-1*K.1^10,K.1^26,-1*K.1^29,-1*K.1,K.1^29,K.1,K.1^37,-1*K.1^47,-1*K.1^29,K.1^31,K.1^23,-1*K.1^37,K.1^11,K.1^35,-1*K.1^11,-1*K.1^31,K.1^47,-1*K.1^43,K.1^43,-1*K.1^31,K.1^47,-1*K.1^43,-1*K.1^17,K.1^11,-1*K.1^37,K.1^23,-1*K.1^41,K.1^7,-1*K.1^13,K.1^5,K.1^25,-1*K.1^5,-1*K.1^19,-1*K.1^35,-1*K.1^7,-1*K.1^23,-1*K.1^13,K.1^41,K.1^17,K.1^17,K.1^5,K.1^13,K.1^37,-1*K.1^47,-1*K.1^41,K.1^19,-1*K.1^23,K.1^43,-1*K.1^5,-1*K.1^19,-1*K.1^11,K.1^35,K.1^31,-1*K.1,K.1^13,K.1^29,K.1^25,K.1^19,-1*K.1^35,-1*K.1^17,K.1,K.1^7,-1*K.1^7,-1*K.1^25,-1*K.1^25,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,-1*K.1^4,K.1^28,-1*K.1^44,-1*K.1^20,K.1^4,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^44,-1*K.1^20,-1*K.1^28,K.1^44,K.1^4,K.1^44,K.1^45,-1*K.1^3,K.1^33,-1*K.1^15,-1*K.1^39,K.1^9,K.1^27,-1*K.1^21,-1*K.1^45,K.1^3,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^9,K.1^39,-1*K.1^9,K.1^39,-1*K.1^27,K.1^21,-1*K.1^33,K.1^15,K.1^3,-1*K.1^45,-1*K.1^21,K.1^27,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,-1*K.1^3,K.1^45,-1*K.1^34,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^26,K.1^26,K.1^2,K.1^46,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^46,K.1^14,-1*K.1^26,K.1^22,-1*K.1^34,K.1^10,-1*K.1^38,-1*K.1^22,K.1^14,-1*K.1^38,K.1^22,-1*K.1^14,K.1^26,-1*K.1^2,K.1^34,-1*K.1^2,K.1^46,K.1^10,K.1^34,K.1^38,-1*K.1^22,K.1^19,K.1^47,-1*K.1^19,-1*K.1^47,-1*K.1^11,K.1,K.1^19,-1*K.1^17,-1*K.1^25,K.1^11,-1*K.1^37,-1*K.1^13,K.1^37,K.1^17,-1*K.1,K.1^5,-1*K.1^5,K.1^17,-1*K.1,K.1^5,K.1^31,-1*K.1^37,K.1^11,-1*K.1^25,K.1^7,-1*K.1^41,K.1^35,-1*K.1^43,-1*K.1^23,K.1^43,K.1^29,K.1^13,K.1^41,K.1^25,K.1^35,-1*K.1^7,-1*K.1^31,-1*K.1^31,-1*K.1^43,-1*K.1^35,-1*K.1^11,K.1,K.1^7,-1*K.1^29,K.1^25,-1*K.1^5,K.1^43,K.1^29,K.1^37,-1*K.1^13,-1*K.1^17,K.1^47,-1*K.1^35,-1*K.1^19,-1*K.1^23,-1*K.1^29,K.1^13,K.1^31,-1*K.1^47,-1*K.1^41,K.1^41,K.1^23,K.1^23,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^40,K.1^8,-1*K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^40,K.1^8,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,K.1^44,-1*K.1^20,K.1^4,K.1^28,-1*K.1^44,K.1^20,-1*K.1^28,K.1^44,-1*K.1^28,-1*K.1^20,K.1^4,K.1^28,K.1^20,-1*K.1^4,-1*K.1^44,-1*K.1^4,K.1^3,-1*K.1^45,K.1^15,-1*K.1^33,-1*K.1^9,K.1^39,K.1^21,-1*K.1^27,-1*K.1^3,K.1^45,K.1^33,-1*K.1^15,K.1^27,-1*K.1^21,-1*K.1^39,K.1^9,-1*K.1^39,K.1^9,-1*K.1^21,K.1^27,-1*K.1^15,K.1^33,K.1^45,-1*K.1^3,-1*K.1^27,K.1^21,K.1^39,-1*K.1^9,-1*K.1^33,K.1^15,-1*K.1^45,K.1^3,K.1^14,K.1^34,K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^38,-1*K.1^46,K.1^38,K.1^2,-1*K.1^34,K.1^22,-1*K.1^26,K.1^14,-1*K.1^38,K.1^10,K.1^26,-1*K.1^34,K.1^10,-1*K.1^26,K.1^34,-1*K.1^22,K.1^46,-1*K.1^14,K.1^46,-1*K.1^2,-1*K.1^38,-1*K.1^14,-1*K.1^10,K.1^26,K.1^29,K.1,-1*K.1^29,-1*K.1,-1*K.1^37,K.1^47,K.1^29,-1*K.1^31,-1*K.1^23,K.1^37,-1*K.1^11,-1*K.1^35,K.1^11,K.1^31,-1*K.1^47,K.1^43,-1*K.1^43,K.1^31,-1*K.1^47,K.1^43,K.1^17,-1*K.1^11,K.1^37,-1*K.1^23,K.1^41,-1*K.1^7,K.1^13,-1*K.1^5,-1*K.1^25,K.1^5,K.1^19,K.1^35,K.1^7,K.1^23,K.1^13,-1*K.1^41,-1*K.1^17,-1*K.1^17,-1*K.1^5,-1*K.1^13,-1*K.1^37,K.1^47,K.1^41,-1*K.1^19,K.1^23,-1*K.1^43,K.1^5,K.1^19,K.1^11,-1*K.1^35,-1*K.1^31,K.1,-1*K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^35,K.1^17,-1*K.1,-1*K.1^7,K.1^7,K.1^25,K.1^25,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^8,-1*K.1^40,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^6,K.1^42,-1*K.1^18,K.1^30,K.1^6,-1*K.1^42,-1*K.1^4,K.1^28,-1*K.1^44,-1*K.1^20,K.1^4,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^44,-1*K.1^20,-1*K.1^28,K.1^44,K.1^4,K.1^44,-1*K.1^45,K.1^3,-1*K.1^33,K.1^15,K.1^39,-1*K.1^9,-1*K.1^27,K.1^21,K.1^45,-1*K.1^3,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^9,-1*K.1^39,K.1^9,-1*K.1^39,K.1^27,-1*K.1^21,K.1^33,-1*K.1^15,-1*K.1^3,K.1^45,K.1^21,-1*K.1^27,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,K.1^3,-1*K.1^45,-1*K.1^34,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^26,K.1^26,K.1^2,K.1^46,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^46,K.1^14,-1*K.1^26,K.1^22,-1*K.1^34,K.1^10,-1*K.1^38,-1*K.1^22,K.1^14,-1*K.1^38,K.1^22,-1*K.1^14,K.1^26,-1*K.1^2,K.1^34,-1*K.1^2,K.1^46,K.1^10,K.1^34,K.1^38,-1*K.1^22,-1*K.1^19,-1*K.1^47,K.1^19,K.1^47,K.1^11,-1*K.1,-1*K.1^19,K.1^17,K.1^25,-1*K.1^11,K.1^37,K.1^13,-1*K.1^37,-1*K.1^17,K.1,-1*K.1^5,K.1^5,-1*K.1^17,K.1,-1*K.1^5,-1*K.1^31,K.1^37,-1*K.1^11,K.1^25,-1*K.1^7,K.1^41,-1*K.1^35,K.1^43,K.1^23,-1*K.1^43,-1*K.1^29,-1*K.1^13,-1*K.1^41,-1*K.1^25,-1*K.1^35,K.1^7,K.1^31,K.1^31,K.1^43,K.1^35,K.1^11,-1*K.1,-1*K.1^7,K.1^29,-1*K.1^25,K.1^5,-1*K.1^43,-1*K.1^29,-1*K.1^37,K.1^13,K.1^17,-1*K.1^47,K.1^35,K.1^19,K.1^23,K.1^29,-1*K.1^13,-1*K.1^31,K.1^47,K.1^41,-1*K.1^41,-1*K.1^23,-1*K.1^23,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,-1*K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^42,-1*K.1^54,-1*K.1^42,K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,K.1^6,K.1^78,K.1^18,-1*K.1^4,K.1^76,K.1^44,-1*K.1^20,-1*K.1^52,K.1^28,-1*K.1^68,K.1^4,K.1^68,-1*K.1^76,-1*K.1^44,K.1^20,-1*K.1^28,K.1^92,K.1^52,-1*K.1^92,-1*K.1^9,-1*K.1^87,K.1^45,-1*K.1^51,K.1^75,-1*K.1^21,K.1^63,-1*K.1^33,-1*K.1^57,K.1^39,-1*K.1^3,K.1^93,-1*K.1^81,K.1^15,K.1^69,-1*K.1^27,-1*K.1^69,K.1^27,-1*K.1^15,K.1^81,-1*K.1^93,K.1^3,-1*K.1^39,K.1^57,K.1^33,-1*K.1^63,K.1^21,-1*K.1^75,K.1^51,-1*K.1^45,K.1^87,K.1^9,K.1^10,K.1^38,-1*K.1^70,K.1^14,K.1^2,K.1^50,K.1^26,K.1^22,K.1^82,-1*K.1^26,-1*K.1^82,K.1^70,K.1^86,-1*K.1^2,K.1^94,-1*K.1^10,K.1^34,-1*K.1^62,-1*K.1^46,-1*K.1^86,K.1^62,-1*K.1^94,-1*K.1^38,-1*K.1^50,-1*K.1^74,-1*K.1^58,K.1^74,-1*K.1^22,-1*K.1^34,K.1^58,-1*K.1^14,K.1^46,-1*K.1^55,-1*K.1^35,K.1^7,-1*K.1^83,-1*K.1^95,K.1^13,K.1^55,-1*K.1^77,-1*K.1^85,K.1^47,-1*K.1^49,-1*K.1^25,K.1,-1*K.1^29,-1*K.1^61,-1*K.1^65,-1*K.1^17,K.1^29,K.1^61,K.1^65,K.1^19,K.1^49,-1*K.1^47,K.1^85,-1*K.1^91,K.1^5,-1*K.1^71,-1*K.1^31,K.1^59,K.1^79,K.1^89,-1*K.1^73,K.1^53,K.1^37,K.1^71,K.1^43,-1*K.1^67,K.1^67,K.1^31,K.1^23,K.1^95,-1*K.1^13,K.1^91,-1*K.1^41,-1*K.1^37,K.1^17,-1*K.1^79,-1*K.1^89,-1*K.1,K.1^25,K.1^77,K.1^35,-1*K.1^23,-1*K.1^7,-1*K.1^59,K.1^41,K.1^73,-1*K.1^19,K.1^83,-1*K.1^5,-1*K.1^53,-1*K.1^11,K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^54,K.1^42,K.1^54,-1*K.1^42,-1*K.1^66,K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,-1*K.1^78,K.1^92,-1*K.1^20,-1*K.1^52,K.1^76,K.1^44,-1*K.1^68,K.1^28,-1*K.1^92,-1*K.1^28,K.1^20,K.1^52,-1*K.1^76,K.1^68,-1*K.1^4,-1*K.1^44,K.1^4,K.1^87,K.1^9,-1*K.1^51,K.1^45,-1*K.1^21,K.1^75,-1*K.1^33,K.1^63,K.1^39,-1*K.1^57,K.1^93,-1*K.1^3,K.1^15,-1*K.1^81,-1*K.1^27,K.1^69,K.1^27,-1*K.1^69,K.1^81,-1*K.1^15,K.1^3,-1*K.1^93,K.1^57,-1*K.1^39,-1*K.1^63,K.1^33,-1*K.1^75,K.1^21,-1*K.1^45,K.1^51,-1*K.1^9,-1*K.1^87,-1*K.1^86,-1*K.1^58,K.1^26,-1*K.1^82,-1*K.1^94,-1*K.1^46,-1*K.1^70,-1*K.1^74,-1*K.1^14,K.1^70,K.1^14,-1*K.1^26,-1*K.1^10,K.1^94,-1*K.1^2,K.1^86,-1*K.1^62,K.1^34,K.1^50,K.1^10,-1*K.1^34,K.1^2,K.1^58,K.1^46,K.1^22,K.1^38,-1*K.1^22,K.1^74,K.1^62,-1*K.1^38,K.1^82,-1*K.1^50,K.1^41,K.1^61,-1*K.1^89,K.1^13,K.1,-1*K.1^83,-1*K.1^41,K.1^19,K.1^11,-1*K.1^49,K.1^47,K.1^71,-1*K.1^95,K.1^67,K.1^35,K.1^31,K.1^79,-1*K.1^67,-1*K.1^35,-1*K.1^31,-1*K.1^77,-1*K.1^47,K.1^49,-1*K.1^11,K.1^5,-1*K.1^91,K.1^25,K.1^65,-1*K.1^37,-1*K.1^17,-1*K.1^7,K.1^23,-1*K.1^43,-1*K.1^59,-1*K.1^25,-1*K.1^53,K.1^29,-1*K.1^29,-1*K.1^65,-1*K.1^73,-1*K.1,K.1^83,-1*K.1^5,K.1^55,K.1^59,-1*K.1^79,K.1^17,K.1^7,K.1^95,-1*K.1^71,-1*K.1^19,-1*K.1^61,K.1^73,K.1^89,K.1^37,-1*K.1^55,-1*K.1^23,K.1^77,-1*K.1^13,K.1^91,K.1^43,K.1^85,-1*K.1^85,K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,-1*K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^42,-1*K.1^54,-1*K.1^42,K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,K.1^6,K.1^78,K.1^18,-1*K.1^4,K.1^76,K.1^44,-1*K.1^20,-1*K.1^52,K.1^28,-1*K.1^68,K.1^4,K.1^68,-1*K.1^76,-1*K.1^44,K.1^20,-1*K.1^28,K.1^92,K.1^52,-1*K.1^92,K.1^9,K.1^87,-1*K.1^45,K.1^51,-1*K.1^75,K.1^21,-1*K.1^63,K.1^33,K.1^57,-1*K.1^39,K.1^3,-1*K.1^93,K.1^81,-1*K.1^15,-1*K.1^69,K.1^27,K.1^69,-1*K.1^27,K.1^15,-1*K.1^81,K.1^93,-1*K.1^3,K.1^39,-1*K.1^57,-1*K.1^33,K.1^63,-1*K.1^21,K.1^75,-1*K.1^51,K.1^45,-1*K.1^87,-1*K.1^9,K.1^10,K.1^38,-1*K.1^70,K.1^14,K.1^2,K.1^50,K.1^26,K.1^22,K.1^82,-1*K.1^26,-1*K.1^82,K.1^70,K.1^86,-1*K.1^2,K.1^94,-1*K.1^10,K.1^34,-1*K.1^62,-1*K.1^46,-1*K.1^86,K.1^62,-1*K.1^94,-1*K.1^38,-1*K.1^50,-1*K.1^74,-1*K.1^58,K.1^74,-1*K.1^22,-1*K.1^34,K.1^58,-1*K.1^14,K.1^46,K.1^55,K.1^35,-1*K.1^7,K.1^83,K.1^95,-1*K.1^13,-1*K.1^55,K.1^77,K.1^85,-1*K.1^47,K.1^49,K.1^25,-1*K.1,K.1^29,K.1^61,K.1^65,K.1^17,-1*K.1^29,-1*K.1^61,-1*K.1^65,-1*K.1^19,-1*K.1^49,K.1^47,-1*K.1^85,K.1^91,-1*K.1^5,K.1^71,K.1^31,-1*K.1^59,-1*K.1^79,-1*K.1^89,K.1^73,-1*K.1^53,-1*K.1^37,-1*K.1^71,-1*K.1^43,K.1^67,-1*K.1^67,-1*K.1^31,-1*K.1^23,-1*K.1^95,K.1^13,-1*K.1^91,K.1^41,K.1^37,-1*K.1^17,K.1^79,K.1^89,K.1,-1*K.1^25,-1*K.1^77,-1*K.1^35,K.1^23,K.1^7,K.1^59,-1*K.1^41,-1*K.1^73,K.1^19,-1*K.1^83,K.1^5,K.1^53,K.1^11,-1*K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^54,K.1^42,K.1^54,-1*K.1^42,-1*K.1^66,K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,-1*K.1^78,K.1^92,-1*K.1^20,-1*K.1^52,K.1^76,K.1^44,-1*K.1^68,K.1^28,-1*K.1^92,-1*K.1^28,K.1^20,K.1^52,-1*K.1^76,K.1^68,-1*K.1^4,-1*K.1^44,K.1^4,-1*K.1^87,-1*K.1^9,K.1^51,-1*K.1^45,K.1^21,-1*K.1^75,K.1^33,-1*K.1^63,-1*K.1^39,K.1^57,-1*K.1^93,K.1^3,-1*K.1^15,K.1^81,K.1^27,-1*K.1^69,-1*K.1^27,K.1^69,-1*K.1^81,K.1^15,-1*K.1^3,K.1^93,-1*K.1^57,K.1^39,K.1^63,-1*K.1^33,K.1^75,-1*K.1^21,K.1^45,-1*K.1^51,K.1^9,K.1^87,-1*K.1^86,-1*K.1^58,K.1^26,-1*K.1^82,-1*K.1^94,-1*K.1^46,-1*K.1^70,-1*K.1^74,-1*K.1^14,K.1^70,K.1^14,-1*K.1^26,-1*K.1^10,K.1^94,-1*K.1^2,K.1^86,-1*K.1^62,K.1^34,K.1^50,K.1^10,-1*K.1^34,K.1^2,K.1^58,K.1^46,K.1^22,K.1^38,-1*K.1^22,K.1^74,K.1^62,-1*K.1^38,K.1^82,-1*K.1^50,-1*K.1^41,-1*K.1^61,K.1^89,-1*K.1^13,-1*K.1,K.1^83,K.1^41,-1*K.1^19,-1*K.1^11,K.1^49,-1*K.1^47,-1*K.1^71,K.1^95,-1*K.1^67,-1*K.1^35,-1*K.1^31,-1*K.1^79,K.1^67,K.1^35,K.1^31,K.1^77,K.1^47,-1*K.1^49,K.1^11,-1*K.1^5,K.1^91,-1*K.1^25,-1*K.1^65,K.1^37,K.1^17,K.1^7,-1*K.1^23,K.1^43,K.1^59,K.1^25,K.1^53,-1*K.1^29,K.1^29,K.1^65,K.1^73,K.1,-1*K.1^83,K.1^5,-1*K.1^55,-1*K.1^59,K.1^79,-1*K.1^17,-1*K.1^7,-1*K.1^95,K.1^71,K.1^19,K.1^61,-1*K.1^73,-1*K.1^89,-1*K.1^37,K.1^55,K.1^23,-1*K.1^77,K.1^13,-1*K.1^91,-1*K.1^43,-1*K.1^85,K.1^85,-1*K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^42,K.1^54,K.1^42,-1*K.1^54,-1*K.1^30,K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^4,K.1^76,K.1^44,-1*K.1^20,-1*K.1^52,K.1^28,-1*K.1^68,K.1^4,K.1^68,-1*K.1^76,-1*K.1^44,K.1^20,-1*K.1^28,K.1^92,K.1^52,-1*K.1^92,K.1^57,K.1^39,-1*K.1^93,K.1^3,-1*K.1^27,K.1^69,-1*K.1^15,K.1^81,-1*K.1^9,K.1^87,-1*K.1^51,K.1^45,-1*K.1^33,K.1^63,K.1^21,-1*K.1^75,-1*K.1^21,K.1^75,-1*K.1^63,K.1^33,-1*K.1^45,K.1^51,-1*K.1^87,K.1^9,-1*K.1^81,K.1^15,-1*K.1^69,K.1^27,-1*K.1^3,K.1^93,-1*K.1^39,-1*K.1^57,-1*K.1^10,-1*K.1^38,K.1^70,-1*K.1^14,-1*K.1^2,-1*K.1^50,-1*K.1^26,-1*K.1^22,-1*K.1^82,K.1^26,K.1^82,-1*K.1^70,-1*K.1^86,K.1^2,-1*K.1^94,K.1^10,-1*K.1^34,K.1^62,K.1^46,K.1^86,-1*K.1^62,K.1^94,K.1^38,K.1^50,K.1^74,K.1^58,-1*K.1^74,K.1^22,K.1^34,-1*K.1^58,K.1^14,-1*K.1^46,K.1^7,-1*K.1^83,K.1^55,K.1^35,K.1^47,-1*K.1^61,-1*K.1^7,-1*K.1^29,-1*K.1^37,K.1^95,-1*K.1,K.1^73,-1*K.1^49,K.1^77,-1*K.1^13,-1*K.1^17,K.1^65,-1*K.1^77,K.1^13,K.1^17,K.1^67,K.1,-1*K.1^95,K.1^37,K.1^43,-1*K.1^53,K.1^23,-1*K.1^79,-1*K.1^11,-1*K.1^31,K.1^41,-1*K.1^25,K.1^5,-1*K.1^85,-1*K.1^23,K.1^91,K.1^19,-1*K.1^19,K.1^79,K.1^71,-1*K.1^47,K.1^61,-1*K.1^43,K.1^89,K.1^85,-1*K.1^65,K.1^31,-1*K.1^41,K.1^49,-1*K.1^73,K.1^29,K.1^83,-1*K.1^71,-1*K.1^55,K.1^11,-1*K.1^89,K.1^25,-1*K.1^67,-1*K.1^35,K.1^53,-1*K.1^5,-1*K.1^59,K.1^59,-1*K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,-1*K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^54,-1*K.1^42,-1*K.1^54,K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,K.1^90,K.1^18,K.1^78,K.1^92,-1*K.1^20,-1*K.1^52,K.1^76,K.1^44,-1*K.1^68,K.1^28,-1*K.1^92,-1*K.1^28,K.1^20,K.1^52,-1*K.1^76,K.