# Group 17640.i downloaded from the LMFDB on 26 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(14854128979258037214324412215518032083873577718396966710644452699,17640); a := GPC.1; b := GPC.4; GPerm := Group( (1,2,3,5,4)(6,7,8)(16,17,19,22)(18,21,23,20)(27,28,30,33,29,32,31), (2,4)(3,5)(7,8)(9,10,11,12,13,14,15)(16,18,19,23)(17,20,22,21)(24,25,26)(28,31)(29,33)(30,32), (6,8,7)(9,11,13,15,10,12,14)(24,26,25)(27,29,28,32,30,31,33) ); GLFp := Group([[[ Z(421), 0*Z(421) ], [ 0*Z(421), Z(421)^419 ]], [[ Z(421)^0, 0*Z(421) ], [ 0*Z(421), Z(421)^20 ]], [[ 0*Z(421), Z(421)^10 ], [ Z(421)^0, 0*Z(421) ]]]); # Booleans booleans_17640_i := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true);