1^68,-1*K.1^4,-1*K.1^44,K.1^4,-1*K.1^39,-1*K.1^57,K.1^3,-1*K.1^93,K.1^69,-1*K.1^27,K.1^81,-1*K.1^15,K.1^87,-1*K.1^9,K.1^45,-1*K.1^51,K.1^63,-1*K.1^33,-1*K.1^75,K.1^21,K.1^75,-1*K.1^21,K.1^33,-1*K.1^63,K.1^51,-1*K.1^45,K.1^9,-1*K.1^87,K.1^15,-1*K.1^81,K.1^27,-1*K.1^69,K.1^93,-1*K.1^3,K.1^57,K.1^39,K.1^86,K.1^58,-1*K.1^26,K.1^82,K.1^94,K.1^46,K.1^70,K.1^74,K.1^14,-1*K.1^70,-1*K.1^14,K.1^26,K.1^10,-1*K.1^94,K.1^2,-1*K.1^86,K.1^62,-1*K.1^34,-1*K.1^50,-1*K.1^10,K.1^34,-1*K.1^2,-1*K.1^58,-1*K.1^46,-1*K.1^22,-1*K.1^38,K.1^22,-1*K.1^74,-1*K.1^62,K.1^38,-1*K.1^82,K.1^50,-1*K.1^89,K.1^13,-1*K.1^41,-1*K.1^61,-1*K.1^49,K.1^35,K.1^89,K.1^67,K.1^59,-1*K.1,K.1^95,-1*K.1^23,K.1^47,-1*K.1^19,K.1^83,K.1^79,-1*K.1^31,K.1^19,-1*K.1^83,-1*K.1^79,-1*K.1^29,-1*K.1^95,K.1,-1*K.1^59,-1*K.1^53,K.1^43,-1*K.1^73,K.1^17,K.1^85,K.1^65,-1*K.1^55,K.1^71,-1*K.1^91,K.1^11,K.1^73,-1*K.1^5,-1*K.1^77,K.1^77,-1*K.1^17,-1*K.1^25,K.1^49,-1*K.1^35,K.1^53,-1*K.1^7,-1*K.1^11,K.1^31,-1*K.1^65,K.1^55,-1*K.1^47,K.1^23,-1*K.1^67,-1*K.1^13,K.1^25,K.1^41,-1*K.1^85,K.1^7,-1*K.1^71,K.1^29,K.1^61,-1*K.1^43,K.1^91,K.1^37,-1*K.1^37,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^42,K.1^54,K.1^42,-1*K.1^54,-1*K.1^30,K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^4,K.1^76,K.1^44,-1*K.1^20,-1*K.1^52,K.1^28,-1*K.1^68,K.1^4,K.1^68,-1*K.1^76,-1*K.1^44,K.1^20,-1*K.1^28,K.1^92,K.1^52,-1*K.1^92,-1*K.1^57,-1*K.1^39,K.1^93,-1*K.1^3,K.1^27,-1*K.1^69,K.1^15,-1*K.1^81,K.1^9,-1*K.1^87,K.1^51,-1*K.1^45,K.1^33,-1*K.1^63,-1*K.1^21,K.1^75,K.1^21,-1*K.1^75,K.1^63,-1*K.1^33,K.1^45,-1*K.1^51,K.1^87,-1*K.1^9,K.1^81,-1*K.1^15,K.1^69,-1*K.1^27,K.1^3,-1*K.1^93,K.1^39,K.1^57,-1*K.1^10,-1*K.1^38,K.1^70,-1*K.1^14,-1*K.1^2,-1*K.1^50,-1*K.1^26,-1*K.1^22,-1*K.1^82,K.1^26,K.1^82,-1*K.1^70,-1*K.1^86,K.1^2,-1*K.1^94,K.1^10,-1*K.1^34,K.1^62,K.1^46,K.1^86,-1*K.1^62,K.1^94,K.1^38,K.1^50,K.1^74,K.1^58,-1*K.1^74,K.1^22,K.1^34,-1*K.1^58,K.1^14,-1*K.1^46,-1*K.1^7,K.1^83,-1*K.1^55,-1*K.1^35,-1*K.1^47,K.1^61,K.1^7,K.1^29,K.1^37,-1*K.1^95,K.1,-1*K.1^73,K.1^49,-1*K.1^77,K.1^13,K.1^17,-1*K.1^65,K.1^77,-1*K.1^13,-1*K.1^17,-1*K.1^67,-1*K.1,K.1^95,-1*K.1^37,-1*K.1^43,K.1^53,-1*K.1^23,K.1^79,K.1^11,K.1^31,-1*K.1^41,K.1^25,-1*K.1^5,K.1^85,K.1^23,-1*K.1^91,-1*K.1^19,K.1^19,-1*K.1^79,-1*K.1^71,K.1^47,-1*K.1^61,K.1^43,-1*K.1^89,-1*K.1^85,K.1^65,-1*K.1^31,K.1^41,-1*K.1^49,K.1^73,-1*K.1^29,-1*K.1^83,K.1^71,K.1^55,-1*K.1^11,K.1^89,-1*K.1^25,K.1^67,K.1^35,-1*K.1^53,K.1^5,K.1^59,-1*K.1^59,K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,-1*K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^54,-1*K.1^42,-1*K.1^54,K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,K.1^90,K.1^18,K.1^78,K.1^92,-1*K.1^20,-1*K.1^52,K.1^76,K.1^44,-1*K.1^68,K.1^28,-1*K.1^92,-1*K.1^28,K.1^20,K.1^52,-1*K.1^76,K.1^68,-1*K.1^4,-1*K.1^44,K.1^4,K.1^39,K.1^57,-1*K.1^3,K.1^93,-1*K.1^69,K.1^27,-1*K.1^81,K.1^15,-1*K.1^87,K.1^9,-1*K.1^45,K.1^51,-1*K.1^63,K.1^33,K.1^75,-1*K.1^21,-1*K.1^75,K.1^21,-1*K.1^33,K.1^63,-1*K.1^51,K.1^45,-1*K.1^9,K.1^87,-1*K.1^15,K.1^81,-1*K.1^27,K.1^69,-1*K.1^93,K.1^3,-1*K.1^57,-1*K.1^39,K.1^86,K.1^58,-1*K.1^26,K.1^82,K.1^94,K.1^46,K.1^70,K.1^74,K.1^14,-1*K.1^70,-1*K.1^14,K.1^26,K.1^10,-1*K.1^94,K.1^2,-1*K.1^86,K.1^62,-1*K.1^34,-1*K.1^50,-1*K.1^10,K.1^34,-1*K.1^2,-1*K.1^58,-1*K.1^46,-1*K.1^22,-1*K.1^38,K.1^22,-1*K.1^74,-1*K.1^62,K.1^38,-1*K.1^82,K.1^50,K.1^89,-1*K.1^13,K.1^41,K.1^61,K.1^49,-1*K.1^35,-1*K.1^89,-1*K.1^67,-1*K.1^59,K.1,-1*K.1^95,K.1^23,-1*K.1^47,K.1^19,-1*K.1^83,-1*K.1^79,K.1^31,-1*K.1^19,K.1^83,K.1^79,K.1^29,K.1^95,-1*K.1,K.1^59,K.1^53,-1*K.1^43,K.1^73,-1*K.1^17,-1*K.1^85,-1*K.1^65,K.1^55,-1*K.1^71,K.1^91,-1*K.1^11,-1*K.1^73,K.1^5,K.1^77,-1*K.1^77,K.1^17,K.1^25,-1*K.1^49,K.1^35,-1*K.1^53,K.1^7,K.1^11,-1*K.1^31,K.1^65,-1*K.1^55,K.1^47,-1*K.1^23,K.1^67,K.1^13,-1*K.1^25,-1*K.1^41,K.1^85,-1*K.1^7,K.1^71,-1*K.1^29,-1*K.1^61,K.1^43,-1*K.1^91,-1*K.1^37,K.1^37,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^90,K.1^6,K.1^90,-1*K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,-1*K.1^66,K.1^4,-1*K.1^76,-1*K.1^44,K.1^20,K.1^52,-1*K.1^28,K.1^68,-1*K.1^4,-1*K.1^68,K.1^76,K.1^44,-1*K.1^20,K.1^28,-1*K.1^92,-1*K.1^52,K.1^92,K.1^81,K.1^15,-1*K.1^21,K.1^75,K.1^3,-1*K.1^93,K.1^87,-1*K.1^9,-1*K.1^33,K.1^63,K.1^27,-1*K.1^69,-1*K.1^57,K.1^39,-1*K.1^45,K.1^51,K.1^45,-1*K.1^51,-1*K.1^39,K.1^57,K.1^69,-1*K.1^27,-1*K.1^63,K.1^33,K.1^9,-1*K.1^87,K.1^93,-1*K.1^3,-1*K.1^75,K.1^21,-1*K.1^15,-1*K.1^81,-1*K.1^58,K.1^86,K.1^22,K.1^62,-1*K.1^50,K.1^2,-1*K.1^74,K.1^70,K.1^34,K.1^74,-1*K.1^34,-1*K.1^22,-1*K.1^38,K.1^50,-1*K.1^46,K.1^58,-1*K.1^82,K.1^14,-1*K.1^94,K.1^38,-1*K.1^14,K.1^46,-1*K.1^86,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,-1*K.1^70,K.1^82,K.1^10,-1*K.1^62,K.1^94,-1*K.1^79,K.1^59,K.1^31,-1*K.1^11,K.1^23,K.1^85,K.1^79,K.1^53,K.1^61,K.1^71,-1*K.1^25,-1*K.1,-1*K.1^73,K.1^5,K.1^37,-1*K.1^41,K.1^89,-1*K.1^5,-1*K.1^37,K.1^41,-1*K.1^43,K.1^25,-1*K.1^71,-1*K.1^61,-1*K.1^19,K.1^77,-1*K.1^95,-1*K.1^55,-1*K.1^83,-1*K.1^7,K.1^65,-1*K.1^49,-1*K.1^29,-1*K.1^13,K.1^95,-1*K.1^67,K.1^91,-1*K.1^91,K.1^55,K.1^47,-1*K.1^23,-1*K.1^85,K.1^19,-1*K.1^17,K.1^13,-1*K.1^89,K.1^7,-1*K.1^65,K.1^73,K.1,-1*K.1^53,-1*K.1^59,-1*K.1^47,-1*K.1^31,K.1^83,K.1^17,K.1^49,K.1^43,K.1^11,-1*K.1^77,K.1^29,K.1^35,-1*K.1^35,K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,-1*K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^6,-1*K.1^90,-1*K.1^6,K.1^90,-1*K.1^18,K.1^78,K.1^54,-1*K.1^42,K.1^66,K.1^30,-1*K.1^92,K.1^20,K.1^52,-1*K.1^76,-1*K.1^44,K.1^68,-1*K.1^28,K.1^92,K.1^28,-1*K.1^20,-1*K.1^52,K.1^76,-1*K.1^68,K.1^4,K.1^44,-1*K.1^4,-1*K.1^15,-1*K.1^81,K.1^75,-1*K.1^21,-1*K.1^93,K.1^3,-1*K.1^9,K.1^87,K.1^63,-1*K.1^33,-1*K.1^69,K.1^27,K.1^39,-1*K.1^57,K.1^51,-1*K.1^45,-1*K.1^51,K.1^45,K.1^57,-1*K.1^39,-1*K.1^27,K.1^69,K.1^33,-1*K.1^63,-1*K.1^87,K.1^9,-1*K.1^3,K.1^93,K.1^21,-1*K.1^75,K.1^81,K.1^15,K.1^38,-1*K.1^10,-1*K.1^74,-1*K.1^34,K.1^46,-1*K.1^94,K.1^22,-1*K.1^26,-1*K.1^62,-1*K.1^22,K.1^62,K.1^74,K.1^58,-1*K.1^46,K.1^50,-1*K.1^38,K.1^14,-1*K.1^82,K.1^2,-1*K.1^58,K.1^82,-1*K.1^50,K.1^10,K.1^94,K.1^70,K.1^86,-1*K.1^70,K.1^26,-1*K.1^14,-1*K.1^86,K.1^34,-1*K.1^2,K.1^17,-1*K.1^37,-1*K.1^65,K.1^85,-1*K.1^73,-1*K.1^11,-1*K.1^17,-1*K.1^43,-1*K.1^35,-1*K.1^25,K.1^71,K.1^95,K.1^23,-1*K.1^91,-1*K.1^59,K.1^55,-1*K.1^7,K.1^91,K.1^59,-1*K.1^55,K.1^53,-1*K.1^71,K.1^25,K.1^35,K.1^77,-1*K.1^19,K.1,K.1^41,K.1^13,K.1^89,-1*K.1^31,K.1^47,K.1^67,K.1^83,-1*K.1,K.1^29,-1*K.1^5,K.1^5,-1*K.1^41,-1*K.1^49,K.1^73,K.1^11,-1*K.1^77,K.1^79,-1*K.1^83,K.1^7,-1*K.1^89,K.1^31,-1*K.1^23,-1*K.1^95,K.1^43,K.1^37,K.1^49,K.1^65,-1*K.1^13,-1*K.1^79,-1*K.1^47,-1*K.1^53,-1*K.1^85,K.1^19,-1*K.1^67,-1*K.1^61,K.1^61,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^90,K.1^6,K.1^90,-1*K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,-1*K.1^66,K.1^4,-1*K.1^76,-1*K.1^44,K.1^20,K.1^52,-1*K.1^28,K.1^68,-1*K.1^4,-1*K.1^68,K.1^76,K.1^44,-1*K.1^20,K.1^28,-1*K.1^92,-1*K.1^52,K.1^92,-1*K.1^81,-1*K.1^15,K.1^21,-1*K.1^75,-1*K.1^3,K.1^93,-1*K.1^87,K.1^9,K.1^33,-1*K.1^63,-1*K.1^27,K.1^69,K.1^57,-1*K.1^39,K.1^45,-1*K.1^51,-1*K.1^45,K.1^51,K.1^39,-1*K.1^57,-1*K.1^69,K.1^27,K.1^63,-1*K.1^33,-1*K.1^9,K.1^87,-1*K.1^93,K.1^3,K.1^75,-1*K.1^21,K.1^15,K.1^81,-1*K.1^58,K.1^86,K.1^22,K.1^62,-1*K.1^50,K.1^2,-1*K.1^74,K.1^70,K.1^34,K.1^74,-1*K.1^34,-1*K.1^22,-1*K.1^38,K.1^50,-1*K.1^46,K.1^58,-1*K.1^82,K.1^14,-1*K.1^94,K.1^38,-1*K.1^14,K.1^46,-1*K.1^86,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,-1*K.1^70,K.1^82,K.1^10,-1*K.1^62,K.1^94,K.1^79,-1*K.1^59,-1*K.1^31,K.1^11,-1*K.1^23,-1*K.1^85,-1*K.1^79,-1*K.1^53,-1*K.1^61,-1*K.1^71,K.1^25,K.1,K.1^73,-1*K.1^5,-1*K.1^37,K.1^41,-1*K.1^89,K.1^5,K.1^37,-1*K.1^41,K.1^43,-1*K.1^25,K.1^71,K.1^61,K.1^19,-1*K.1^77,K.1^95,K.1^55,K.1^83,K.1^7,-1*K.1^65,K.1^49,K.1^29,K.1^13,-1*K.1^95,K.1^67,-1*K.1^91,K.1^91,-1*K.1^55,-1*K.1^47,K.1^23,K.1^85,-1*K.1^19,K.1^17,-1*K.1^13,K.1^89,-1*K.1^7,K.1^65,-1*K.1^73,-1*K.1,K.1^53,K.1^59,K.1^47,K.1^31,-1*K.1^83,-1*K.1^17,-1*K.1^49,-1*K.1^43,-1*K.1^11,K.1^77,-1*K.1^29,-1*K.1^35,K.1^35,-1*K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,-1*K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^6,-1*K.1^90,-1*K.1^6,K.1^90,-1*K.1^18,K.1^78,K.1^54,-1*K.1^42,K.1^66,K.1^30,-1*K.1^92,K.1^20,K.1^52,-1*K.1^76,-1*K.1^44,K.1^68,-1*K.1^28,K.1^92,K.1^28,-1*K.1^20,-1*K.1^52,K.1^76,-1*K.1^68,K.1^4,K.1^44,-1*K.1^4,K.1^15,K.1^81,-1*K.1^75,K.1^21,K.1^93,-1*K.1^3,K.1^9,-1*K.1^87,-1*K.1^63,K.1^33,K.1^69,-1*K.1^27,-1*K.1^39,K.1^57,-1*K.1^51,K.1^45,K.1^51,-1*K.1^45,-1*K.1^57,K.1^39,K.1^27,-1*K.1^69,-1*K.1^33,K.1^63,K.1^87,-1*K.1^9,K.1^3,-1*K.1^93,-1*K.1^21,K.1^75,-1*K.1^81,-1*K.1^15,K.1^38,-1*K.1^10,-1*K.1^74,-1*K.1^34,K.1^46,-1*K.1^94,K.1^22,-1*K.1^26,-1*K.1^62,-1*K.1^22,K.1^62,K.1^74,K.1^58,-1*K.1^46,K.1^50,-1*K.1^38,K.1^14,-1*K.1^82,K.1^2,-1*K.1^58,K.1^82,-1*K.1^50,K.1^10,K.1^94,K.1^70,K.1^86,-1*K.1^70,K.1^26,-1*K.1^14,-1*K.1^86,K.1^34,-1*K.1^2,-1*K.1^17,K.1^37,K.1^65,-1*K.1^85,K.1^73,K.1^11,K.1^17,K.1^43,K.1^35,K.1^25,-1*K.1^71,-1*K.1^95,-1*K.1^23,K.1^91,K.1^59,-1*K.1^55,K.1^7,-1*K.1^91,-1*K.1^59,K.1^55,-1*K.1^53,K.1^71,-1*K.1^25,-1*K.1^35,-1*K.1^77,K.1^19,-1*K.1,-1*K.1^41,-1*K.1^13,-1*K.1^89,K.1^31,-1*K.1^47,-1*K.1^67,-1*K.1^83,K.1,-1*K.1^29,K.1^5,-1*K.1^5,K.1^41,K.1^49,-1*K.1^73,-1*K.1^11,K.1^77,-1*K.1^79,K.1^83,-1*K.1^7,K.1^89,-1*K.1^31,K.1^23,K.1^95,-1*K.1^43,-1*K.1^37,-1*K.1^49,-1*K.1^65,K.1^13,K.1^79,K.1^47,K.1^53,K.1^85,-1*K.1^19,K.1^67,K.1^61,-1*K.1^61,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,-1*K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^90,-1*K.1^6,-1*K.1^90,K.1^6,-1*K.1^78,K.1^18,K.1^42,-1*K.1^54,K.1^30,K.1^66,K.1^4,-1*K.1^76,-1*K.1^44,K.1^20,K.1^52,-1*K.1^28,K.1^68,-1*K.1^4,-1*K.1^68,K.1^76,K.1^44,-1*K.1^20,K.1^28,-1*K.1^92,-1*K.1^52,K.1^92,-1*K.1^33,-1*K.1^63,-1*K.1^69,K.1^27,-1*K.1^51,K.1^45,K.1^39,-1*K.1^57,-1*K.1^81,K.1^15,-1*K.1^75,K.1^21,K.1^9,-1*K.1^87,-1*K.1^93,K.1^3,K.1^93,-1*K.1^3,K.1^87,-1*K.1^9,-1*K.1^21,K.1^75,-1*K.1^15,K.1^81,K.1^57,-1*K.1^39,-1*K.1^45,K.1^51,-1*K.1^27,K.1^69,K.1^63,K.1^33,K.1^58,-1*K.1^86,-1*K.1^22,-1*K.1^62,K.1^50,-1*K.1^2,K.1^74,-1*K.1^70,-1*K.1^34,-1*K.1^74,K.1^34,K.1^22,K.1^38,-1*K.1^50,K.1^46,-1*K.1^58,K.1^82,-1*K.1^14,K.1^94,-1*K.1^38,K.1^14,-1*K.1^46,K.1^86,K.1^2,K.1^26,K.1^10,-1*K.1^26,K.1^70,-1*K.1^82,-1*K.1^10,K.1^62,-1*K.1^94,-1*K.1^31,K.1^11,-1*K.1^79,K.1^59,-1*K.1^71,-1*K.1^37,K.1^31,-1*K.1^5,-1*K.1^13,K.1^23,-1*K.1^73,-1*K.1^49,K.1^25,K.1^53,K.1^85,-1*K.1^89,-1*K.1^41,-1*K.1^53,-1*K.1^85,K.1^89,K.1^91,K.1^73,-1*K.1^23,K.1^13,K.1^67,-1*K.1^29,-1*K.1^47,-1*K.1^7,-1*K.1^35,K.1^55,-1*K.1^17,K.1,-1*K.1^77,-1*K.1^61,K.1^47,-1*K.1^19,K.1^43,-1*K.1^43,K.1^7,-1*K.1^95,K.1^71,K.1^37,-1*K.1^67,-1*K.1^65,K.1^61,K.1^41,-1*K.1^55,K.1^17,-1*K.1^25,K.1^49,K.1^5,-1*K.1^11,K.1^95,K.1^79,K.1^35,K.1^65,-1*K.1,-1*K.1^91,-1*K.1^59,K.1^29,K.1^77,-1*K.1^83,K.1^83,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^6,K.1^90,K.1^6,-1*K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,-1*K.1^30,-1*K.1^92,K.1^20,K.1^52,-1*K.1^76,-1*K.1^44,K.1^68,-1*K.1^28,K.1^92,K.1^28,-1*K.1^20,-1*K.1^52,K.1^76,-1*K.1^68,K.1^4,K.1^44,-1*K.1^4,K.1^63,K.1^33,K.1^27,-1*K.1^69,K.1^45,-1*K.1^51,-1*K.1^57,K.1^39,K.1^15,-1*K.1^81,K.1^21,-1*K.1^75,-1*K.1^87,K.1^9,K.1^3,-1*K.1^93,-1*K.1^3,K.1^93,-1*K.1^9,K.1^87,K.1^75,-1*K.1^21,K.1^81,-1*K.1^15,-1*K.1^39,K.1^57,K.1^51,-1*K.1^45,K.1^69,-1*K.1^27,-1*K.1^33,-1*K.1^63,-1*K.1^38,K.1^10,K.1^74,K.1^34,-1*K.1^46,K.1^94,-1*K.1^22,K.1^26,K.1^62,K.1^22,-1*K.1^62,-1*K.1^74,-1*K.1^58,K.1^46,-1*K.1^50,K.1^38,-1*K.1^14,K.1^82,-1*K.1^2,K.1^58,-1*K.1^82,K.1^50,-1*K.1^10,-1*K.1^94,-1*K.1^70,-1*K.1^86,K.1^70,-1*K.1^26,K.1^14,K.1^86,-1*K.1^34,K.1^2,K.1^65,-1*K.1^85,K.1^17,-1*K.1^37,K.1^25,K.1^59,-1*K.1^65,K.1^91,K.1^83,-1*K.1^73,K.1^23,K.1^47,-1*K.1^71,-1*K.1^43,-1*K.1^11,K.1^7,K.1^55,K.1^43,K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^23,K.1^73,-1*K.1^83,-1*K.1^29,K.1^67,K.1^49,K.1^89,K.1^61,-1*K.1^41,K.1^79,-1*K.1^95,K.1^19,K.1^35,-1*K.1^49,K.1^77,-1*K.1^53,K.1^53,-1*K.1^89,K.1,-1*K.1^25,-1*K.1^59,K.1^29,K.1^31,-1*K.1^35,-1*K.1^55,K.1^41,-1*K.1^79,K.1^71,-1*K.1^47,-1*K.1^91,K.1^85,-1*K.1,-1*K.1^17,-1*K.1^61,-1*K.1^31,K.1^95,K.1^5,K.1^37,-1*K.1^67,-1*K.1^19,K.1^13,-1*K.1^13,-1*K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,-1*K.1^8,-1*K.1^88,K.1^40,K.1^56,K.1^8,-1*K.1^40,-1*K.1^56,K.1^88,-1*K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^90,-1*K.1^6,-1*K.1^90,K.1^6,-1*K.1^78,K.1^18,K.1^42,-1*K.1^54,K.1^30,K.1^66,K.1^4,-1*K.1^76,-1*K.1^44,K.1^20,K.1^52,-1*K.1^28,K.1^68,-1*K.1^4,-1*K.1^68,K.1^76,K.1^44,-1*K.1^20,K.1^28,-1*K.1^92,-1*K.1^52,K.1^92,K.1^33,K.1^63,K.1^69,-1*K.1^27,K.1^51,-1*K.1^45,-1*K.1^39,K.1^57,K.1^81,-1*K.1^15,K.1^75,-1*K.1^21,-1*K.1^9,K.1^87,K.1^93,-1*K.1^3,-1*K.1^93,K.1^3,-1*K.1^87,K.1^9,K.1^21,-1*K.1^75,K.1^15,-1*K.1^81,-1*K.1^57,K.1^39,K.1^45,-1*K.1^51,K.1^27,-1*K.1^69,-1*K.1^63,-1*K.1^33,K.1^58,-1*K.1^86,-1*K.1^22,-1*K.1^62,K.1^50,-1*K.1^2,K.1^74,-1*K.1^70,-1*K.1^34,-1*K.1^74,K.1^34,K.1^22,K.1^38,-1*K.1^50,K.1^46,-1*K.1^58,K.1^82,-1*K.1^14,K.1^94,-1*K.1^38,K.1^14,-1*K.1^46,K.1^86,K.1^2,K.1^26,K.1^10,-1*K.1^26,K.1^70,-1*K.1^82,-1*K.1^10,K.1^62,-1*K.1^94,K.1^31,-1*K.1^11,K.1^79,-1*K.1^59,K.1^71,K.1^37,-1*K.1^31,K.1^5,K.1^13,-1*K.1^23,K.1^73,K.1^49,-1*K.1^25,-1*K.1^53,-1*K.1^85,K.1^89,K.1^41,K.1^53,K.1^85,-1*K.1^89,-1*K.1^91,-1*K.1^73,K.1^23,-1*K.1^13,-1*K.1^67,K.1^29,K.1^47,K.1^7,K.1^35,-1*K.1^55,K.1^17,-1*K.1,K.1^77,K.1^61,-1*K.1^47,K.1^19,-1*K.1^43,K.1^43,-1*K.1^7,K.1^95,-1*K.1^71,-1*K.1^37,K.1^67,K.1^65,-1*K.1^61,-1*K.1^41,K.1^55,-1*K.1^17,K.1^25,-1*K.1^49,-1*K.1^5,K.1^11,-1*K.1^95,-1*K.1^79,-1*K.1^35,-1*K.1^65,K.1,K.1^91,K.1^59,-1*K.1^29,-1*K.1^77,K.1^83,-1*K.1^83,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,K.1^88,K.1^8,-1*K.1^56,-1*K.1^40,-1*K.1^88,K.1^56,K.1^40,-1*K.1^8,K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^6,K.1^90,K.1^6,-1*K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,-1*K.1^30,-1*K.1^92,K.1^20,K.1^52,-1*K.1^76,-1*K.1^44,K.1^68,-1*K.1^28,K.1^92,K.1^28,-1*K.1^20,-1*K.1^52,K.1^76,-1*K.1^68,K.1^4,K.1^44,-1*K.1^4,-1*K.1^63,-1*K.1^33,-1*K.1^27,K.1^69,-1*K.1^45,K.1^51,K.1^57,-1*K.1^39,-1*K.1^15,K.1^81,-1*K.1^21,K.1^75,K.1^87,-1*K.1^9,-1*K.1^3,K.1^93,K.1^3,-1*K.1^93,K.1^9,-1*K.1^87,-1*K.1^75,K.1^21,-1*K.1^81,K.1^15,K.1^39,-1*K.1^57,-1*K.1^51,K.1^45,-1*K.1^69,K.1^27,K.1^33,K.1^63,-1*K.1^38,K.1^10,K.1^74,K.1^34,-1*K.1^46,K.1^94,-1*K.1^22,K.1^26,K.1^62,K.1^22,-1*K.1^62,-1*K.1^74,-1*K.1^58,K.1^46,-1*K.1^50,K.1^38,-1*K.1^14,K.1^82,-1*K.1^2,K.1^58,-1*K.1^82,K.1^50,-1*K.1^10,-1*K.1^94,-1*K.1^70,-1*K.1^86,K.1^70,-1*K.1^26,K.1^14,K.1^86,-1*K.1^34,K.1^2,-1*K.1^65,K.1^85,-1*K.1^17,K.1^37,-1*K.1^25,-1*K.1^59,K.1^65,-1*K.1^91,-1*K.1^83,K.1^73,-1*K.1^23,-1*K.1^47,K.1^71,K.1^43,K.1^11,-1*K.1^7,-1*K.1^55,-1*K.1^43,-1*K.1^11,K.1^7,K.1^5,K.1^23,-1*K.1^73,K.1^83,K.1^29,-1*K.1^67,-1*K.1^49,-1*K.1^89,-1*K.1^61,K.1^41,-1*K.1^79,K.1^95,-1*K.1^19,-1*K.1^35,K.1^49,-1*K.1^77,K.1^53,-1*K.1^53,K.1^89,-1*K.1,K.1^25,K.1^59,-1*K.1^29,-1*K.1^31,K.1^35,K.1^55,-1*K.1^41,K.1^79,-1*K.1^71,K.1^47,K.1^91,-1*K.1^85,K.1,K.1^17,K.1^61,K.1^31,-1*K.1^95,-1*K.1^5,-1*K.1^37,K.1^67,K.1^19,-1*K.1^13,K.1^13,K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^18,K.1^78,K.1^18,-1*K.1^78,K.1^54,-1*K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^90,K.1^52,-1*K.1^28,K.1^92,K.1^68,-1*K.1^4,K.1^76,-1*K.1^20,-1*K.1^52,K.1^20,K.1^28,-1*K.1^92,-1*K.1^68,-1*K.1^76,-1*K.1^44,K.1^4,K.1^44,K.1^93,K.1^3,-1*K.1^81,K.1^15,K.1^39,-1*K.1^57,-1*K.1^75,K.1^21,-1*K.1^45,K.1^51,-1*K.1^63,K.1^33,K.1^69,-1*K.1^27,-1*K.1^9,K.1^87,K.1^9,-1*K.1^87,K.1^27,-1*K.1^69,-1*K.1^33,K.1^63,-1*K.1^51,K.1^45,-1*K.1^21,K.1^75,K.1^57,-1*K.1^39,-1*K.1^15,K.1^81,-1*K.1^3,-1*K.1^93,K.1^82,-1*K.1^62,K.1^94,K.1^38,-1*K.1^74,K.1^26,-1*K.1^2,-1*K.1^46,K.1^58,K.1^2,-1*K.1^58,-1*K.1^94,K.1^14,K.1^74,-1*K.1^22,-1*K.1^82,K.1^10,-1*K.1^86,-1*K.1^70,-1*K.1^14,K.1^86,K.1^22,K.1^62,-1*K.1^26,K.1^50,K.1^34,-1*K.1^50,K.1^46,-1*K.1^10,-1*K.1^34,-1*K.1^38,K.1^70,-1*K.1^67,-1*K.1^95,K.1^19,K.1^47,-1*K.1^11,-1*K.1^49,K.1^67,-1*K.1^17,K.1^25,-1*K.1^59,K.1^37,-1*K.1^13,K.1^85,K.1^65,-1*K.1,K.1^53,K.1^5,-1*K.1^65,K.1,-1*K.1^53,K.1^79,-1*K.1^37,K.1^59,-1*K.1^25,-1*K.1^55,K.1^41,-1*K.1^83,K.1^43,K.1^23,-1*K.1^91,K.1^77,-1*K.1^61,K.1^89,K.1^73,K.1^83,K.1^7,K.1^31,-1*K.1^31,-1*K.1^43,K.1^35,K.1^11,K.1^49,K.1^55,-1*K.1^29,-1*K.1^73,-1*K.1^5,K.1^91,-1*K.1^77,-1*K.1^85,K.1^13,K.1^17,K.1^95,-1*K.1^35,-1*K.1^19,-1*K.1^23,K.1^29,K.1^61,-1*K.1^79,-1*K.1^47,-1*K.1^41,-1*K.1^89,K.1^71,-1*K.1^71,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,-1*K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^78,-1*K.1^18,-1*K.1^78,K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,K.1^66,K.1^90,K.1^6,-1*K.1^44,K.1^68,-1*K.1^4,-1*K.1^28,K.1^92,-1*K.1^20,K.1^76,K.1^44,-1*K.1^76,-1*K.1^68,K.1^4,K.1^28,K.1^20,K.1^52,-1*K.1^92,-1*K.1^52,-1*K.1^3,-1*K.1^93,K.1^15,-1*K.1^81,-1*K.1^57,K.1^39,K.1^21,-1*K.1^75,K.1^51,-1*K.1^45,K.1^33,-1*K.1^63,-1*K.1^27,K.1^69,K.1^87,-1*K.1^9,-1*K.1^87,K.1^9,-1*K.1^69,K.1^27,K.1^63,-1*K.1^33,K.1^45,-1*K.1^51,K.1^75,-1*K.1^21,-1*K.1^39,K.1^57,K.1^81,-1*K.1^15,K.1^93,K.1^3,-1*K.1^14,K.1^34,-1*K.1^2,-1*K.1^58,K.1^22,-1*K.1^70,K.1^94,K.1^50,-1*K.1^38,-1*K.1^94,K.1^38,K.1^2,-1*K.1^82,-1*K.1^22,K.1^74,K.1^14,-1*K.1^86,K.1^10,K.1^26,K.1^82,-1*K.1^10,-1*K.1^74,-1*K.1^34,K.1^70,-1*K.1^46,-1*K.1^62,K.1^46,-1*K.1^50,K.1^86,K.1^62,K.1^58,-1*K.1^26,K.1^29,K.1,-1*K.1^77,-1*K.1^49,K.1^85,K.1^47,-1*K.1^29,K.1^79,-1*K.1^71,K.1^37,-1*K.1^59,K.1^83,-1*K.1^11,-1*K.1^31,K.1^95,-1*K.1^43,-1*K.1^91,K.1^31,-1*K.1^95,K.1^43,-1*K.1^17,K.1^59,-1*K.1^37,K.1^71,K.1^41,-1*K.1^55,K.1^13,-1*K.1^53,-1*K.1^73,K.1^5,-1*K.1^19,K.1^35,-1*K.1^7,-1*K.1^23,-1*K.1^13,-1*K.1^89,-1*K.1^65,K.1^65,K.1^53,-1*K.1^61,-1*K.1^85,-1*K.1^47,-1*K.1^41,K.1^67,K.1^23,K.1^91,-1*K.1^5,K.1^19,K.1^11,-1*K.1^83,-1*K.1^79,-1*K.1,K.1^61,K.1^77,K.1^73,-1*K.1^67,-1*K.1^35,K.1^17,K.1^49,K.1^55,K.1^7,-1*K.1^25,K.1^25,K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^18,K.1^78,K.1^18,-1*K.1^78,K.1^54,-1*K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^90,K.1^52,-1*K.1^28,K.1^92,K.1^68,-1*K.1^4,K.1^76,-1*K.1^20,-1*K.1^52,K.1^20,K.1^28,-1*K.1^92,-1*K.1^68,-1*K.1^76,-1*K.1^44,K.1^4,K.1^44,-1*K.1^93,-1*K.1^3,K.1^81,-1*K.1^15,-1*K.1^39,K.1^57,K.1^75,-1*K.1^21,K.1^45,-1*K.1^51,K.1^63,-1*K.1^33,-1*K.1^69,K.1^27,K.1^9,-1*K.1^87,-1*K.1^9,K.1^87,-1*K.1^27,K.1^69,K.1^33,-1*K.1^63,K.1^51,-1*K.1^45,K.1^21,-1*K.1^75,-1*K.1^57,K.1^39,K.1^15,-1*K.1^81,K.1^3,K.1^93,K.1^82,-1*K.1^62,K.1^94,K.1^38,-1*K.1^74,K.1^26,-1*K.1^2,-1*K.1^46,K.1^58,K.1^2,-1*K.1^58,-1*K.1^94,K.1^14,K.1^74,-1*K.1^22,-1*K.1^82,K.1^10,-1*K.1^86,-1*K.1^70,-1*K.1^14,K.1^86,K.1^22,K.1^62,-1*K.1^26,K.1^50,K.1^34,-1*K.1^50,K.1^46,-1*K.1^10,-1*K.1^34,-1*K.1^38,K.1^70,K.1^67,K.1^95,-1*K.1^19,-1*K.1^47,K.1^11,K.1^49,-1*K.1^67,K.1^17,-1*K.1^25,K.1^59,-1*K.1^37,K.1^13,-1*K.1^85,-1*K.1^65,K.1,-1*K.1^53,-1*K.1^5,K.1^65,-1*K.1,K.1^53,-1*K.1^79,K.1^37,-1*K.1^59,K.1^25,K.1^55,-1*K.1^41,K.1^83,-1*K.1^43,-1*K.1^23,K.1^91,-1*K.1^77,K.1^61,-1*K.1^89,-1*K.1^73,-1*K.1^83,-1*K.1^7,-1*K.1^31,K.1^31,K.1^43,-1*K.1^35,-1*K.1^11,-1*K.1^49,-1*K.1^55,K.1^29,K.1^73,K.1^5,-1*K.1^91,K.1^77,K.1^85,-1*K.1^13,-1*K.1^17,-1*K.1^95,K.1^35,K.1^19,K.1^23,-1*K.1^29,-1*K.1^61,K.1^79,K.1^47,K.1^41,K.1^89,-1*K.1^71,K.1^71,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,-1*K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^78,-1*K.1^18,-1*K.1^78,K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,K.1^66,K.1^90,K.1^6,-1*K.1^44,K.1^68,-1*K.1^4,-1*K.1^28,K.1^92,-1*K.1^20,K.1^76,K.1^44,-1*K.1^76,-1*K.1^68,K.1^4,K.1^28,K.1^20,K.1^52,-1*K.1^92,-1*K.1^52,K.1^3,K.1^93,-1*K.1^15,K.1^81,K.1^57,-1*K.1^39,-1*K.1^21,K.1^75,-1*K.1^51,K.1^45,-1*K.1^33,K.1^63,K.1^27,-1*K.1^69,-1*K.1^87,K.1^9,K.1^87,-1*K.1^9,K.1^69,-1*K.1^27,-1*K.1^63,K.1^33,-1*K.1^45,K.1^51,-1*K.1^75,K.1^21,K.1^39,-1*K.1^57,-1*K.1^81,K.1^15,-1*K.1^93,-1*K.1^3,-1*K.1^14,K.1^34,-1*K.1^2,-1*K.1^58,K.1^22,-1*K.1^70,K.1^94,K.1^50,-1*K.1^38,-1*K.1^94,K.1^38,K.1^2,-1*K.1^82,-1*K.1^22,K.1^74,K.1^14,-1*K.1^86,K.1^10,K.1^26,K.1^82,-1*K.1^10,-1*K.1^74,-1*K.1^34,K.1^70,-1*K.1^46,-1*K.1^62,K.1^46,-1*K.1^50,K.1^86,K.1^62,K.1^58,-1*K.1^26,-1*K.1^29,-1*K.1,K.1^77,K.1^49,-1*K.1^85,-1*K.1^47,K.1^29,-1*K.1^79,K.1^71,-1*K.1^37,K.1^59,-1*K.1^83,K.1^11,K.1^31,-1*K.1^95,K.1^43,K.1^91,-1*K.1^31,K.1^95,-1*K.1^43,K.1^17,-1*K.1^59,K.1^37,-1*K.1^71,-1*K.1^41,K.1^55,-1*K.1^13,K.1^53,K.1^73,-1*K.1^5,K.1^19,-1*K.1^35,K.1^7,K.1^23,K.1^13,K.1^89,K.1^65,-1*K.1^65,-1*K.1^53,K.1^61,K.1^85,K.1^47,K.1^41,-1*K.1^67,-1*K.1^23,-1*K.1^91,K.1^5,-1*K.1^19,-1*K.1^11,K.1^83,K.1^79,K.1,-1*K.1^61,-1*K.1^77,-1*K.1^73,K.1^67,K.1^35,-1*K.1^17,-1*K.1^49,-1*K.1^55,-1*K.1^7,K.1^25,-1*K.1^25,-1*K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,-1*K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^18,-1*K.1^78,-1*K.1^18,K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,K.1^30,K.1^6,K.1^90,K.1^52,-1*K.1^28,K.1^92,K.1^68,-1*K.1^4,K.1^76,-1*K.1^20,-1*K.1^52,K.1^20,K.1^28,-1*K.1^92,-1*K.1^68,-1*K.1^76,-1*K.1^44,K.1^4,K.1^44,-1*K.1^45,-1*K.1^51,K.1^33,-1*K.1^63,-1*K.1^87,K.1^9,-1*K.1^27,K.1^69,-1*K.1^93,K.1^3,-1*K.1^15,K.1^81,-1*K.1^21,K.1^75,-1*K.1^57,K.1^39,K.1^57,-1*K.1^39,-1*K.1^75,K.1^21,-1*K.1^81,K.1^15,-1*K.1^3,K.1^93,-1*K.1^69,K.1^27,-1*K.1^9,K.1^87,K.1^63,-1*K.1^33,K.1^51,K.1^45,-1*K.1^82,K.1^62,-1*K.1^94,-1*K.1^38,K.1^74,-1*K.1^26,K.1^2,K.1^46,-1*K.1^58,-1*K.1^2,K.1^58,K.1^94,-1*K.1^14,-1*K.1^74,K.1^22,K.1^82,-1*K.1^10,K.1^86,K.1^70,K.1^14,-1*K.1^86,-1*K.1^22,-1*K.1^62,K.1^26,-1*K.1^50,-1*K.1^34,K.1^50,-1*K.1^46,K.1^10,K.1^34,K.1^38,-1*K.1^70,-1*K.1^19,-1*K.1^47,-1*K.1^67,-1*K.1^95,K.1^59,K.1,K.1^19,-1*K.1^65,K.1^73,-1*K.1^11,K.1^85,-1*K.1^61,-1*K.1^37,-1*K.1^17,-1*K.1^49,-1*K.1^5,K.1^53,K.1^17,K.1^49,K.1^5,K.1^31,-1*K.1^85,K.1^11,-1*K.1^73,-1*K.1^7,K.1^89,-1*K.1^35,-1*K.1^91,-1*K.1^71,-1*K.1^43,-1*K.1^29,K.1^13,-1*K.1^41,-1*K.1^25,K.1^35,-1*K.1^55,-1*K.1^79,K.1^79,K.1^91,-1*K.1^83,-1*K.1^59,-1*K.1,K.1^7,-1*K.1^77,K.1^25,-1*K.1^53,K.1^43,K.1^29,K.1^37,K.1^61,K.1^65,K.1^47,K.1^83,K.1^67,K.1^71,K.1^77,-1*K.1^13,-1*K.1^31,K.1^95,-1*K.1^89,K.1^41,K.1^23,-1*K.1^23,K.1^55]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^78,K.1^18,K.1^78,-1*K.1^18,K.1^42,-1*K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,-1*K.1^6,-1*K.1^44,K.1^68,-1*K.1^4,-1*K.1^28,K.1^92,-1*K.1^20,K.1^76,K.1^44,-1*K.1^76,-1*K.1^68,K.1^4,K.1^28,K.1^20,K.1^52,-1*K.1^92,-1*K.1^52,K.1^51,K.1^45,-1*K.1^63,K.1^33,K.1^9,-1*K.1^87,K.1^69,-1*K.1^27,K.1^3,-1*K.1^93,K.1^81,-1*K.1^15,K.1^75,-1*K.1^21,K.1^39,-1*K.1^57,-1*K.1^39,K.1^57,K.1^21,-1*K.1^75,K.1^15,-1*K.1^81,K.1^93,-1*K.1^3,K.1^27,-1*K.1^69,K.1^87,-1*K.1^9,-1*K.1^33,K.1^63,-1*K.1^45,-1*K.1^51,K.1^14,-1*K.1^34,K.1^2,K.1^58,-1*K.1^22,K.1^70,-1*K.1^94,-1*K.1^50,K.1^38,K.1^94,-1*K.1^38,-1*K.1^2,K.1^82,K.1^22,-1*K.1^74,-1*K.1^14,K.1^86,-1*K.1^10,-1*K.1^26,-1*K.1^82,K.1^10,K.1^74,K.1^34,-1*K.1^70,K.1^46,K.1^62,-1*K.1^46,K.1^50,-1*K.1^86,-1*K.1^62,-1*K.1^58,K.1^26,K.1^77,K.1^49,K.1^29,K.1,-1*K.1^37,-1*K.1^95,-1*K.1^77,K.1^31,-1*K.1^23,K.1^85,-1*K.1^11,K.1^35,K.1^59,K.1^79,K.1^47,K.1^91,-1*K.1^43,-1*K.1^79,-1*K.1^47,-1*K.1^91,-1*K.1^65,K.1^11,-1*K.1^85,K.1^23,K.1^89,-1*K.1^7,K.1^61,K.1^5,K.1^25,K.1^53,K.1^67,-1*K.1^83,K.1^55,K.1^71,-1*K.1^61,K.1^41,K.1^17,-1*K.1^17,-1*K.1^5,K.1^13,K.1^37,K.1^95,-1*K.1^89,K.1^19,-1*K.1^71,K.1^43,-1*K.1^53,-1*K.1^67,-1*K.1^59,-1*K.1^35,-1*K.1^31,-1*K.1^49,-1*K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^83,K.1^65,-1*K.1,K.1^7,-1*K.1^55,-1*K.1^73,K.1^73,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,-1*K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^18,-1*K.1^78,-1*K.1^18,K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,K.1^30,K.1^6,K.1^90,K.1^52,-1*K.1^28,K.1^92,K.1^68,-1*K.1^4,K.1^76,-1*K.1^20,-1*K.1^52,K.1^20,K.1^28,-1*K.1^92,-1*K.1^68,-1*K.1^76,-1*K.1^44,K.1^4,K.1^44,K.1^45,K.1^51,-1*K.1^33,K.1^63,K.1^87,-1*K.1^9,K.1^27,-1*K.1^69,K.1^93,-1*K.1^3,K.1^15,-1*K.1^81,K.1^21,-1*K.1^75,K.1^57,-1*K.1^39,-1*K.1^57,K.1^39,K.1^75,-1*K.1^21,K.1^81,-1*K.1^15,K.1^3,-1*K.1^93,K.1^69,-1*K.1^27,K.1^9,-1*K.1^87,-1*K.1^63,K.1^33,-1*K.1^51,-1*K.1^45,-1*K.1^82,K.1^62,-1*K.1^94,-1*K.1^38,K.1^74,-1*K.1^26,K.1^2,K.1^46,-1*K.1^58,-1*K.1^2,K.1^58,K.1^94,-1*K.1^14,-1*K.1^74,K.1^22,K.1^82,-1*K.1^10,K.1^86,K.1^70,K.1^14,-1*K.1^86,-1*K.1^22,-1*K.1^62,K.1^26,-1*K.1^50,-1*K.1^34,K.1^50,-1*K.1^46,K.1^10,K.1^34,K.1^38,-1*K.1^70,K.1^19,K.1^47,K.1^67,K.1^95,-1*K.1^59,-1*K.1,-1*K.1^19,K.1^65,-1*K.1^73,K.1^11,-1*K.1^85,K.1^61,K.1^37,K.1^17,K.1^49,K.1^5,-1*K.1^53,-1*K.1^17,-1*K.1^49,-1*K.1^5,-1*K.1^31,K.1^85,-1*K.1^11,K.1^73,K.1^7,-1*K.1^89,K.1^35,K.1^91,K.1^71,K.1^43,K.1^29,-1*K.1^13,K.1^41,K.1^25,-1*K.1^35,K.1^55,K.1^79,-1*K.1^79,-1*K.1^91,K.1^83,K.1^59,K.1,-1*K.1^7,K.1^77,-1*K.1^25,K.1^53,-1*K.1^43,-1*K.1^29,-1*K.1^37,-1*K.1^61,-1*K.1^65,-1*K.1^47,-1*K.1^83,-1*K.1^67,-1*K.1^71,-1*K.1^77,K.1^13,K.1^31,-1*K.1^95,K.1^89,-1*K.1^41,-1*K.1^23,K.1^23,-1*K.1^55]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^78,K.1^18,K.1^78,-1*K.1^18,K.1^42,-1*K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,-1*K.1^6,-1*K.1^44,K.1^68,-1*K.1^4,-1*K.1^28,K.1^92,-1*K.1^20,K.1^76,K.1^44,-1*K.1^76,-1*K.1^68,K.1^4,K.1^28,K.1^20,K.1^52,-1*K.1^92,-1*K.1^52,-1*K.1^51,-1*K.1^45,K.1^63,-1*K.1^33,-1*K.1^9,K.1^87,-1*K.1^69,K.1^27,-1*K.1^3,K.1^93,-1*K.1^81,K.1^15,-1*K.1^75,K.1^21,-1*K.1^39,K.1^57,K.1^39,-1*K.1^57,-1*K.1^21,K.1^75,-1*K.1^15,K.1^81,-1*K.1^93,K.1^3,-1*K.1^27,K.1^69,-1*K.1^87,K.1^9,K.1^33,-1*K.1^63,K.1^45,K.1^51,K.1^14,-1*K.1^34,K.1^2,K.1^58,-1*K.1^22,K.1^70,-1*K.1^94,-1*K.1^50,K.1^38,K.1^94,-1*K.1^38,-1*K.1^2,K.1^82,K.1^22,-1*K.1^74,-1*K.1^14,K.1^86,-1*K.1^10,-1*K.1^26,-1*K.1^82,K.1^10,K.1^74,K.1^34,-1*K.1^70,K.1^46,K.1^62,-1*K.1^46,K.1^50,-1*K.1^86,-1*K.1^62,-1*K.1^58,K.1^26,-1*K.1^77,-1*K.1^49,-1*K.1^29,-1*K.1,K.1^37,K.1^95,K.1^77,-1*K.1^31,K.1^23,-1*K.1^85,K.1^11,-1*K.1^35,-1*K.1^59,-1*K.1^79,-1*K.1^47,-1*K.1^91,K.1^43,K.1^79,K.1^47,K.1^91,K.1^65,-1*K.1^11,K.1^85,-1*K.1^23,-1*K.1^89,K.1^7,-1*K.1^61,-1*K.1^5,-1*K.1^25,-1*K.1^53,-1*K.1^67,K.1^83,-1*K.1^55,-1*K.1^71,K.1^61,-1*K.1^41,-1*K.1^17,K.1^17,K.1^5,-1*K.1^13,-1*K.1^37,-1*K.1^95,K.1^89,-1*K.1^19,K.1^71,-1*K.1^43,K.1^53,K.1^67,K.1^59,K.1^35,K.1^31,K.1^49,K.1^13,K.1^29,K.1^25,K.1^19,-1*K.1^83,-1*K.1^65,K.1,-1*K.1^7,K.1^55,K.1^73,-1*K.1^73,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,-1*K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^66,K.1^30,K.1^66,-1*K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,K.1^78,K.1^54,K.1^42,-1*K.1^52,K.1^28,-1*K.1^92,-1*K.1^68,K.1^4,-1*K.1^76,K.1^20,K.1^52,-1*K.1^20,-1*K.1^28,K.1^92,K.1^68,K.1^76,K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^21,-1*K.1^75,-1*K.1^9,K.1^87,-1*K.1^15,K.1^81,-1*K.1^51,K.1^45,-1*K.1^69,K.1^27,K.1^39,-1*K.1^57,K.1^93,-1*K.1^3,K.1^33,-1*K.1^63,-1*K.1^33,K.1^63,K.1^3,-1*K.1^93,K.1^57,-1*K.1^39,-1*K.1^27,K.1^69,-1*K.1^45,K.1^51,-1*K.1^81,K.1^15,-1*K.1^87,K.1^9,K.1^75,K.1^21,-1*K.1^34,-1*K.1^14,K.1^46,-1*K.1^86,K.1^26,K.1^74,-1*K.1^50,K.1^94,-1*K.1^10,K.1^50,K.1^10,-1*K.1^46,-1*K.1^62,-1*K.1^26,K.1^70,K.1^34,K.1^58,-1*K.1^38,-1*K.1^22,K.1^62,K.1^38,-1*K.1^70,K.1^14,-1*K.1^74,-1*K.1^2,K.1^82,K.1^2,-1*K.1^94,-1*K.1^58,-1*K.1^82,K.1^86,K.1^22,-1*K.1^43,K.1^71,-1*K.1^91,-1*K.1^23,K.1^83,K.1^73,K.1^43,K.1^41,-1*K.1^49,-1*K.1^35,K.1^61,-1*K.1^37,-1*K.1^13,-1*K.1^89,K.1^25,K.1^77,K.1^29,K.1^89,-1*K.1^25,-1*K.1^77,-1*K.1^55,-1*K.1^61,K.1^35,K.1^49,K.1^31,-1*K.1^65,-1*K.1^59,K.1^19,K.1^95,-1*K.1^67,-1*K.1^5,-1*K.1^85,K.1^17,K.1,K.1^59,K.1^79,-1*K.1^7,K.1^7,-1*K.1^19,K.1^11,-1*K.1^83,-1*K.1^73,-1*K.1^31,-1*K.1^53,-1*K.1,-1*K.1^29,K.1^67,K.1^5,K.1^13,K.1^37,-1*K.1^41,-1*K.1^71,-1*K.1^11,K.1^91,-1*K.1^95,K.1^53,K.1^85,K.1^55,K.1^23,K.1^65,-1*K.1^17,-1*K.1^47,K.1^47,-1*K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^30,-1*K.1^66,-1*K.1^30,K.1^66,-1*K.1^90,K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,-1*K.1^54,K.1^44,-1*K.1^68,K.1^4,K.1^28,-1*K.1^92,K.1^20,-1*K.1^76,-1*K.1^44,K.1^76,K.1^68,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^52,K.1^92,K.1^52,K.1^75,K.1^21,K.1^87,-1*K.1^9,K.1^81,-1*K.1^15,K.1^45,-1*K.1^51,K.1^27,-1*K.1^69,-1*K.1^57,K.1^39,-1*K.1^3,K.1^93,-1*K.1^63,K.1^33,K.1^63,-1*K.1^33,-1*K.1^93,K.1^3,-1*K.1^39,K.1^57,K.1^69,-1*K.1^27,K.1^51,-1*K.1^45,K.1^15,-1*K.1^81,K.1^9,-1*K.1^87,-1*K.1^21,-1*K.1^75,K.1^62,K.1^82,-1*K.1^50,K.1^10,-1*K.1^70,-1*K.1^22,K.1^46,-1*K.1^2,K.1^86,-1*K.1^46,-1*K.1^86,K.1^50,K.1^34,K.1^70,-1*K.1^26,-1*K.1^62,-1*K.1^38,K.1^58,K.1^74,-1*K.1^34,-1*K.1^58,K.1^26,-1*K.1^82,K.1^22,K.1^94,-1*K.1^14,-1*K.1^94,K.1^2,K.1^38,K.1^14,-1*K.1^10,-1*K.1^74,K.1^53,-1*K.1^25,K.1^5,K.1^73,-1*K.1^13,-1*K.1^23,-1*K.1^53,-1*K.1^55,K.1^47,K.1^61,-1*K.1^35,K.1^59,K.1^83,K.1^7,-1*K.1^71,-1*K.1^19,-1*K.1^67,-1*K.1^7,K.1^71,K.1^19,K.1^41,K.1^35,-1*K.1^61,-1*K.1^47,-1*K.1^65,K.1^31,K.1^37,-1*K.1^77,-1*K.1,K.1^29,K.1^91,K.1^11,-1*K.1^79,-1*K.1^95,-1*K.1^37,-1*K.1^17,K.1^89,-1*K.1^89,K.1^77,-1*K.1^85,K.1^13,K.1^23,K.1^65,K.1^43,K.1^95,K.1^67,-1*K.1^29,-1*K.1^91,-1*K.1^83,-1*K.1^59,K.1^55,K.1^25,K.1^85,-1*K.1^5,K.1,-1*K.1^43,-1*K.1^11,-1*K.1^41,-1*K.1^73,-1*K.1^31,K.1^79,K.1^49,-1*K.1^49,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,-1*K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^66,K.1^30,K.1^66,-1*K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,K.1^78,K.1^54,K.1^42,-1*K.1^52,K.1^28,-1*K.1^92,-1*K.1^68,K.1^4,-1*K.1^76,K.1^20,K.1^52,-1*K.1^20,-1*K.1^28,K.1^92,K.1^68,K.1^76,K.1^44,-1*K.1^4,-1*K.1^44,K.1^21,K.1^75,K.1^9,-1*K.1^87,K.1^15,-1*K.1^81,K.1^51,-1*K.1^45,K.1^69,-1*K.1^27,-1*K.1^39,K.1^57,-1*K.1^93,K.1^3,-1*K.1^33,K.1^63,K.1^33,-1*K.1^63,-1*K.1^3,K.1^93,-1*K.1^57,K.1^39,K.1^27,-1*K.1^69,K.1^45,-1*K.1^51,K.1^81,-1*K.1^15,K.1^87,-1*K.1^9,-1*K.1^75,-1*K.1^21,-1*K.1^34,-1*K.1^14,K.1^46,-1*K.1^86,K.1^26,K.1^74,-1*K.1^50,K.1^94,-1*K.1^10,K.1^50,K.1^10,-1*K.1^46,-1*K.1^62,-1*K.1^26,K.1^70,K.1^34,K.1^58,-1*K.1^38,-1*K.1^22,K.1^62,K.1^38,-1*K.1^70,K.1^14,-1*K.1^74,-1*K.1^2,K.1^82,K.1^2,-1*K.1^94,-1*K.1^58,-1*K.1^82,K.1^86,K.1^22,K.1^43,-1*K.1^71,K.1^91,K.1^23,-1*K.1^83,-1*K.1^73,-1*K.1^43,-1*K.1^41,K.1^49,K.1^35,-1*K.1^61,K.1^37,K.1^13,K.1^89,-1*K.1^25,-1*K.1^77,-1*K.1^29,-1*K.1^89,K.1^25,K.1^77,K.1^55,K.1^61,-1*K.1^35,-1*K.1^49,-1*K.1^31,K.1^65,K.1^59,-1*K.1^19,-1*K.1^95,K.1^67,K.1^5,K.1^85,-1*K.1^17,-1*K.1,-1*K.1^59,-1*K.1^79,K.1^7,-1*K.1^7,K.1^19,-1*K.1^11,K.1^83,K.1^73,K.1^31,K.1^53,K.1,K.1^29,-1*K.1^67,-1*K.1^5,-1*K.1^13,-1*K.1^37,K.1^41,K.1^71,K.1^11,-1*K.1^91,K.1^95,-1*K.1^53,-1*K.1^85,-1*K.1^55,-1*K.1^23,-1*K.1^65,K.1^17,K.1^47,-1*K.1^47,K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^30,-1*K.1^66,-1*K.1^30,K.1^66,-1*K.1^90,K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,-1*K.1^54,K.1^44,-1*K.1^68,K.1^4,K.1^28,-1*K.1^92,K.1^20,-1*K.1^76,-1*K.1^44,K.1^76,K.1^68,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^52,K.1^92,K.1^52,-1*K.1^75,-1*K.1^21,-1*K.1^87,K.1^9,-1*K.1^81,K.1^15,-1*K.1^45,K.1^51,-1*K.1^27,K.1^69,K.1^57,-1*K.1^39,K.1^3,-1*K.1^93,K.1^63,-1*K.1^33,-1*K.1^63,K.1^33,K.1^93,-1*K.1^3,K.1^39,-1*K.1^57,-1*K.1^69,K.1^27,-1*K.1^51,K.1^45,-1*K.1^15,K.1^81,-1*K.1^9,K.1^87,K.1^21,K.1^75,K.1^62,K.1^82,-1*K.1^50,K.1^10,-1*K.1^70,-1*K.1^22,K.1^46,-1*K.1^2,K.1^86,-1*K.1^46,-1*K.1^86,K.1^50,K.1^34,K.1^70,-1*K.1^26,-1*K.1^62,-1*K.1^38,K.1^58,K.1^74,-1*K.1^34,-1*K.1^58,K.1^26,-1*K.1^82,K.1^22,K.1^94,-1*K.1^14,-1*K.1^94,K.1^2,K.1^38,K.1^14,-1*K.1^10,-1*K.1^74,-1*K.1^53,K.1^25,-1*K.1^5,-1*K.1^73,K.1^13,K.1^23,K.1^53,K.1^55,-1*K.1^47,-1*K.1^61,K.1^35,-1*K.1^59,-1*K.1^83,-1*K.1^7,K.1^71,K.1^19,K.1^67,K.1^7,-1*K.1^71,-1*K.1^19,-1*K.1^41,-1*K.1^35,K.1^61,K.1^47,K.1^65,-1*K.1^31,-1*K.1^37,K.1^77,K.1,-1*K.1^29,-1*K.1^91,-1*K.1^11,K.1^79,K.1^95,K.1^37,K.1^17,-1*K.1^89,K.1^89,-1*K.1^77,K.1^85,-1*K.1^13,-1*K.1^23,-1*K.1^65,-1*K.1^43,-1*K.1^95,-1*K.1^67,K.1^29,K.1^91,K.1^83,K.1^59,-1*K.1^55,-1*K.1^25,-1*K.1^85,K.1^5,-1*K.1,K.1^43,K.1^11,K.1^41,K.1^73,K.1^31,-1*K.1^79,-1*K.1^49,K.1^49,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^66,-1*K.1^30,-1*K.1^66,K.1^30,-1*K.1^6,K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,-1*K.1^42,-1*K.1^52,K.1^28,-1*K.1^92,-1*K.1^68,K.1^4,-1*K.1^76,K.1^20,K.1^52,-1*K.1^20,-1*K.1^28,K.1^92,K.1^68,K.1^76,K.1^44,-1*K.1^4,-1*K.1^44,K.1^69,K.1^27,K.1^57,-1*K.1^39,-1*K.1^63,K.1^33,K.1^3,-1*K.1^93,-1*K.1^21,K.1^75,K.1^87,-1*K.1^9,K.1^45,-1*K.1^51,-1*K.1^81,K.1^15,K.1^81,-1*K.1^15,K.1^51,-1*K.1^45,K.1^9,-1*K.1^87,-1*K.1^75,K.1^21,K.1^93,-1*K.1^3,-1*K.1^33,K.1^63,K.1^39,-1*K.1^57,-1*K.1^27,-1*K.1^69,K.1^34,K.1^14,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^74,K.1^50,-1*K.1^94,K.1^10,-1*K.1^50,-1*K.1^10,K.1^46,K.1^62,K.1^26,-1*K.1^70,-1*K.1^34,-1*K.1^58,K.1^38,K.1^22,-1*K.1^62,-1*K.1^38,K.1^70,-1*K.1^14,K.1^74,K.1^2,-1*K.1^82,-1*K.1^2,K.1^94,K.1^58,K.1^82,-1*K.1^86,-1*K.1^22,-1*K.1^91,-1*K.1^23,K.1^43,-1*K.1^71,-1*K.1^35,K.1^25,K.1^91,-1*K.1^89,-1*K.1,-1*K.1^83,K.1^13,K.1^85,K.1^61,-1*K.1^41,-1*K.1^73,K.1^29,-1*K.1^77,K.1^41,K.1^73,-1*K.1^29,K.1^7,-1*K.1^13,K.1^83,K.1,K.1^79,-1*K.1^17,K.1^11,K.1^67,-1*K.1^47,K.1^19,K.1^53,-1*K.1^37,-1*K.1^65,-1*K.1^49,-1*K.1^11,-1*K.1^31,-1*K.1^55,K.1^55,-1*K.1^67,K.1^59,K.1^35,-1*K.1^25,-1*K.1^79,-1*K.1^5,K.1^49,K.1^77,-1*K.1^19,-1*K.1^53,-1*K.1^61,-1*K.1^85,K.1^89,K.1^23,-1*K.1^59,-1*K.1^43,K.1^47,K.1^5,K.1^37,-1*K.1^7,K.1^71,K.1^17,K.1^65,-1*K.1^95,K.1^95,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,-1*K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^30,K.1^66,K.1^30,-1*K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,K.1^18,K.1^42,K.1^54,K.1^44,-1*K.1^68,K.1^4,K.1^28,-1*K.1^92,K.1^20,-1*K.1^76,-1*K.1^44,K.1^76,K.1^68,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^52,K.1^92,K.1^52,-1*K.1^27,-1*K.1^69,-1*K.1^39,K.1^57,K.1^33,-1*K.1^63,-1*K.1^93,K.1^3,K.1^75,-1*K.1^21,-1*K.1^9,K.1^87,-1*K.1^51,K.1^45,K.1^15,-1*K.1^81,-1*K.1^15,K.1^81,-1*K.1^45,K.1^51,-1*K.1^87,K.1^9,K.1^21,-1*K.1^75,-1*K.1^3,K.1^93,K.1^63,-1*K.1^33,-1*K.1^57,K.1^39,K.1^69,K.1^27,-1*K.1^62,-1*K.1^82,K.1^50,-1*K.1^10,K.1^70,K.1^22,-1*K.1^46,K.1^2,-1*K.1^86,K.1^46,K.1^86,-1*K.1^50,-1*K.1^34,-1*K.1^70,K.1^26,K.1^62,K.1^38,-1*K.1^58,-1*K.1^74,K.1^34,K.1^58,-1*K.1^26,K.1^82,-1*K.1^22,-1*K.1^94,K.1^14,K.1^94,-1*K.1^2,-1*K.1^38,-1*K.1^14,K.1^10,K.1^74,K.1^5,K.1^73,-1*K.1^53,K.1^25,K.1^61,-1*K.1^71,-1*K.1^5,K.1^7,K.1^95,K.1^13,-1*K.1^83,-1*K.1^11,-1*K.1^35,K.1^55,K.1^23,-1*K.1^67,K.1^19,-1*K.1^55,-1*K.1^23,K.1^67,-1*K.1^89,K.1^83,-1*K.1^13,-1*K.1^95,-1*K.1^17,K.1^79,-1*K.1^85,-1*K.1^29,K.1^49,-1*K.1^77,-1*K.1^43,K.1^59,K.1^31,K.1^47,K.1^85,K.1^65,K.1^41,-1*K.1^41,K.1^29,-1*K.1^37,-1*K.1^61,K.1^71,K.1^17,K.1^91,-1*K.1^47,-1*K.1^19,K.1^77,K.1^43,K.1^35,K.1^11,-1*K.1^7,-1*K.1^73,K.1^37,K.1^53,-1*K.1^49,-1*K.1^91,-1*K.1^59,K.1^89,-1*K.1^25,-1*K.1^79,-1*K.1^31,K.1,-1*K.1,-1*K.1^65]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,K.1^8,K.1^88,-1*K.1^40,-1*K.1^56,-1*K.1^8,K.1^40,K.1^56,-1*K.1^88,K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^66,-1*K.1^30,-1*K.1^66,K.1^30,-1*K.1^6,K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,-1*K.1^42,-1*K.1^52,K.1^28,-1*K.1^92,-1*K.1^68,K.1^4,-1*K.1^76,K.1^20,K.1^52,-1*K.1^20,-1*K.1^28,K.1^92,K.1^68,K.1^76,K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^69,-1*K.1^27,-1*K.1^57,K.1^39,K.1^63,-1*K.1^33,-1*K.1^3,K.1^93,K.1^21,-1*K.1^75,-1*K.1^87,K.1^9,-1*K.1^45,K.1^51,K.1^81,-1*K.1^15,-1*K.1^81,K.1^15,-1*K.1^51,K.1^45,-1*K.1^9,K.1^87,K.1^75,-1*K.1^21,-1*K.1^93,K.1^3,K.1^33,-1*K.1^63,-1*K.1^39,K.1^57,K.1^27,K.1^69,K.1^34,K.1^14,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^74,K.1^50,-1*K.1^94,K.1^10,-1*K.1^50,-1*K.1^10,K.1^46,K.1^62,K.1^26,-1*K.1^70,-1*K.1^34,-1*K.1^58,K.1^38,K.1^22,-1*K.1^62,-1*K.1^38,K.1^70,-1*K.1^14,K.1^74,K.1^2,-1*K.1^82,-1*K.1^2,K.1^94,K.1^58,K.1^82,-1*K.1^86,-1*K.1^22,K.1^91,K.1^23,-1*K.1^43,K.1^71,K.1^35,-1*K.1^25,-1*K.1^91,K.1^89,K.1,K.1^83,-1*K.1^13,-1*K.1^85,-1*K.1^61,K.1^41,K.1^73,-1*K.1^29,K.1^77,-1*K.1^41,-1*K.1^73,K.1^29,-1*K.1^7,K.1^13,-1*K.1^83,-1*K.1,-1*K.1^79,K.1^17,-1*K.1^11,-1*K.1^67,K.1^47,-1*K.1^19,-1*K.1^53,K.1^37,K.1^65,K.1^49,K.1^11,K.1^31,K.1^55,-1*K.1^55,K.1^67,-1*K.1^59,-1*K.1^35,K.1^25,K.1^79,K.1^5,-1*K.1^49,-1*K.1^77,K.1^19,K.1^53,K.1^61,K.1^85,-1*K.1^89,-1*K.1^23,K.1^59,K.1^43,-1*K.1^47,-1*K.1^5,-1*K.1^37,K.1^7,-1*K.1^71,-1*K.1^17,-1*K.1^65,K.1^95,-1*K.1^95,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,-1*K.1^88,-1*K.1^8,K.1^56,K.1^40,K.1^88,-1*K.1^56,-1*K.1^40,K.1^8,-1*K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^30,K.1^66,K.1^30,-1*K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,K.1^18,K.1^42,K.1^54,K.1^44,-1*K.1^68,K.1^4,K.1^28,-1*K.1^92,K.1^20,-1*K.1^76,-1*K.1^44,K.1^76,K.1^68,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^52,K.1^92,K.1^52,K.1^27,K.1^69,K.1^39,-1*K.1^57,-1*K.1^33,K.1^63,K.1^93,-1*K.1^3,-1*K.1^75,K.1^21,K.1^9,-1*K.1^87,K.1^51,-1*K.1^45,-1*K.1^15,K.1^81,K.1^15,-1*K.1^81,K.1^45,-1*K.1^51,K.1^87,-1*K.1^9,-1*K.1^21,K.1^75,K.1^3,-1*K.1^93,-1*K.1^63,K.1^33,K.1^57,-1*K.1^39,-1*K.1^69,-1*K.1^27,-1*K.1^62,-1*K.1^82,K.1^50,-1*K.1^10,K.1^70,K.1^22,-1*K.1^46,K.1^2,-1*K.1^86,K.1^46,K.1^86,-1*K.1^50,-1*K.1^34,-1*K.1^70,K.1^26,K.1^62,K.1^38,-1*K.1^58,-1*K.1^74,K.1^34,K.1^58,-1*K.1^26,K.1^82,-1*K.1^22,-1*K.1^94,K.1^14,K.1^94,-1*K.1^2,-1*K.1^38,-1*K.1^14,K.1^10,K.1^74,-1*K.1^5,-1*K.1^73,K.1^53,-1*K.1^25,-1*K.1^61,K.1^71,K.1^5,-1*K.1^7,-1*K.1^95,-1*K.1^13,K.1^83,K.1^11,K.1^35,-1*K.1^55,-1*K.1^23,K.1^67,-1*K.1^19,K.1^55,K.1^23,-1*K.1^67,K.1^89,-1*K.1^83,K.1^13,K.1^95,K.1^17,-1*K.1^79,K.1^85,K.1^29,-1*K.1^49,K.1^77,K.1^43,-1*K.1^59,-1*K.1^31,-1*K.1^47,-1*K.1^85,-1*K.1^65,-1*K.1^41,K.1^41,-1*K.1^29,K.1^37,K.1^61,-1*K.1^71,-1*K.1^17,-1*K.1^91,K.1^47,K.1^19,-1*K.1^77,-1*K.1^43,-1*K.1^35,-1*K.1^11,K.1^7,K.1^73,-1*K.1^37,-1*K.1^53,K.1^49,K.1^91,K.1^59,-1*K.1^89,K.1^25,K.1^79,K.1^31,-1*K.1,K.1,K.1^65]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^54,K.1^42,K.1^54,-1*K.1^42,-1*K.1^66,K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,-1*K.1^78,K.1^28,K.1^52,K.1^20,-1*K.1^44,-1*K.1^76,-1*K.1^4,K.1^92,-1*K.1^28,-1*K.1^92,-1*K.1^52,-1*K.1^20,K.1^44,K.1^4,-1*K.1^68,K.1^76,K.1^68,K.1^87,K.1^9,-1*K.1^51,K.1^45,-1*K.1^21,K.1^75,-1*K.1^33,K.1^63,K.1^39,-1*K.1^57,K.1^93,-1*K.1^3,K.1^15,-1*K.1^81,-1*K.1^27,K.1^69,K.1^27,-1*K.1^69,K.1^81,-1*K.1^15,K.1^3,-1*K.1^93,K.1^57,-1*K.1^39,-1*K.1^63,K.1^33,-1*K.1^75,K.1^21,-1*K.1^45,K.1^51,-1*K.1^9,-1*K.1^87,-1*K.1^22,K.1^26,-1*K.1^58,K.1^50,K.1^62,K.1^14,K.1^38,-1*K.1^10,K.1^46,-1*K.1^38,-1*K.1^46,K.1^58,-1*K.1^74,-1*K.1^62,K.1^34,K.1^22,K.1^94,-1*K.1^2,-1*K.1^82,K.1^74,K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^14,K.1^86,-1*K.1^70,-1*K.1^86,K.1^10,-1*K.1^94,K.1^70,-1*K.1^50,K.1^82,-1*K.1^73,-1*K.1^29,-1*K.1^25,K.1^77,K.1^65,-1*K.1^19,K.1^73,K.1^83,-1*K.1^43,K.1^17,-1*K.1^79,K.1^7,-1*K.1^31,-1*K.1^35,-1*K.1^67,K.1^95,-1*K.1^47,K.1^35,K.1^67,-1*K.1^95,-1*K.1^13,K.1^79,-1*K.1^17,K.1^43,-1*K.1^37,K.1^59,K.1^89,K.1,K.1^5,K.1^49,-1*K.1^71,-1*K.1^55,K.1^11,K.1^91,-1*K.1^89,K.1^85,-1*K.1^61,K.1^61,-1*K.1,K.1^41,-1*K.1^65,K.1^19,K.1^37,-1*K.1^23,-1*K.1^91,K.1^47,-1*K.1^49,K.1^71,K.1^31,-1*K.1^7,-1*K.1^83,K.1^29,-1*K.1^41,K.1^25,-1*K.1^5,K.1^23,K.1^55,K.1^13,-1*K.1^77,-1*K.1^59,-1*K.1^11,-1*K.1^53,K.1^53,-1*K.1^85]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,-1*K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^42,-1*K.1^54,-1*K.1^42,K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,K.1^6,K.1^78,K.1^18,-1*K.1^68,-1*K.1^44,-1*K.1^76,K.1^52,K.1^20,K.1^92,-1*K.1^4,K.1^68,K.1^4,K.1^44,K.1^76,-1*K.1^52,-1*K.1^92,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^9,-1*K.1^87,K.1^45,-1*K.1^51,K.1^75,-1*K.1^21,K.1^63,-1*K.1^33,-1*K.1^57,K.1^39,-1*K.1^3,K.1^93,-1*K.1^81,K.1^15,K.1^69,-1*K.1^27,-1*K.1^69,K.1^27,-1*K.1^15,K.1^81,-1*K.1^93,K.1^3,-1*K.1^39,K.1^57,K.1^33,-1*K.1^63,K.1^21,-1*K.1^75,K.1^51,-1*K.1^45,K.1^87,K.1^9,K.1^74,-1*K.1^70,K.1^38,-1*K.1^46,-1*K.1^34,-1*K.1^82,-1*K.1^58,K.1^86,-1*K.1^50,K.1^58,K.1^50,-1*K.1^38,K.1^22,K.1^34,-1*K.1^62,-1*K.1^74,-1*K.1^2,K.1^94,K.1^14,-1*K.1^22,-1*K.1^94,K.1^62,K.1^70,K.1^82,-1*K.1^10,K.1^26,K.1^10,-1*K.1^86,K.1^2,-1*K.1^26,K.1^46,-1*K.1^14,K.1^23,K.1^67,K.1^71,-1*K.1^19,-1*K.1^31,K.1^77,-1*K.1^23,-1*K.1^13,K.1^53,-1*K.1^79,K.1^17,-1*K.1^89,K.1^65,K.1^61,K.1^29,-1*K.1,K.1^49,-1*K.1^61,-1*K.1^29,K.1,K.1^83,-1*K.1^17,K.1^79,-1*K.1^53,K.1^59,-1*K.1^37,-1*K.1^7,-1*K.1^95,-1*K.1^91,-1*K.1^47,K.1^25,K.1^41,-1*K.1^85,-1*K.1^5,K.1^7,-1*K.1^11,K.1^35,-1*K.1^35,K.1^95,-1*K.1^55,K.1^31,-1*K.1^77,-1*K.1^59,K.1^73,K.1^5,-1*K.1^49,K.1^47,-1*K.1^25,-1*K.1^65,K.1^89,K.1^13,-1*K.1^67,K.1^55,-1*K.1^71,K.1^91,-1*K.1^73,-1*K.1^41,-1*K.1^83,K.1^19,K.1^37,K.1^85,K.1^43,-1*K.1^43,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^54,K.1^42,K.1^54,-1*K.1^42,-1*K.1^66,K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,-1*K.1^78,K.1^28,K.1^52,K.1^20,-1*K.1^44,-1*K.1^76,-1*K.1^4,K.1^92,-1*K.1^28,-1*K.1^92,-1*K.1^52,-1*K.1^20,K.1^44,K.1^4,-1*K.1^68,K.1^76,K.1^68,-1*K.1^87,-1*K.1^9,K.1^51,-1*K.1^45,K.1^21,-1*K.1^75,K.1^33,-1*K.1^63,-1*K.1^39,K.1^57,-1*K.1^93,K.1^3,-1*K.1^15,K.1^81,K.1^27,-1*K.1^69,-1*K.1^27,K.1^69,-1*K.1^81,K.1^15,-1*K.1^3,K.1^93,-1*K.1^57,K.1^39,K.1^63,-1*K.1^33,K.1^75,-1*K.1^21,K.1^45,-1*K.1^51,K.1^9,K.1^87,-1*K.1^22,K.1^26,-1*K.1^58,K.1^50,K.1^62,K.1^14,K.1^38,-1*K.1^10,K.1^46,-1*K.1^38,-1*K.1^46,K.1^58,-1*K.1^74,-1*K.1^62,K.1^34,K.1^22,K.1^94,-1*K.1^2,-1*K.1^82,K.1^74,K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^14,K.1^86,-1*K.1^70,-1*K.1^86,K.1^10,-1*K.1^94,K.1^70,-1*K.1^50,K.1^82,K.1^73,K.1^29,K.1^25,-1*K.1^77,-1*K.1^65,K.1^19,-1*K.1^73,-1*K.1^83,K.1^43,-1*K.1^17,K.1^79,-1*K.1^7,K.1^31,K.1^35,K.1^67,-1*K.1^95,K.1^47,-1*K.1^35,-1*K.1^67,K.1^95,K.1^13,-1*K.1^79,K.1^17,-1*K.1^43,K.1^37,-1*K.1^59,-1*K.1^89,-1*K.1,-1*K.1^5,-1*K.1^49,K.1^71,K.1^55,-1*K.1^11,-1*K.1^91,K.1^89,-1*K.1^85,K.1^61,-1*K.1^61,K.1,-1*K.1^41,K.1^65,-1*K.1^19,-1*K.1^37,K.1^23,K.1^91,-1*K.1^47,K.1^49,-1*K.1^71,-1*K.1^31,K.1^7,K.1^83,-1*K.1^29,K.1^41,-1*K.1^25,K.1^5,-1*K.1^23,-1*K.1^55,-1*K.1^13,K.1^77,K.1^59,K.1^11,K.1^53,-1*K.1^53,K.1^85]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,-1*K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^42,-1*K.1^54,-1*K.1^42,K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,K.1^6,K.1^78,K.1^18,-1*K.1^68,-1*K.1^44,-1*K.1^76,K.1^52,K.1^20,K.1^92,-1*K.1^4,K.1^68,K.1^4,K.1^44,K.1^76,-1*K.1^52,-1*K.1^92,K.1^28,-1*K.1^20,-1*K.1^28,K.1^9,K.1^87,-1*K.1^45,K.1^51,-1*K.1^75,K.1^21,-1*K.1^63,K.1^33,K.1^57,-1*K.1^39,K.1^3,-1*K.1^93,K.1^81,-1*K.1^15,-1*K.1^69,K.1^27,K.1^69,-1*K.1^27,K.1^15,-1*K.1^81,K.1^93,-1*K.1^3,K.1^39,-1*K.1^57,-1*K.1^33,K.1^63,-1*K.1^21,K.1^75,-1*K.1^51,K.1^45,-1*K.1^87,-1*K.1^9,K.1^74,-1*K.1^70,K.1^38,-1*K.1^46,-1*K.1^34,-1*K.1^82,-1*K.1^58,K.1^86,-1*K.1^50,K.1^58,K.1^50,-1*K.1^38,K.1^22,K.1^34,-1*K.1^62,-1*K.1^74,-1*K.1^2,K.1^94,K.1^14,-1*K.1^22,-1*K.1^94,K.1^62,K.1^70,K.1^82,-1*K.1^10,K.1^26,K.1^10,-1*K.1^86,K.1^2,-1*K.1^26,K.1^46,-1*K.1^14,-1*K.1^23,-1*K.1^67,-1*K.1^71,K.1^19,K.1^31,-1*K.1^77,K.1^23,K.1^13,-1*K.1^53,K.1^79,-1*K.1^17,K.1^89,-1*K.1^65,-1*K.1^61,-1*K.1^29,K.1,-1*K.1^49,K.1^61,K.1^29,-1*K.1,-1*K.1^83,K.1^17,-1*K.1^79,K.1^53,-1*K.1^59,K.1^37,K.1^7,K.1^95,K.1^91,K.1^47,-1*K.1^25,-1*K.1^41,K.1^85,K.1^5,-1*K.1^7,K.1^11,-1*K.1^35,K.1^35,-1*K.1^95,K.1^55,-1*K.1^31,K.1^77,K.1^59,-1*K.1^73,-1*K.1^5,K.1^49,-1*K.1^47,K.1^25,K.1^65,-1*K.1^89,-1*K.1^13,K.1^67,-1*K.1^55,K.1^71,-1*K.1^91,K.1^73,K.1^41,K.1^83,-1*K.1^19,-1*K.1^37,-1*K.1^85,-1*K.1^43,K.1^43,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,-1*K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^54,-1*K.1^42,-1*K.1^54,K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,K.1^90,K.1^18,K.1^78,K.1^28,K.1^52,K.1^20,-1*K.1^44,-1*K.1^76,-1*K.1^4,K.1^92,-1*K.1^28,-1*K.1^92,-1*K.1^52,-1*K.1^20,K.1^44,K.1^4,-1*K.1^68,K.1^76,K.1^68,-1*K.1^39,-1*K.1^57,K.1^3,-1*K.1^93,K.1^69,-1*K.1^27,K.1^81,-1*K.1^15,K.1^87,-1*K.1^9,K.1^45,-1*K.1^51,K.1^63,-1*K.1^33,-1*K.1^75,K.1^21,K.1^75,-1*K.1^21,K.1^33,-1*K.1^63,K.1^51,-1*K.1^45,K.1^9,-1*K.1^87,K.1^15,-1*K.1^81,K.1^27,-1*K.1^69,K.1^93,-1*K.1^3,K.1^57,K.1^39,K.1^22,-1*K.1^26,K.1^58,-1*K.1^50,-1*K.1^62,-1*K.1^14,-1*K.1^38,K.1^10,-1*K.1^46,K.1^38,K.1^46,-1*K.1^58,K.1^74,K.1^62,-1*K.1^34,-1*K.1^22,-1*K.1^94,K.1^2,K.1^82,-1*K.1^74,-1*K.1^2,K.1^34,K.1^26,K.1^14,-1*K.1^86,K.1^70,K.1^86,-1*K.1^10,K.1^94,-1*K.1^70,K.1^50,-1*K.1^82,-1*K.1^25,K.1^77,K.1^73,K.1^29,K.1^17,-1*K.1^67,K.1^25,-1*K.1^35,-1*K.1^91,-1*K.1^65,K.1^31,K.1^55,-1*K.1^79,-1*K.1^83,K.1^19,-1*K.1^47,-1*K.1^95,K.1^83,-1*K.1^19,K.1^47,K.1^61,-1*K.1^31,K.1^65,K.1^91,K.1^85,-1*K.1^11,K.1^41,-1*K.1^49,-1*K.1^53,K.1,K.1^23,K.1^7,K.1^59,-1*K.1^43,-1*K.1^41,K.1^37,-1*K.1^13,K.1^13,K.1^49,-1*K.1^89,-1*K.1^17,K.1^67,-1*K.1^85,-1*K.1^71,K.1^43,K.1^95,-1*K.1,-1*K.1^23,K.1^79,-1*K.1^55,K.1^35,-1*K.1^77,K.1^89,-1*K.1^73,K.1^53,K.1^71,-1*K.1^7,-1*K.1^61,-1*K.1^29,K.1^11,-1*K.1^59,-1*K.1^5,K.1^5,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^42,K.1^54,K.1^42,-1*K.1^54,-1*K.1^30,K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^68,-1*K.1^44,-1*K.1^76,K.1^52,K.1^20,K.1^92,-1*K.1^4,K.1^68,K.1^4,K.1^44,K.1^76,-1*K.1^52,-1*K.1^92,K.1^28,-1*K.1^20,-1*K.1^28,K.1^57,K.1^39,-1*K.1^93,K.1^3,-1*K.1^27,K.1^69,-1*K.1^15,K.1^81,-1*K.1^9,K.1^87,-1*K.1^51,K.1^45,-1*K.1^33,K.1^63,K.1^21,-1*K.1^75,-1*K.1^21,K.1^75,-1*K.1^63,K.1^33,-1*K.1^45,K.1^51,-1*K.1^87,K.1^9,-1*K.1^81,K.1^15,-1*K.1^69,K.1^27,-1*K.1^3,K.1^93,-1*K.1^39,-1*K.1^57,-1*K.1^74,K.1^70,-1*K.1^38,K.1^46,K.1^34,K.1^82,K.1^58,-1*K.1^86,K.1^50,-1*K.1^58,-1*K.1^50,K.1^38,-1*K.1^22,-1*K.1^34,K.1^62,K.1^74,K.1^2,-1*K.1^94,-1*K.1^14,K.1^22,K.1^94,-1*K.1^62,-1*K.1^70,-1*K.1^82,K.1^10,-1*K.1^26,-1*K.1^10,K.1^86,-1*K.1^2,K.1^26,-1*K.1^46,K.1^14,K.1^71,-1*K.1^19,-1*K.1^23,-1*K.1^67,-1*K.1^79,K.1^29,-1*K.1^71,K.1^61,K.1^5,K.1^31,-1*K.1^65,-1*K.1^41,K.1^17,K.1^13,-1*K.1^77,K.1^49,K.1,-1*K.1^13,K.1^77,-1*K.1^49,-1*K.1^35,K.1^65,-1*K.1^31,-1*K.1^5,-1*K.1^11,K.1^85,-1*K.1^55,K.1^47,K.1^43,-1*K.1^95,-1*K.1^73,-1*K.1^89,-1*K.1^37,K.1^53,K.1^55,-1*K.1^59,K.1^83,-1*K.1^83,-1*K.1^47,K.1^7,K.1^79,-1*K.1^29,K.1^11,K.1^25,-1*K.1^53,-1*K.1,K.1^95,K.1^73,-1*K.1^17,K.1^41,-1*K.1^61,K.1^19,-1*K.1^7,K.1^23,-1*K.1^43,-1*K.1^25,K.1^89,K.1^35,K.1^67,-1*K.1^85,K.1^37,K.1^91,-1*K.1^91,K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,-1*K.1^36,-1*K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,-1*K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^54,-1*K.1^42,-1*K.1^54,K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,K.1^90,K.1^18,K.1^78,K.1^28,K.1^52,K.1^20,-1*K.1^44,-1*K.1^76,-1*K.1^4,K.1^92,-1*K.1^28,-1*K.1^92,-1*K.1^52,-1*K.1^20,K.1^44,K.1^4,-1*K.1^68,K.1^76,K.1^68,K.1^39,K.1^57,-1*K.1^3,K.1^93,-1*K.1^69,K.1^27,-1*K.1^81,K.1^15,-1*K.1^87,K.1^9,-1*K.1^45,K.1^51,-1*K.1^63,K.1^33,K.1^75,-1*K.1^21,-1*K.1^75,K.1^21,-1*K.1^33,K.1^63,-1*K.1^51,K.1^45,-1*K.1^9,K.1^87,-1*K.1^15,K.1^81,-1*K.1^27,K.1^69,-1*K.1^93,K.1^3,-1*K.1^57,-1*K.1^39,K.1^22,-1*K.1^26,K.1^58,-1*K.1^50,-1*K.1^62,-1*K.1^14,-1*K.1^38,K.1^10,-1*K.1^46,K.1^38,K.1^46,-1*K.1^58,K.1^74,K.1^62,-1*K.1^34,-1*K.1^22,-1*K.1^94,K.1^2,K.1^82,-1*K.1^74,-1*K.1^2,K.1^34,K.1^26,K.1^14,-1*K.1^86,K.1^70,K.1^86,-1*K.1^10,K.1^94,-1*K.1^70,K.1^50,-1*K.1^82,K.1^25,-1*K.1^77,-1*K.1^73,-1*K.1^29,-1*K.1^17,K.1^67,-1*K.1^25,K.1^35,K.1^91,K.1^65,-1*K.1^31,-1*K.1^55,K.1^79,K.1^83,-1*K.1^19,K.1^47,K.1^95,-1*K.1^83,K.1^19,-1*K.1^47,-1*K.1^61,K.1^31,-1*K.1^65,-1*K.1^91,-1*K.1^85,K.1^11,-1*K.1^41,K.1^49,K.1^53,-1*K.1,-1*K.1^23,-1*K.1^7,-1*K.1^59,K.1^43,K.1^41,-1*K.1^37,K.1^13,-1*K.1^13,-1*K.1^49,K.1^89,K.1^17,-1*K.1^67,K.1^85,K.1^71,-1*K.1^43,-1*K.1^95,K.1,K.1^23,-1*K.1^79,K.1^55,-1*K.1^35,K.1^77,-1*K.1^89,K.1^73,-1*K.1^53,-1*K.1^71,K.1^7,K.1^61,K.1^29,-1*K.1^11,K.1^59,K.1^5,-1*K.1^5,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,K.1^60,K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^42,K.1^54,K.1^42,-1*K.1^54,-1*K.1^30,K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^68,-1*K.1^44,-1*K.1^76,K.1^52,K.1^20,K.1^92,-1*K.1^4,K.1^68,K.1^4,K.1^44,K.1^76,-1*K.1^52,-1*K.1^92,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^57,-1*K.1^39,K.1^93,-1*K.1^3,K.1^27,-1*K.1^69,K.1^15,-1*K.1^81,K.1^9,-1*K.1^87,K.1^51,-1*K.1^45,K.1^33,-1*K.1^63,-1*K.1^21,K.1^75,K.1^21,-1*K.1^75,K.1^63,-1*K.1^33,K.1^45,-1*K.1^51,K.1^87,-1*K.1^9,K.1^81,-1*K.1^15,K.1^69,-1*K.1^27,K.1^3,-1*K.1^93,K.1^39,K.1^57,-1*K.1^74,K.1^70,-1*K.1^38,K.1^46,K.1^34,K.1^82,K.1^58,-1*K.1^86,K.1^50,-1*K.1^58,-1*K.1^50,K.1^38,-1*K.1^22,-1*K.1^34,K.1^62,K.1^74,K.1^2,-1*K.1^94,-1*K.1^14,K.1^22,K.1^94,-1*K.1^62,-1*K.1^70,-1*K.1^82,K.1^10,-1*K.1^26,-1*K.1^10,K.1^86,-1*K.1^2,K.1^26,-1*K.1^46,K.1^14,-1*K.1^71,K.1^19,K.1^23,K.1^67,K.1^79,-1*K.1^29,K.1^71,-1*K.1^61,-1*K.1^5,-1*K.1^31,K.1^65,K.1^41,-1*K.1^17,-1*K.1^13,K.1^77,-1*K.1^49,-1*K.1,K.1^13,-1*K.1^77,K.1^49,K.1^35,-1*K.1^65,K.1^31,K.1^5,K.1^11,-1*K.1^85,K.1^55,-1*K.1^47,-1*K.1^43,K.1^95,K.1^73,K.1^89,K.1^37,-1*K.1^53,-1*K.1^55,K.1^59,-1*K.1^83,K.1^83,K.1^47,-1*K.1^7,-1*K.1^79,K.1^29,-1*K.1^11,-1*K.1^25,K.1^53,K.1,-1*K.1^95,-1*K.1^73,K.1^17,-1*K.1^41,K.1^61,-1*K.1^19,K.1^7,-1*K.1^23,K.1^43,K.1^25,-1*K.1^89,-1*K.1^35,-1*K.1^67,K.1^85,-1*K.1^37,-1*K.1^91,K.1^91,-1*K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,-1*K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^6,-1*K.1^90,-1*K.1^6,K.1^90,-1*K.1^18,K.1^78,K.1^54,-1*K.1^42,K.1^66,K.1^30,-1*K.1^28,-1*K.1^52,-1*K.1^20,K.1^44,K.1^76,K.1^4,-1*K.1^92,K.1^28,K.1^92,K.1^52,K.1^20,-1*K.1^44,-1*K.1^4,K.1^68,-1*K.1^76,-1*K.1^68,-1*K.1^15,-1*K.1^81,K.1^75,-1*K.1^21,-1*K.1^93,K.1^3,-1*K.1^9,K.1^87,K.1^63,-1*K.1^33,-1*K.1^69,K.1^27,K.1^39,-1*K.1^57,K.1^51,-1*K.1^45,-1*K.1^51,K.1^45,K.1^57,-1*K.1^39,-1*K.1^27,K.1^69,K.1^33,-1*K.1^63,-1*K.1^87,K.1^9,-1*K.1^3,K.1^93,K.1^21,-1*K.1^75,K.1^81,K.1^15,-1*K.1^70,-1*K.1^74,-1*K.1^10,K.1^2,-1*K.1^14,K.1^62,K.1^86,K.1^58,K.1^94,-1*K.1^86,-1*K.1^94,K.1^10,-1*K.1^26,K.1^14,-1*K.1^82,K.1^70,-1*K.1^46,K.1^50,-1*K.1^34,K.1^26,-1*K.1^50,K.1^82,K.1^74,-1*K.1^62,-1*K.1^38,K.1^22,K.1^38,-1*K.1^58,K.1^46,-1*K.1^22,-1*K.1^2,K.1^34,-1*K.1^49,K.1^5,-1*K.1,-1*K.1^53,K.1^41,K.1^43,K.1^49,K.1^11,K.1^67,-1*K.1^89,K.1^7,K.1^31,-1*K.1^55,K.1^59,K.1^91,-1*K.1^23,-1*K.1^71,-1*K.1^59,-1*K.1^91,K.1^23,-1*K.1^85,-1*K.1^7,K.1^89,-1*K.1^67,K.1^13,-1*K.1^83,K.1^65,-1*K.1^73,K.1^77,K.1^25,-1*K.1^95,-1*K.1^79,-1*K.1^35,K.1^19,-1*K.1^65,-1*K.1^61,K.1^37,-1*K.1^37,K.1^73,K.1^17,-1*K.1^41,-1*K.1^43,-1*K.1^13,-1*K.1^47,-1*K.1^19,K.1^71,-1*K.1^25,K.1^95,K.1^55,-1*K.1^31,-1*K.1^11,-1*K.1^5,-1*K.1^17,K.1,-1*K.1^77,K.1^47,K.1^79,K.1^85,K.1^53,K.1^83,K.1^35,K.1^29,-1*K.1^29,K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^90,K.1^6,K.1^90,-1*K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,-1*K.1^66,K.1^68,K.1^44,K.1^76,-1*K.1^52,-1*K.1^20,-1*K.1^92,K.1^4,-1*K.1^68,-1*K.1^4,-1*K.1^44,-1*K.1^76,K.1^52,K.1^92,-1*K.1^28,K.1^20,K.1^28,K.1^81,K.1^15,-1*K.1^21,K.1^75,K.1^3,-1*K.1^93,K.1^87,-1*K.1^9,-1*K.1^33,K.1^63,K.1^27,-1*K.1^69,-1*K.1^57,K.1^39,-1*K.1^45,K.1^51,K.1^45,-1*K.1^51,-1*K.1^39,K.1^57,K.1^69,-1*K.1^27,-1*K.1^63,K.1^33,K.1^9,-1*K.1^87,K.1^93,-1*K.1^3,-1*K.1^75,K.1^21,-1*K.1^15,-1*K.1^81,K.1^26,K.1^22,K.1^86,-1*K.1^94,K.1^82,-1*K.1^34,-1*K.1^10,-1*K.1^38,-1*K.1^2,K.1^10,K.1^2,-1*K.1^86,K.1^70,-1*K.1^82,K.1^14,-1*K.1^26,K.1^50,-1*K.1^46,K.1^62,-1*K.1^70,K.1^46,-1*K.1^14,-1*K.1^22,K.1^34,K.1^58,-1*K.1^74,-1*K.1^58,K.1^38,-1*K.1^50,K.1^74,K.1^94,-1*K.1^62,K.1^47,-1*K.1^91,K.1^95,K.1^43,-1*K.1^55,-1*K.1^53,-1*K.1^47,-1*K.1^85,-1*K.1^29,K.1^7,-1*K.1^89,-1*K.1^65,K.1^41,-1*K.1^37,-1*K.1^5,K.1^73,K.1^25,K.1^37,K.1^5,-1*K.1^73,K.1^11,K.1^89,-1*K.1^7,K.1^29,-1*K.1^83,K.1^13,-1*K.1^31,K.1^23,-1*K.1^19,-1*K.1^71,K.1,K.1^17,K.1^61,-1*K.1^77,K.1^31,K.1^35,-1*K.1^59,K.1^59,-1*K.1^23,-1*K.1^79,K.1^55,K.1^53,K.1^83,K.1^49,K.1^77,-1*K.1^25,K.1^71,-1*K.1,-1*K.1^41,K.1^65,K.1^85,K.1^91,K.1^79,-1*K.1^95,K.1^19,-1*K.1^49,-1*K.1^17,-1*K.1^11,-1*K.1^43,-1*K.1^13,-1*K.1^61,-1*K.1^67,K.1^67,-1*K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,-1*K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^6,-1*K.1^90,-1*K.1^6,K.1^90,-1*K.1^18,K.1^78,K.1^54,-1*K.1^42,K.1^66,K.1^30,-1*K.1^28,-1*K.1^52,-1*K.1^20,K.1^44,K.1^76,K.1^4,-1*K.1^92,K.1^28,K.1^92,K.1^52,K.1^20,-1*K.1^44,-1*K.1^4,K.1^68,-1*K.1^76,-1*K.1^68,K.1^15,K.1^81,-1*K.1^75,K.1^21,K.1^93,-1*K.1^3,K.1^9,-1*K.1^87,-1*K.1^63,K.1^33,K.1^69,-1*K.1^27,-1*K.1^39,K.1^57,-1*K.1^51,K.1^45,K.1^51,-1*K.1^45,-1*K.1^57,K.1^39,K.1^27,-1*K.1^69,-1*K.1^33,K.1^63,K.1^87,-1*K.1^9,K.1^3,-1*K.1^93,-1*K.1^21,K.1^75,-1*K.1^81,-1*K.1^15,-1*K.1^70,-1*K.1^74,-1*K.1^10,K.1^2,-1*K.1^14,K.1^62,K.1^86,K.1^58,K.1^94,-1*K.1^86,-1*K.1^94,K.1^10,-1*K.1^26,K.1^14,-1*K.1^82,K.1^70,-1*K.1^46,K.1^50,-1*K.1^34,K.1^26,-1*K.1^50,K.1^82,K.1^74,-1*K.1^62,-1*K.1^38,K.1^22,K.1^38,-1*K.1^58,K.1^46,-1*K.1^22,-1*K.1^2,K.1^34,K.1^49,-1*K.1^5,K.1,K.1^53,-1*K.1^41,-1*K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^67,K.1^89,-1*K.1^7,-1*K.1^31,K.1^55,-1*K.1^59,-1*K.1^91,K.1^23,K.1^71,K.1^59,K.1^91,-1*K.1^23,K.1^85,K.1^7,-1*K.1^89,K.1^67,-1*K.1^13,K.1^83,-1*K.1^65,K.1^73,-1*K.1^77,-1*K.1^25,K.1^95,K.1^79,K.1^35,-1*K.1^19,K.1^65,K.1^61,-1*K.1^37,K.1^37,-1*K.1^73,-1*K.1^17,K.1^41,K.1^43,K.1^13,K.1^47,K.1^19,-1*K.1^71,K.1^25,-1*K.1^95,-1*K.1^55,K.1^31,K.1^11,K.1^5,K.1^17,-1*K.1,K.1^77,-1*K.1^47,-1*K.1^79,-1*K.1^85,-1*K.1^53,-1*K.1^83,-1*K.1^35,-1*K.1^29,K.1^29,-1*K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^90,K.1^6,K.1^90,-1*K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,-1*K.1^66,K.1^68,K.1^44,K.1^76,-1*K.1^52,-1*K.1^20,-1*K.1^92,K.1^4,-1*K.1^68,-1*K.1^4,-1*K.1^44,-1*K.1^76,K.1^52,K.1^92,-1*K.1^28,K.1^20,K.1^28,-1*K.1^81,-1*K.1^15,K.1^21,-1*K.1^75,-1*K.1^3,K.1^93,-1*K.1^87,K.1^9,K.1^33,-1*K.1^63,-1*K.1^27,K.1^69,K.1^57,-1*K.1^39,K.1^45,-1*K.1^51,-1*K.1^45,K.1^51,K.1^39,-1*K.1^57,-1*K.1^69,K.1^27,K.1^63,-1*K.1^33,-1*K.1^9,K.1^87,-1*K.1^93,K.1^3,K.1^75,-1*K.1^21,K.1^15,K.1^81,K.1^26,K.1^22,K.1^86,-1*K.1^94,K.1^82,-1*K.1^34,-1*K.1^10,-1*K.1^38,-1*K.1^2,K.1^10,K.1^2,-1*K.1^86,K.1^70,-1*K.1^82,K.1^14,-1*K.1^26,K.1^50,-1*K.1^46,K.1^62,-1*K.1^70,K.1^46,-1*K.1^14,-1*K.1^22,K.1^34,K.1^58,-1*K.1^74,-1*K.1^58,K.1^38,-1*K.1^50,K.1^74,K.1^94,-1*K.1^62,-1*K.1^47,K.1^91,-1*K.1^95,-1*K.1^43,K.1^55,K.1^53,K.1^47,K.1^85,K.1^29,-1*K.1^7,K.1^89,K.1^65,-1*K.1^41,K.1^37,K.1^5,-1*K.1^73,-1*K.1^25,-1*K.1^37,-1*K.1^5,K.1^73,-1*K.1^11,-1*K.1^89,K.1^7,-1*K.1^29,K.1^83,-1*K.1^13,K.1^31,-1*K.1^23,K.1^19,K.1^71,-1*K.1,-1*K.1^17,-1*K.1^61,K.1^77,-1*K.1^31,-1*K.1^35,K.1^59,-1*K.1^59,K.1^23,K.1^79,-1*K.1^55,-1*K.1^53,-1*K.1^83,-1*K.1^49,-1*K.1^77,K.1^25,-1*K.1^71,K.1,K.1^41,-1*K.1^65,-1*K.1^85,-1*K.1^91,-1*K.1^79,K.1^95,-1*K.1^19,K.1^49,K.1^17,K.1^11,K.1^43,K.1^13,K.1^61,K.1^67,-1*K.1^67,K.1^35]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^6,K.1^90,K.1^6,-1*K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,-1*K.1^30,-1*K.1^28,-1*K.1^52,-1*K.1^20,K.1^44,K.1^76,K.1^4,-1*K.1^92,K.1^28,K.1^92,K.1^52,K.1^20,-1*K.1^44,-1*K.1^4,K.1^68,-1*K.1^76,-1*K.1^68,K.1^63,K.1^33,K.1^27,-1*K.1^69,K.1^45,-1*K.1^51,-1*K.1^57,K.1^39,K.1^15,-1*K.1^81,K.1^21,-1*K.1^75,-1*K.1^87,K.1^9,K.1^3,-1*K.1^93,-1*K.1^3,K.1^93,-1*K.1^9,K.1^87,K.1^75,-1*K.1^21,K.1^81,-1*K.1^15,-1*K.1^39,K.1^57,K.1^51,-1*K.1^45,K.1^69,-1*K.1^27,-1*K.1^33,-1*K.1^63,K.1^70,K.1^74,K.1^10,-1*K.1^2,K.1^14,-1*K.1^62,-1*K.1^86,-1*K.1^58,-1*K.1^94,K.1^86,K.1^94,-1*K.1^10,K.1^26,-1*K.1^14,K.1^82,-1*K.1^70,K.1^46,-1*K.1^50,K.1^34,-1*K.1^26,K.1^50,-1*K.1^82,-1*K.1^74,K.1^62,K.1^38,-1*K.1^22,-1*K.1^38,K.1^58,-1*K.1^46,K.1^22,K.1^2,-1*K.1^34,K.1,K.1^53,-1*K.1^49,K.1^5,K.1^89,-1*K.1^91,-1*K.1,-1*K.1^59,K.1^19,K.1^41,-1*K.1^55,-1*K.1^79,-1*K.1^7,K.1^11,K.1^43,K.1^71,-1*K.1^23,-1*K.1^11,-1*K.1^43,-1*K.1^71,K.1^37,K.1^55,-1*K.1^41,-1*K.1^19,K.1^61,-1*K.1^35,-1*K.1^17,K.1^25,-1*K.1^29,K.1^73,-1*K.1^47,-1*K.1^31,K.1^83,-1*K.1^67,K.1^17,K.1^13,K.1^85,-1*K.1^85,-1*K.1^25,K.1^65,-1*K.1^89,K.1^91,-1*K.1^61,K.1^95,K.1^67,K.1^23,-1*K.1^73,K.1^47,K.1^7,K.1^79,K.1^59,-1*K.1^53,-1*K.1^65,K.1^49,K.1^29,-1*K.1^95,K.1^31,-1*K.1^37,-1*K.1^5,K.1^35,-1*K.1^83,K.1^77,-1*K.1^77,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,-1*K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^90,-1*K.1^6,-1*K.1^90,K.1^6,-1*K.1^78,K.1^18,K.1^42,-1*K.1^54,K.1^30,K.1^66,K.1^68,K.1^44,K.1^76,-1*K.1^52,-1*K.1^20,-1*K.1^92,K.1^4,-1*K.1^68,-1*K.1^4,-1*K.1^44,-1*K.1^76,K.1^52,K.1^92,-1*K.1^28,K.1^20,K.1^28,-1*K.1^33,-1*K.1^63,-1*K.1^69,K.1^27,-1*K.1^51,K.1^45,K.1^39,-1*K.1^57,-1*K.1^81,K.1^15,-1*K.1^75,K.1^21,K.1^9,-1*K.1^87,-1*K.1^93,K.1^3,K.1^93,-1*K.1^3,K.1^87,-1*K.1^9,-1*K.1^21,K.1^75,-1*K.1^15,K.1^81,K.1^57,-1*K.1^39,-1*K.1^45,K.1^51,-1*K.1^27,K.1^69,K.1^63,K.1^33,-1*K.1^26,-1*K.1^22,-1*K.1^86,K.1^94,-1*K.1^82,K.1^34,K.1^10,K.1^38,K.1^2,-1*K.1^10,-1*K.1^2,K.1^86,-1*K.1^70,K.1^82,-1*K.1^14,K.1^26,-1*K.1^50,K.1^46,-1*K.1^62,K.1^70,-1*K.1^46,K.1^14,K.1^22,-1*K.1^34,-1*K.1^58,K.1^74,K.1^58,-1*K.1^38,K.1^50,-1*K.1^74,-1*K.1^94,K.1^62,-1*K.1^95,-1*K.1^43,K.1^47,-1*K.1^91,-1*K.1^7,K.1^5,K.1^95,K.1^37,-1*K.1^77,-1*K.1^55,K.1^41,K.1^17,K.1^89,-1*K.1^85,-1*K.1^53,-1*K.1^25,K.1^73,K.1^85,K.1^53,K.1^25,-1*K.1^59,-1*K.1^41,K.1^55,K.1^77,-1*K.1^35,K.1^61,K.1^79,-1*K.1^71,K.1^67,-1*K.1^23,K.1^49,K.1^65,-1*K.1^13,K.1^29,-1*K.1^79,-1*K.1^83,-1*K.1^11,K.1^11,K.1^71,-1*K.1^31,K.1^7,-1*K.1^5,K.1^35,-1*K.1,-1*K.1^29,-1*K.1^73,K.1^23,-1*K.1^49,-1*K.1^89,-1*K.1^17,-1*K.1^37,K.1^43,K.1^31,-1*K.1^47,-1*K.1^67,K.1,-1*K.1^65,K.1^59,K.1^91,-1*K.1^61,K.1^13,-1*K.1^19,K.1^19,K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,K.1^36,K.1^60,-1*K.1^56,-1*K.1^40,K.1^88,K.1^8,K.1^56,-1*K.1^88,-1*K.1^8,K.1^40,K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^6,K.1^90,K.1^6,-1*K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,-1*K.1^30,-1*K.1^28,-1*K.1^52,-1*K.1^20,K.1^44,K.1^76,K.1^4,-1*K.1^92,K.1^28,K.1^92,K.1^52,K.1^20,-1*K.1^44,-1*K.1^4,K.1^68,-1*K.1^76,-1*K.1^68,-1*K.1^63,-1*K.1^33,-1*K.1^27,K.1^69,-1*K.1^45,K.1^51,K.1^57,-1*K.1^39,-1*K.1^15,K.1^81,-1*K.1^21,K.1^75,K.1^87,-1*K.1^9,-1*K.1^3,K.1^93,K.1^3,-1*K.1^93,K.1^9,-1*K.1^87,-1*K.1^75,K.1^21,-1*K.1^81,K.1^15,K.1^39,-1*K.1^57,-1*K.1^51,K.1^45,-1*K.1^69,K.1^27,K.1^33,K.1^63,K.1^70,K.1^74,K.1^10,-1*K.1^2,K.1^14,-1*K.1^62,-1*K.1^86,-1*K.1^58,-1*K.1^94,K.1^86,K.1^94,-1*K.1^10,K.1^26,-1*K.1^14,K.1^82,-1*K.1^70,K.1^46,-1*K.1^50,K.1^34,-1*K.1^26,K.1^50,-1*K.1^82,-1*K.1^74,K.1^62,K.1^38,-1*K.1^22,-1*K.1^38,K.1^58,-1*K.1^46,K.1^22,K.1^2,-1*K.1^34,-1*K.1,-1*K.1^53,K.1^49,-1*K.1^5,-1*K.1^89,K.1^91,K.1,K.1^59,-1*K.1^19,-1*K.1^41,K.1^55,K.1^79,K.1^7,-1*K.1^11,-1*K.1^43,-1*K.1^71,K.1^23,K.1^11,K.1^43,K.1^71,-1*K.1^37,-1*K.1^55,K.1^41,K.1^19,-1*K.1^61,K.1^35,K.1^17,-1*K.1^25,K.1^29,-1*K.1^73,K.1^47,K.1^31,-1*K.1^83,K.1^67,-1*K.1^17,-1*K.1^13,-1*K.1^85,K.1^85,K.1^25,-1*K.1^65,K.1^89,-1*K.1^91,K.1^61,-1*K.1^95,-1*K.1^67,-1*K.1^23,K.1^73,-1*K.1^47,-1*K.1^7,-1*K.1^79,-1*K.1^59,K.1^53,K.1^65,-1*K.1^49,-1*K.1^29,K.1^95,-1*K.1^31,K.1^37,K.1^5,-1*K.1^35,K.1^83,-1*K.1^77,K.1^77,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,-1*K.1^60,-1*K.1^36,K.1^40,K.1^56,-1*K.1^8,-1*K.1^88,-1*K.1^40,K.1^8,K.1^88,-1*K.1^56,-1*K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^90,-1*K.1^6,-1*K.1^90,K.1^6,-1*K.1^78,K.1^18,K.1^42,-1*K.1^54,K.1^30,K.1^66,K.1^68,K.1^44,K.1^76,-1*K.1^52,-1*K.1^20,-1*K.1^92,K.1^4,-1*K.1^68,-1*K.1^4,-1*K.1^44,-1*K.1^76,K.1^52,K.1^92,-1*K.1^28,K.1^20,K.1^28,K.1^33,K.1^63,K.1^69,-1*K.1^27,K.1^51,-1*K.1^45,-1*K.1^39,K.1^57,K.1^81,-1*K.1^15,K.1^75,-1*K.1^21,-1*K.1^9,K.1^87,K.1^93,-1*K.1^3,-1*K.1^93,K.1^3,-1*K.1^87,K.1^9,K.1^21,-1*K.1^75,K.1^15,-1*K.1^81,-1*K.1^57,K.1^39,K.1^45,-1*K.1^51,K.1^27,-1*K.1^69,-1*K.1^63,-1*K.1^33,-1*K.1^26,-1*K.1^22,-1*K.1^86,K.1^94,-1*K.1^82,K.1^34,K.1^10,K.1^38,K.1^2,-1*K.1^10,-1*K.1^2,K.1^86,-1*K.1^70,K.1^82,-1*K.1^14,K.1^26,-1*K.1^50,K.1^46,-1*K.1^62,K.1^70,-1*K.1^46,K.1^14,K.1^22,-1*K.1^34,-1*K.1^58,K.1^74,K.1^58,-1*K.1^38,K.1^50,-1*K.1^74,-1*K.1^94,K.1^62,K.1^95,K.1^43,-1*K.1^47,K.1^91,K.1^7,-1*K.1^5,-1*K.1^95,-1*K.1^37,K.1^77,K.1^55,-1*K.1^41,-1*K.1^17,-1*K.1^89,K.1^85,K.1^53,K.1^25,-1*K.1^73,-1*K.1^85,-1*K.1^53,-1*K.1^25,K.1^59,K.1^41,-1*K.1^55,-1*K.1^77,K.1^35,-1*K.1^61,-1*K.1^79,K.1^71,-1*K.1^67,K.1^23,-1*K.1^49,-1*K.1^65,K.1^13,-1*K.1^29,K.1^79,K.1^83,K.1^11,-1*K.1^11,-1*K.1^71,K.1^31,-1*K.1^7,K.1^5,-1*K.1^35,K.1,K.1^29,K.1^73,-1*K.1^23,K.1^49,K.1^89,K.1^17,K.1^37,-1*K.1^43,-1*K.1^31,K.1^47,K.1^67,-1*K.1,K.1^65,-1*K.1^59,-1*K.1^91,K.1^61,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,-1*K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^78,-1*K.1^18,-1*K.1^78,K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,K.1^66,K.1^90,K.1^6,K.1^76,K.1^4,-1*K.1^68,-1*K.1^92,K.1^28,K.1^52,-1*K.1^44,-1*K.1^76,K.1^44,-1*K.1^4,K.1^68,K.1^92,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^3,-1*K.1^93,K.1^15,-1*K.1^81,-1*K.1^57,K.1^39,K.1^21,-1*K.1^75,K.1^51,-1*K.1^45,K.1^33,-1*K.1^63,-1*K.1^27,K.1^69,K.1^87,-1*K.1^9,-1*K.1^87,K.1^9,-1*K.1^69,K.1^27,K.1^63,-1*K.1^33,K.1^45,-1*K.1^51,K.1^75,-1*K.1^21,-1*K.1^39,K.1^57,K.1^81,-1*K.1^15,K.1^93,K.1^3,K.1^46,-1*K.1^2,K.1^34,K.1^26,K.1^86,K.1^38,-1*K.1^62,-1*K.1^82,K.1^70,K.1^62,-1*K.1^70,-1*K.1^34,K.1^50,-1*K.1^86,K.1^10,-1*K.1^46,-1*K.1^22,K.1^74,-1*K.1^58,-1*K.1^50,-1*K.1^74,-1*K.1^10,K.1^2,-1*K.1^38,K.1^14,K.1^94,-1*K.1^14,K.1^82,K.1^22,-1*K.1^94,-1*K.1^26,K.1^58,-1*K.1^61,K.1^65,-1*K.1^13,K.1^17,-1*K.1^53,-1*K.1^79,K.1^61,-1*K.1^47,-1*K.1^7,-1*K.1^5,K.1^91,K.1^19,K.1^43,-1*K.1^95,K.1^31,K.1^11,K.1^59,K.1^95,-1*K.1^31,-1*K.1^11,K.1^49,-1*K.1^91,K.1^5,K.1^7,-1*K.1^73,K.1^23,K.1^77,K.1^85,K.1^41,-1*K.1^37,-1*K.1^83,-1*K.1^67,-1*K.1^71,K.1^55,-1*K.1^77,-1*K.1^25,-1*K.1,K.1,-1*K.1^85,K.1^29,K.1^53,K.1^79,K.1^73,-1*K.1^35,-1*K.1^55,-1*K.1^59,K.1^37,K.1^83,-1*K.1^43,-1*K.1^19,K.1^47,-1*K.1^65,-1*K.1^29,K.1^13,-1*K.1^41,K.1^35,K.1^67,-1*K.1^49,-1*K.1^17,-1*K.1^23,K.1^71,-1*K.1^89,K.1^89,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^18,K.1^78,K.1^18,-1*K.1^78,K.1^54,-1*K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^90,-1*K.1^20,-1*K.1^92,K.1^28,K.1^4,-1*K.1^68,-1*K.1^44,K.1^52,K.1^20,-1*K.1^52,K.1^92,-1*K.1^28,-1*K.1^4,K.1^44,K.1^76,K.1^68,-1*K.1^76,K.1^93,K.1^3,-1*K.1^81,K.1^15,K.1^39,-1*K.1^57,-1*K.1^75,K.1^21,-1*K.1^45,K.1^51,-1*K.1^63,K.1^33,K.1^69,-1*K.1^27,-1*K.1^9,K.1^87,K.1^9,-1*K.1^87,K.1^27,-1*K.1^69,-1*K.1^33,K.1^63,-1*K.1^51,K.1^45,-1*K.1^21,K.1^75,K.1^57,-1*K.1^39,-1*K.1^15,K.1^81,-1*K.1^3,-1*K.1^93,-1*K.1^50,K.1^94,-1*K.1^62,-1*K.1^70,-1*K.1^10,-1*K.1^58,K.1^34,K.1^14,-1*K.1^26,-1*K.1^34,K.1^26,K.1^62,-1*K.1^46,K.1^10,-1*K.1^86,K.1^50,K.1^74,-1*K.1^22,K.1^38,K.1^46,K.1^22,K.1^86,-1*K.1^94,K.1^58,-1*K.1^82,-1*K.1^2,K.1^82,-1*K.1^14,-1*K.1^74,K.1^2,K.1^70,-1*K.1^38,K.1^35,-1*K.1^31,K.1^83,-1*K.1^79,K.1^43,K.1^17,-1*K.1^35,K.1^49,K.1^89,K.1^91,-1*K.1^5,-1*K.1^77,-1*K.1^53,K.1,-1*K.1^65,-1*K.1^85,-1*K.1^37,-1*K.1,K.1^65,K.1^85,-1*K.1^47,K.1^5,-1*K.1^91,-1*K.1^89,K.1^23,-1*K.1^73,-1*K.1^19,-1*K.1^11,-1*K.1^55,K.1^59,K.1^13,K.1^29,K.1^25,-1*K.1^41,K.1^19,K.1^71,K.1^95,-1*K.1^95,K.1^11,-1*K.1^67,-1*K.1^43,-1*K.1^17,-1*K.1^23,K.1^61,K.1^41,K.1^37,-1*K.1^59,-1*K.1^13,K.1^53,K.1^77,-1*K.1^49,K.1^31,K.1^67,-1*K.1^83,K.1^55,-1*K.1^61,-1*K.1^29,K.1^47,K.1^79,K.1^73,-1*K.1^25,K.1^7,-1*K.1^7,-1*K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,-1*K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,K.1^78,-1*K.1^18,-1*K.1^78,K.1^18,-1*K.1^42,K.1^54,-1*K.1^30,K.1^66,K.1^90,K.1^6,K.1^76,K.1^4,-1*K.1^68,-1*K.1^92,K.1^28,K.1^52,-1*K.1^44,-1*K.1^76,K.1^44,-1*K.1^4,K.1^68,K.1^92,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^20,K.1^3,K.1^93,-1*K.1^15,K.1^81,K.1^57,-1*K.1^39,-1*K.1^21,K.1^75,-1*K.1^51,K.1^45,-1*K.1^33,K.1^63,K.1^27,-1*K.1^69,-1*K.1^87,K.1^9,K.1^87,-1*K.1^9,K.1^69,-1*K.1^27,-1*K.1^63,K.1^33,-1*K.1^45,K.1^51,-1*K.1^75,K.1^21,K.1^39,-1*K.1^57,-1*K.1^81,K.1^15,-1*K.1^93,-1*K.1^3,K.1^46,-1*K.1^2,K.1^34,K.1^26,K.1^86,K.1^38,-1*K.1^62,-1*K.1^82,K.1^70,K.1^62,-1*K.1^70,-1*K.1^34,K.1^50,-1*K.1^86,K.1^10,-1*K.1^46,-1*K.1^22,K.1^74,-1*K.1^58,-1*K.1^50,-1*K.1^74,-1*K.1^10,K.1^2,-1*K.1^38,K.1^14,K.1^94,-1*K.1^14,K.1^82,K.1^22,-1*K.1^94,-1*K.1^26,K.1^58,K.1^61,-1*K.1^65,K.1^13,-1*K.1^17,K.1^53,K.1^79,-1*K.1^61,K.1^47,K.1^7,K.1^5,-1*K.1^91,-1*K.1^19,-1*K.1^43,K.1^95,-1*K.1^31,-1*K.1^11,-1*K.1^59,-1*K.1^95,K.1^31,K.1^11,-1*K.1^49,K.1^91,-1*K.1^5,-1*K.1^7,K.1^73,-1*K.1^23,-1*K.1^77,-1*K.1^85,-1*K.1^41,K.1^37,K.1^83,K.1^67,K.1^71,-1*K.1^55,K.1^77,K.1^25,K.1,-1*K.1,K.1^85,-1*K.1^29,-1*K.1^53,-1*K.1^79,-1*K.1^73,K.1^35,K.1^55,K.1^59,-1*K.1^37,-1*K.1^83,K.1^43,K.1^19,-1*K.1^47,K.1^65,K.1^29,-1*K.1^13,K.1^41,-1*K.1^35,-1*K.1^67,K.1^49,K.1^17,K.1^23,-1*K.1^71,K.1^89,-1*K.1^89,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,K.1^90,K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,-1*K.1^18,K.1^78,K.1^18,-1*K.1^78,K.1^54,-1*K.1^42,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^90,-1*K.1^20,-1*K.1^92,K.1^28,K.1^4,-1*K.1^68,-1*K.1^44,K.1^52,K.1^20,-1*K.1^52,K.1^92,-1*K.1^28,-1*K.1^4,K.1^44,K.1^76,K.1^68,-1*K.1^76,-1*K.1^93,-1*K.1^3,K.1^81,-1*K.1^15,-1*K.1^39,K.1^57,K.1^75,-1*K.1^21,K.1^45,-1*K.1^51,K.1^63,-1*K.1^33,-1*K.1^69,K.1^27,K.1^9,-1*K.1^87,-1*K.1^9,K.1^87,-1*K.1^27,K.1^69,K.1^33,-1*K.1^63,K.1^51,-1*K.1^45,K.1^21,-1*K.1^75,-1*K.1^57,K.1^39,K.1^15,-1*K.1^81,K.1^3,K.1^93,-1*K.1^50,K.1^94,-1*K.1^62,-1*K.1^70,-1*K.1^10,-1*K.1^58,K.1^34,K.1^14,-1*K.1^26,-1*K.1^34,K.1^26,K.1^62,-1*K.1^46,K.1^10,-1*K.1^86,K.1^50,K.1^74,-1*K.1^22,K.1^38,K.1^46,K.1^22,K.1^86,-1*K.1^94,K.1^58,-1*K.1^82,-1*K.1^2,K.1^82,-1*K.1^14,-1*K.1^74,K.1^2,K.1^70,-1*K.1^38,-1*K.1^35,K.1^31,-1*K.1^83,K.1^79,-1*K.1^43,-1*K.1^17,K.1^35,-1*K.1^49,-1*K.1^89,-1*K.1^91,K.1^5,K.1^77,K.1^53,-1*K.1,K.1^65,K.1^85,K.1^37,K.1,-1*K.1^65,-1*K.1^85,K.1^47,-1*K.1^5,K.1^91,K.1^89,-1*K.1^23,K.1^73,K.1^19,K.1^11,K.1^55,-1*K.1^59,-1*K.1^13,-1*K.1^29,-1*K.1^25,K.1^41,-1*K.1^19,-1*K.1^71,-1*K.1^95,K.1^95,-1*K.1^11,K.1^67,K.1^43,K.1^17,K.1^23,-1*K.1^61,-1*K.1^41,-1*K.1^37,K.1^59,K.1^13,-1*K.1^53,-1*K.1^77,K.1^49,-1*K.1^31,-1*K.1^67,K.1^83,-1*K.1^55,K.1^61,K.1^29,-1*K.1^47,-1*K.1^79,-1*K.1^73,K.1^25,-1*K.1^7,K.1^7,K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^78,K.1^18,K.1^78,-1*K.1^18,K.1^42,-1*K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,-1*K.1^6,K.1^76,K.1^4,-1*K.1^68,-1*K.1^92,K.1^28,K.1^52,-1*K.1^44,-1*K.1^76,K.1^44,-1*K.1^4,K.1^68,K.1^92,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^20,K.1^51,K.1^45,-1*K.1^63,K.1^33,K.1^9,-1*K.1^87,K.1^69,-1*K.1^27,K.1^3,-1*K.1^93,K.1^81,-1*K.1^15,K.1^75,-1*K.1^21,K.1^39,-1*K.1^57,-1*K.1^39,K.1^57,K.1^21,-1*K.1^75,K.1^15,-1*K.1^81,K.1^93,-1*K.1^3,K.1^27,-1*K.1^69,K.1^87,-1*K.1^9,-1*K.1^33,K.1^63,-1*K.1^45,-1*K.1^51,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^86,-1*K.1^38,K.1^62,K.1^82,-1*K.1^70,-1*K.1^62,K.1^70,K.1^34,-1*K.1^50,K.1^86,-1*K.1^10,K.1^46,K.1^22,-1*K.1^74,K.1^58,K.1^50,K.1^74,K.1^10,-1*K.1^2,K.1^38,-1*K.1^14,-1*K.1^94,K.1^14,-1*K.1^82,-1*K.1^22,K.1^94,K.1^26,-1*K.1^58,K.1^13,-1*K.1^17,-1*K.1^61,K.1^65,K.1^5,-1*K.1^31,-1*K.1^13,K.1^95,K.1^55,-1*K.1^53,K.1^43,-1*K.1^67,-1*K.1^91,-1*K.1^47,-1*K.1^79,-1*K.1^59,K.1^11,K.1^47,K.1^79,K.1^59,-1*K.1,-1*K.1^43,K.1^53,-1*K.1^55,K.1^25,-1*K.1^71,-1*K.1^29,-1*K.1^37,K.1^89,-1*K.1^85,-1*K.1^35,-1*K.1^19,-1*K.1^23,K.1^7,K.1^29,-1*K.1^73,-1*K.1^49,K.1^49,K.1^37,K.1^77,-1*K.1^5,K.1^31,-1*K.1^25,K.1^83,-1*K.1^7,-1*K.1^11,K.1^85,K.1^35,K.1^91,K.1^67,-1*K.1^95,K.1^17,-1*K.1^77,K.1^61,-1*K.1^89,-1*K.1^83,K.1^19,K.1,-1*K.1^65,K.1^71,K.1^23,K.1^41,-1*K.1^41,K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,-1*K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^18,-1*K.1^78,-1*K.1^18,K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,K.1^30,K.1^6,K.1^90,-1*K.1^20,-1*K.1^92,K.1^28,K.1^4,-1*K.1^68,-1*K.1^44,K.1^52,K.1^20,-1*K.1^52,K.1^92,-1*K.1^28,-1*K.1^4,K.1^44,K.1^76,K.1^68,-1*K.1^76,-1*K.1^45,-1*K.1^51,K.1^33,-1*K.1^63,-1*K.1^87,K.1^9,-1*K.1^27,K.1^69,-1*K.1^93,K.1^3,-1*K.1^15,K.1^81,-1*K.1^21,K.1^75,-1*K.1^57,K.1^39,K.1^57,-1*K.1^39,-1*K.1^75,K.1^21,-1*K.1^81,K.1^15,-1*K.1^3,K.1^93,-1*K.1^69,K.1^27,-1*K.1^9,K.1^87,K.1^63,-1*K.1^33,K.1^51,K.1^45,K.1^50,-1*K.1^94,K.1^62,K.1^70,K.1^10,K.1^58,-1*K.1^34,-1*K.1^14,K.1^26,K.1^34,-1*K.1^26,-1*K.1^62,K.1^46,-1*K.1^10,K.1^86,-1*K.1^50,-1*K.1^74,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^94,-1*K.1^58,K.1^82,K.1^2,-1*K.1^82,K.1^14,K.1^74,-1*K.1^2,-1*K.1^70,K.1^38,-1*K.1^83,K.1^79,K.1^35,-1*K.1^31,-1*K.1^91,K.1^65,K.1^83,-1*K.1,-1*K.1^41,K.1^43,-1*K.1^53,K.1^29,K.1^5,K.1^49,K.1^17,K.1^37,-1*K.1^85,-1*K.1^49,-1*K.1^17,-1*K.1^37,K.1^95,K.1^53,-1*K.1^43,K.1^41,-1*K.1^71,K.1^25,K.1^67,K.1^59,-1*K.1^7,K.1^11,K.1^61,K.1^77,K.1^73,-1*K.1^89,-1*K.1^67,K.1^23,K.1^47,-1*K.1^47,-1*K.1^59,-1*K.1^19,K.1^91,-1*K.1^65,K.1^71,-1*K.1^13,K.1^89,K.1^85,-1*K.1^11,-1*K.1^61,-1*K.1^5,-1*K.1^29,K.1,-1*K.1^79,K.1^19,-1*K.1^35,K.1^7,K.1^13,-1*K.1^77,-1*K.1^95,K.1^31,-1*K.1^25,-1*K.1^73,-1*K.1^55,K.1^55,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,K.1^84,K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,K.1^6,K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,-1*K.1^78,K.1^18,K.1^78,-1*K.1^18,K.1^42,-1*K.1^54,K.1^30,-1*K.1^66,-1*K.1^90,-1*K.1^6,K.1^76,K.1^4,-1*K.1^68,-1*K.1^92,K.1^28,K.1^52,-1*K.1^44,-1*K.1^76,K.1^44,-1*K.1^4,K.1^68,K.1^92,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^51,-1*K.1^45,K.1^63,-1*K.1^33,-1*K.1^9,K.1^87,-1*K.1^69,K.1^27,-1*K.1^3,K.1^93,-1*K.1^81,K.1^15,-1*K.1^75,K.1^21,-1*K.1^39,K.1^57,K.1^39,-1*K.1^57,-1*K.1^21,K.1^75,-1*K.1^15,K.1^81,-1*K.1^93,K.1^3,-1*K.1^27,K.1^69,-1*K.1^87,K.1^9,K.1^33,-1*K.1^63,K.1^45,K.1^51,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^26,-1*K.1^86,-1*K.1^38,K.1^62,K.1^82,-1*K.1^70,-1*K.1^62,K.1^70,K.1^34,-1*K.1^50,K.1^86,-1*K.1^10,K.1^46,K.1^22,-1*K.1^74,K.1^58,K.1^50,K.1^74,K.1^10,-1*K.1^2,K.1^38,-1*K.1^14,-1*K.1^94,K.1^14,-1*K.1^82,-1*K.1^22,K.1^94,K.1^26,-1*K.1^58,-1*K.1^13,K.1^17,K.1^61,-1*K.1^65,-1*K.1^5,K.1^31,K.1^13,-1*K.1^95,-1*K.1^55,K.1^53,-1*K.1^43,K.1^67,K.1^91,K.1^47,K.1^79,K.1^59,-1*K.1^11,-1*K.1^47,-1*K.1^79,-1*K.1^59,K.1,K.1^43,-1*K.1^53,K.1^55,-1*K.1^25,K.1^71,K.1^29,K.1^37,-1*K.1^89,K.1^85,K.1^35,K.1^19,K.1^23,-1*K.1^7,-1*K.1^29,K.1^73,K.1^49,-1*K.1^49,-1*K.1^37,-1*K.1^77,K.1^5,-1*K.1^31,K.1^25,-1*K.1^83,K.1^7,K.1^11,-1*K.1^85,-1*K.1^35,-1*K.1^91,-1*K.1^67,K.1^95,-1*K.1^17,K.1^77,-1*K.1^61,K.1^89,K.1^83,-1*K.1^19,-1*K.1,K.1^65,-1*K.1^71,-1*K.1^23,-1*K.1^41,K.1^41,-1*K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,-1*K.1^12,-1*K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,-1*K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,K.1^18,-1*K.1^78,-1*K.1^18,K.1^78,-1*K.1^54,K.1^42,-1*K.1^66,K.1^30,K.1^6,K.1^90,-1*K.1^20,-1*K.1^92,K.1^28,K.1^4,-1*K.1^68,-1*K.1^44,K.1^52,K.1^20,-1*K.1^52,K.1^92,-1*K.1^28,-1*K.1^4,K.1^44,K.1^76,K.1^68,-1*K.1^76,K.1^45,K.1^51,-1*K.1^33,K.1^63,K.1^87,-1*K.1^9,K.1^27,-1*K.1^69,K.1^93,-1*K.1^3,K.1^15,-1*K.1^81,K.1^21,-1*K.1^75,K.1^57,-1*K.1^39,-1*K.1^57,K.1^39,K.1^75,-1*K.1^21,K.1^81,-1*K.1^15,K.1^3,-1*K.1^93,K.1^69,-1*K.1^27,K.1^9,-1*K.1^87,-1*K.1^63,K.1^33,-1*K.1^51,-1*K.1^45,K.1^50,-1*K.1^94,K.1^62,K.1^70,K.1^10,K.1^58,-1*K.1^34,-1*K.1^14,K.1^26,K.1^34,-1*K.1^26,-1*K.1^62,K.1^46,-1*K.1^10,K.1^86,-1*K.1^50,-1*K.1^74,K.1^22,-1*K.1^38,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^94,-1*K.1^58,K.1^82,K.1^2,-1*K.1^82,K.1^14,K.1^74,-1*K.1^2,-1*K.1^70,K.1^38,K.1^83,-1*K.1^79,-1*K.1^35,K.1^31,K.1^91,-1*K.1^65,-1*K.1^83,K.1,K.1^41,-1*K.1^43,K.1^53,-1*K.1^29,-1*K.1^5,-1*K.1^49,-1*K.1^17,-1*K.1^37,K.1^85,K.1^49,K.1^17,K.1^37,-1*K.1^95,-1*K.1^53,K.1^43,-1*K.1^41,K.1^71,-1*K.1^25,-1*K.1^67,-1*K.1^59,K.1^7,-1*K.1^11,-1*K.1^61,-1*K.1^77,-1*K.1^73,K.1^89,K.1^67,-1*K.1^23,-1*K.1^47,K.1^47,K.1^59,K.1^19,-1*K.1^91,K.1^65,-1*K.1^71,K.1^13,-1*K.1^89,-1*K.1^85,K.1^11,K.1^61,K.1^5,K.1^29,-1*K.1,K.1^79,-1*K.1^19,K.1^35,-1*K.1^7,-1*K.1^13,K.1^77,K.1^95,-1*K.1^31,K.1^25,K.1^73,K.1^55,-1*K.1^55,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^30,-1*K.1^66,-1*K.1^30,K.1^66,-1*K.1^90,K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,-1*K.1^54,-1*K.1^76,-1*K.1^4,K.1^68,K.1^92,-1*K.1^28,-1*K.1^52,K.1^44,K.1^76,-1*K.1^44,K.1^4,-1*K.1^68,-1*K.1^92,K.1^52,K.1^20,K.1^28,-1*K.1^20,K.1^75,K.1^21,K.1^87,-1*K.1^9,K.1^81,-1*K.1^15,K.1^45,-1*K.1^51,K.1^27,-1*K.1^69,-1*K.1^57,K.1^39,-1*K.1^3,K.1^93,-1*K.1^63,K.1^33,K.1^63,-1*K.1^33,-1*K.1^93,K.1^3,-1*K.1^39,K.1^57,K.1^69,-1*K.1^27,K.1^51,-1*K.1^45,K.1^15,-1*K.1^81,K.1^9,-1*K.1^87,-1*K.1^21,-1*K.1^75,-1*K.1^94,-1*K.1^50,K.1^82,K.1^74,K.1^38,-1*K.1^86,-1*K.1^14,K.1^34,K.1^22,K.1^14,-1*K.1^22,-1*K.1^82,-1*K.1^2,-1*K.1^38,K.1^58,K.1^94,K.1^70,-1*K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^58,K.1^50,K.1^86,-1*K.1^62,K.1^46,K.1^62,-1*K.1^34,-1*K.1^70,-1*K.1^46,-1*K.1^74,-1*K.1^10,-1*K.1^85,-1*K.1^89,-1*K.1^37,-1*K.1^41,-1*K.1^77,K.1^55,K.1^85,K.1^23,-1*K.1^79,-1*K.1^29,K.1^67,-1*K.1^91,K.1^19,K.1^71,-1*K.1^7,-1*K.1^83,K.1^35,-1*K.1^71,K.1^7,K.1^83,-1*K.1^73,-1*K.1^67,K.1^29,K.1^79,-1*K.1,K.1^95,-1*K.1^5,-1*K.1^13,-1*K.1^65,-1*K.1^61,-1*K.1^59,-1*K.1^43,K.1^47,-1*K.1^31,K.1^5,K.1^49,K.1^25,-1*K.1^25,K.1^13,K.1^53,K.1^77,-1*K.1^55,K.1,-1*K.1^11,K.1^31,-1*K.1^35,K.1^61,K.1^59,-1*K.1^19,K.1^91,-1*K.1^23,K.1^89,-1*K.1^53,K.1^37,K.1^65,K.1^11,K.1^43,K.1^73,K.1^41,-1*K.1^95,-1*K.1^47,-1*K.1^17,K.1^17,-1*K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,-1*K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^66,K.1^30,K.1^66,-1*K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,K.1^78,K.1^54,K.1^42,K.1^20,K.1^92,-1*K.1^28,-1*K.1^4,K.1^68,K.1^44,-1*K.1^52,-1*K.1^20,K.1^52,-1*K.1^92,K.1^28,K.1^4,-1*K.1^44,-1*K.1^76,-1*K.1^68,K.1^76,-1*K.1^21,-1*K.1^75,-1*K.1^9,K.1^87,-1*K.1^15,K.1^81,-1*K.1^51,K.1^45,-1*K.1^69,K.1^27,K.1^39,-1*K.1^57,K.1^93,-1*K.1^3,K.1^33,-1*K.1^63,-1*K.1^33,K.1^63,K.1^3,-1*K.1^93,K.1^57,-1*K.1^39,-1*K.1^27,K.1^69,-1*K.1^45,K.1^51,-1*K.1^81,K.1^15,-1*K.1^87,K.1^9,K.1^75,K.1^21,K.1^2,K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^10,K.1^82,-1*K.1^62,-1*K.1^74,-1*K.1^82,K.1^74,K.1^14,K.1^94,K.1^58,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^70,-1*K.1^86,-1*K.1^94,-1*K.1^70,K.1^38,-1*K.1^46,-1*K.1^10,K.1^34,-1*K.1^50,-1*K.1^34,K.1^62,K.1^26,K.1^50,K.1^22,K.1^86,K.1^11,K.1^7,K.1^59,K.1^55,K.1^19,-1*K.1^41,-1*K.1^11,-1*K.1^73,K.1^17,K.1^67,-1*K.1^29,K.1^5,-1*K.1^77,-1*K.1^25,K.1^89,K.1^13,-1*K.1^61,K.1^25,-1*K.1^89,-1*K.1^13,K.1^23,K.1^29,-1*K.1^67,-1*K.1^17,K.1^95,-1*K.1,K.1^91,K.1^83,K.1^31,K.1^35,K.1^37,K.1^53,-1*K.1^49,K.1^65,-1*K.1^91,-1*K.1^47,-1*K.1^71,K.1^71,-1*K.1^83,-1*K.1^43,-1*K.1^19,K.1^41,-1*K.1^95,K.1^85,-1*K.1^65,K.1^61,-1*K.1^35,-1*K.1^37,K.1^77,-1*K.1^5,K.1^73,-1*K.1^7,K.1^43,-1*K.1^59,-1*K.1^31,-1*K.1^85,-1*K.1^53,-1*K.1^23,-1*K.1^55,K.1,K.1^49,K.1^79,-1*K.1^79,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,K.1^54,K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,K.1^30,-1*K.1^66,-1*K.1^30,K.1^66,-1*K.1^90,K.1^6,K.1^78,-1*K.1^18,-1*K.1^42,-1*K.1^54,-1*K.1^76,-1*K.1^4,K.1^68,K.1^92,-1*K.1^28,-1*K.1^52,K.1^44,K.1^76,-1*K.1^44,K.1^4,-1*K.1^68,-1*K.1^92,K.1^52,K.1^20,K.1^28,-1*K.1^20,-1*K.1^75,-1*K.1^21,-1*K.1^87,K.1^9,-1*K.1^81,K.1^15,-1*K.1^45,K.1^51,-1*K.1^27,K.1^69,K.1^57,-1*K.1^39,K.1^3,-1*K.1^93,K.1^63,-1*K.1^33,-1*K.1^63,K.1^33,K.1^93,-1*K.1^3,K.1^39,-1*K.1^57,-1*K.1^69,K.1^27,-1*K.1^51,K.1^45,-1*K.1^15,K.1^81,-1*K.1^9,K.1^87,K.1^21,K.1^75,-1*K.1^94,-1*K.1^50,K.1^82,K.1^74,K.1^38,-1*K.1^86,-1*K.1^14,K.1^34,K.1^22,K.1^14,-1*K.1^22,-1*K.1^82,-1*K.1^2,-1*K.1^38,K.1^58,K.1^94,K.1^70,-1*K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^58,K.1^50,K.1^86,-1*K.1^62,K.1^46,K.1^62,-1*K.1^34,-1*K.1^70,-1*K.1^46,-1*K.1^74,-1*K.1^10,K.1^85,K.1^89,K.1^37,K.1^41,K.1^77,-1*K.1^55,-1*K.1^85,-1*K.1^23,K.1^79,K.1^29,-1*K.1^67,K.1^91,-1*K.1^19,-1*K.1^71,K.1^7,K.1^83,-1*K.1^35,K.1^71,-1*K.1^7,-1*K.1^83,K.1^73,K.1^67,-1*K.1^29,-1*K.1^79,K.1,-1*K.1^95,K.1^5,K.1^13,K.1^65,K.1^61,K.1^59,K.1^43,-1*K.1^47,K.1^31,-1*K.1^5,-1*K.1^49,-1*K.1^25,K.1^25,-1*K.1^13,-1*K.1^53,-1*K.1^77,K.1^55,-1*K.1,K.1^11,-1*K.1^31,K.1^35,-1*K.1^61,-1*K.1^59,K.1^19,-1*K.1^91,K.1^23,-1*K.1^89,K.1^53,-1*K.1^37,-1*K.1^65,-1*K.1^11,-1*K.1^43,-1*K.1^73,-1*K.1^41,K.1^95,K.1^47,K.1^17,-1*K.1^17,K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,-1*K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,-1*K.1^66,K.1^30,K.1^66,-1*K.1^30,K.1^6,-1*K.1^90,-1*K.1^18,K.1^78,K.1^54,K.1^42,K.1^20,K.1^92,-1*K.1^28,-1*K.1^4,K.1^68,K.1^44,-1*K.1^52,-1*K.1^20,K.1^52,-1*K.1^92,K.1^28,K.1^4,-1*K.1^44,-1*K.1^76,-1*K.1^68,K.1^76,K.1^21,K.1^75,K.1^9,-1*K.1^87,K.1^15,-1*K.1^81,K.1^51,-1*K.1^45,K.1^69,-1*K.1^27,-1*K.1^39,K.1^57,-1*K.1^93,K.1^3,-1*K.1^33,K.1^63,K.1^33,-1*K.1^63,-1*K.1^3,K.1^93,-1*K.1^57,K.1^39,K.1^27,-1*K.1^69,K.1^45,-1*K.1^51,K.1^81,-1*K.1^15,K.1^87,-1*K.1^9,-1*K.1^75,-1*K.1^21,K.1^2,K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^10,K.1^82,-1*K.1^62,-1*K.1^74,-1*K.1^82,K.1^74,K.1^14,K.1^94,K.1^58,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^70,-1*K.1^86,-1*K.1^94,-1*K.1^70,K.1^38,-1*K.1^46,-1*K.1^10,K.1^34,-1*K.1^50,-1*K.1^34,K.1^62,K.1^26,K.1^50,K.1^22,K.1^86,-1*K.1^11,-1*K.1^7,-1*K.1^59,-1*K.1^55,-1*K.1^19,K.1^41,K.1^11,K.1^73,-1*K.1^17,-1*K.1^67,K.1^29,-1*K.1^5,K.1^77,K.1^25,-1*K.1^89,-1*K.1^13,K.1^61,-1*K.1^25,K.1^89,K.1^13,-1*K.1^23,-1*K.1^29,K.1^67,K.1^17,-1*K.1^95,K.1,-1*K.1^91,-1*K.1^83,-1*K.1^31,-1*K.1^35,-1*K.1^37,-1*K.1^53,K.1^49,-1*K.1^65,K.1^91,K.1^47,K.1^71,-1*K.1^71,K.1^83,K.1^43,K.1^19,-1*K.1^41,K.1^95,-1*K.1^85,K.1^65,-1*K.1^61,K.1^35,K.1^37,-1*K.1^77,K.1^5,-1*K.1^73,K.1^7,-1*K.1^43,K.1^59,K.1^31,K.1^85,K.1^53,K.1^23,K.1^55,-1*K.1,-1*K.1^49,-1*K.1^79,K.1^79,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,-1*K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^30,K.1^66,K.1^30,-1*K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,K.1^18,K.1^42,K.1^54,-1*K.1^76,-1*K.1^4,K.1^68,K.1^92,-1*K.1^28,-1*K.1^52,K.1^44,K.1^76,-1*K.1^44,K.1^4,-1*K.1^68,-1*K.1^92,K.1^52,K.1^20,K.1^28,-1*K.1^20,-1*K.1^27,-1*K.1^69,-1*K.1^39,K.1^57,K.1^33,-1*K.1^63,-1*K.1^93,K.1^3,K.1^75,-1*K.1^21,-1*K.1^9,K.1^87,-1*K.1^51,K.1^45,K.1^15,-1*K.1^81,-1*K.1^15,K.1^81,-1*K.1^45,K.1^51,-1*K.1^87,K.1^9,K.1^21,-1*K.1^75,-1*K.1^3,K.1^93,K.1^63,-1*K.1^33,-1*K.1^57,K.1^39,K.1^69,K.1^27,K.1^94,K.1^50,-1*K.1^82,-1*K.1^74,-1*K.1^38,K.1^86,K.1^14,-1*K.1^34,-1*K.1^22,-1*K.1^14,K.1^22,K.1^82,K.1^2,K.1^38,-1*K.1^58,-1*K.1^94,-1*K.1^70,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^58,-1*K.1^50,-1*K.1^86,K.1^62,-1*K.1^46,-1*K.1^62,K.1^34,K.1^70,K.1^46,K.1^74,K.1^10,-1*K.1^37,-1*K.1^41,K.1^85,K.1^89,-1*K.1^29,-1*K.1^7,K.1^37,K.1^71,K.1^31,K.1^77,-1*K.1^19,K.1^43,K.1^67,-1*K.1^23,-1*K.1^55,K.1^35,K.1^83,K.1^23,K.1^55,-1*K.1^35,-1*K.1^25,K.1^19,-1*K.1^77,-1*K.1^31,K.1^49,-1*K.1^47,K.1^53,K.1^61,-1*K.1^17,-1*K.1^13,K.1^11,-1*K.1^91,K.1^95,-1*K.1^79,-1*K.1^53,K.1,-1*K.1^73,K.1^73,-1*K.1^61,K.1^5,K.1^29,K.1^7,-1*K.1^49,-1*K.1^59,K.1^79,-1*K.1^83,K.1^13,-1*K.1^11,-1*K.1^67,-1*K.1^43,-1*K.1^71,K.1^41,-1*K.1^5,-1*K.1^85,K.1^17,K.1^59,K.1^91,K.1^25,-1*K.1^89,K.1^47,-1*K.1^95,K.1^65,-1*K.1^65,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^66,-1*K.1^30,-1*K.1^66,K.1^30,-1*K.1^6,K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,-1*K.1^42,K.1^20,K.1^92,-1*K.1^28,-1*K.1^4,K.1^68,K.1^44,-1*K.1^52,-1*K.1^20,K.1^52,-1*K.1^92,K.1^28,K.1^4,-1*K.1^44,-1*K.1^76,-1*K.1^68,K.1^76,K.1^69,K.1^27,K.1^57,-1*K.1^39,-1*K.1^63,K.1^33,K.1^3,-1*K.1^93,-1*K.1^21,K.1^75,K.1^87,-1*K.1^9,K.1^45,-1*K.1^51,-1*K.1^81,K.1^15,K.1^81,-1*K.1^15,K.1^51,-1*K.1^45,K.1^9,-1*K.1^87,-1*K.1^75,K.1^21,K.1^93,-1*K.1^3,-1*K.1^33,K.1^63,K.1^39,-1*K.1^57,-1*K.1^27,-1*K.1^69,-1*K.1^2,-1*K.1^46,K.1^14,K.1^22,K.1^58,-1*K.1^10,-1*K.1^82,K.1^62,K.1^74,K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^94,-1*K.1^58,K.1^38,K.1^2,K.1^26,-1*K.1^70,K.1^86,K.1^94,K.1^70,-1*K.1^38,K.1^46,K.1^10,-1*K.1^34,K.1^50,K.1^34,-1*K.1^62,-1*K.1^26,-1*K.1^50,-1*K.1^22,-1*K.1^86,K.1^59,K.1^55,-1*K.1^11,-1*K.1^7,K.1^67,K.1^89,-1*K.1^59,-1*K.1^25,-1*K.1^65,-1*K.1^19,K.1^77,-1*K.1^53,-1*K.1^29,K.1^73,K.1^41,-1*K.1^61,-1*K.1^13,-1*K.1^73,-1*K.1^41,K.1^61,K.1^71,-1*K.1^77,K.1^19,K.1^65,-1*K.1^47,K.1^49,-1*K.1^43,-1*K.1^35,K.1^79,K.1^83,-1*K.1^85,K.1^5,-1*K.1,K.1^17,K.1^43,-1*K.1^95,K.1^23,-1*K.1^23,K.1^35,-1*K.1^91,-1*K.1^67,-1*K.1^89,K.1^47,K.1^37,-1*K.1^17,K.1^13,-1*K.1^83,K.1^85,K.1^29,K.1^53,K.1^25,-1*K.1^55,K.1^91,K.1^11,-1*K.1^79,-1*K.1^37,-1*K.1^5,-1*K.1^71,K.1^7,-1*K.1^49,K.1,-1*K.1^31,K.1^31,K.1^95]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,-1*K.1^84,-1*K.1^12,K.1^56,K.1^40,-1*K.1^88,-1*K.1^8,-1*K.1^56,K.1^88,K.1^8,-1*K.1^40,-1*K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,-1*K.1^30,K.1^66,K.1^30,-1*K.1^66,K.1^90,-1*K.1^6,-1*K.1^78,K.1^18,K.1^42,K.1^54,-1*K.1^76,-1*K.1^4,K.1^68,K.1^92,-1*K.1^28,-1*K.1^52,K.1^44,K.1^76,-1*K.1^44,K.1^4,-1*K.1^68,-1*K.1^92,K.1^52,K.1^20,K.1^28,-1*K.1^20,K.1^27,K.1^69,K.1^39,-1*K.1^57,-1*K.1^33,K.1^63,K.1^93,-1*K.1^3,-1*K.1^75,K.1^21,K.1^9,-1*K.1^87,K.1^51,-1*K.1^45,-1*K.1^15,K.1^81,K.1^15,-1*K.1^81,K.1^45,-1*K.1^51,K.1^87,-1*K.1^9,-1*K.1^21,K.1^75,K.1^3,-1*K.1^93,-1*K.1^63,K.1^33,K.1^57,-1*K.1^39,-1*K.1^69,-1*K.1^27,K.1^94,K.1^50,-1*K.1^82,-1*K.1^74,-1*K.1^38,K.1^86,K.1^14,-1*K.1^34,-1*K.1^22,-1*K.1^14,K.1^22,K.1^82,K.1^2,K.1^38,-1*K.1^58,-1*K.1^94,-1*K.1^70,K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^58,-1*K.1^50,-1*K.1^86,K.1^62,-1*K.1^46,-1*K.1^62,K.1^34,K.1^70,K.1^46,K.1^74,K.1^10,K.1^37,K.1^41,-1*K.1^85,-1*K.1^89,K.1^29,K.1^7,-1*K.1^37,-1*K.1^71,-1*K.1^31,-1*K.1^77,K.1^19,-1*K.1^43,-1*K.1^67,K.1^23,K.1^55,-1*K.1^35,-1*K.1^83,-1*K.1^23,-1*K.1^55,K.1^35,K.1^25,-1*K.1^19,K.1^77,K.1^31,-1*K.1^49,K.1^47,-1*K.1^53,-1*K.1^61,K.1^17,K.1^13,-1*K.1^11,K.1^91,-1*K.1^95,K.1^79,K.1^53,-1*K.1,K.1^73,-1*K.1^73,K.1^61,-1*K.1^5,-1*K.1^29,-1*K.1^7,K.1^49,K.1^59,-1*K.1^79,K.1^83,-1*K.1^13,K.1^11,K.1^67,K.1^43,K.1^71,-1*K.1^41,K.1^5,K.1^85,-1*K.1^17,-1*K.1^59,-1*K.1^91,-1*K.1^25,K.1^89,-1*K.1^47,K.1^95,-1*K.1^65,K.1^65,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,K.1^12,K.1^84,-1*K.1^40,-1*K.1^56,K.1^8,K.1^88,K.1^40,-1*K.1^8,-1*K.1^88,K.1^56,K.1^42,K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,K.1^66,-1*K.1^30,-1*K.1^66,K.1^30,-1*K.1^6,K.1^90,K.1^18,-1*K.1^78,-1*K.1^54,-1*K.1^42,K.1^20,K.1^92,-1*K.1^28,-1*K.1^4,K.1^68,K.1^44,-1*K.1^52,-1*K.1^20,K.1^52,-1*K.1^92,K.1^28,K.1^4,-1*K.1^44,-1*K.1^76,-1*K.1^68,K.1^76,-1*K.1^69,-1*K.1^27,-1*K.1^57,K.1^39,K.1^63,-1*K.1^33,-1*K.1^3,K.1^93,K.1^21,-1*K.1^75,-1*K.1^87,K.1^9,-1*K.1^45,K.1^51,K.1^81,-1*K.1^15,-1*K.1^81,K.1^15,-1*K.1^51,K.1^45,-1*K.1^9,K.1^87,K.1^75,-1*K.1^21,-1*K.1^93,K.1^3,K.1^33,-1*K.1^63,-1*K.1^39,K.1^57,K.1^27,K.1^69,-1*K.1^2,-1*K.1^46,K.1^14,K.1^22,K.1^58,-1*K.1^10,-1*K.1^82,K.1^62,K.1^74,K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^94,-1*K.1^58,K.1^38,K.1^2,K.1^26,-1*K.1^70,K.1^86,K.1^94,K.1^70,-1*K.1^38,K.1^46,K.1^10,-1*K.1^34,K.1^50,K.1^34,-1*K.1^62,-1*K.1^26,-1*K.1^50,-1*K.1^22,-1*K.1^86,-1*K.1^59,-1*K.1^55,K.1^11,K.1^7,-1*K.1^67,-1*K.1^89,K.1^59,K.1^25,K.1^65,K.1^19,-1*K.1^77,K.1^53,K.1^29,-1*K.1^73,-1*K.1^41,K.1^61,K.1^13,K.1^73,K.1^41,-1*K.1^61,-1*K.1^71,K.1^77,-1*K.1^19,-1*K.1^65,K.1^47,-1*K.1^49,K.1^43,K.1^35,-1*K.1^79,-1*K.1^83,K.1^85,-1*K.1^5,K.1,-1*K.1^17,-1*K.1^43,K.1^95,-1*K.1^23,K.1^23,-1*K.1^35,K.1^91,K.1^67,K.1^89,-1*K.1^47,-1*K.1^37,K.1^17,-1*K.1^13,K.1^83,-1*K.1^85,-1*K.1^29,-1*K.1^53,-1*K.1^25,K.1^55,-1*K.1^91,-1*K.1^11,K.1^79,K.1^37,K.1^5,K.1^71,-1*K.1^7,K.1^49,-1*K.1,K.1^31,-1*K.1^31,-1*K.1^95]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_192_2:= KnownIrreducibles(CR);