/* Group 1760.292 downloaded from the LMFDB on 19 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, 2, 2, 2, 5, 2, 2, 11, 6300, 309, 36, 58, 2104, 9111, 12968, 900, 102, 21852, 12619, 2126, 124, 7853, 7860, 4927]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4"]); GPerm := PermutationGroup< 19 | (2,3)(4,5)(6,7)(8,10)(9,11)(12,13)(14,15), (13,14)(16,17)(18,19), (12,14)(13,15)(16,18,17,19), (2,4,6,8,9)(3,5,7,10,11), (16,17)(18,19), (12,15)(13,14), (1,2,5,8,6,9,11,7,10,4,3) >; GLZN := MatrixGroup< 2, Integers(88) | [[1, 8, 0, 1], [45, 0, 0, 45], [65, 44, 44, 45], [25, 0, 0, 9], [43, 11, 44, 65], [23, 22, 44, 23], [1, 44, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1760_292 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^10*c^22>,< 2, 1, b^10>,< 2, 1, c^22>,< 2, 2, a*c^33>,< 2, 2, a*c^11>,< 2, 22, a*b^5*c^9>,< 2, 22, a*b^5*c^27>,< 4, 2, c^33>,< 4, 2, c^11>,< 4, 2, a>,< 4, 2, a*b^10*c^22>,< 4, 11, b^5*c^9>,< 4, 11, b^15*c^31>,< 4, 11, b^5*c^27>,< 4, 11, b^15*c^5>,< 4, 22, b^5>,< 4, 22, b^5*c^18>,< 4, 22, a*b^5>,< 4, 22, a*b^15*c^22>,< 5, 11, b^8*c^28>,< 5, 11, b^12*c^20>,< 5, 11, b^16*c^24>,< 5, 11, b^4*c^12>,< 10, 11, b^2*c^14>,< 10, 11, b^18*c^2>,< 10, 11, b^6*c^30>,< 10, 11, b^14*c^26>,< 10, 11, b^2>,< 10, 11, b^18>,< 10, 11, b^6>,< 10, 11, b^14>,< 10, 11, b^8*c^6>,< 10, 11, b^12*c^42>,< 10, 11, b^4*c^34>,< 10, 11, b^16*c^2>,< 10, 22, a*b^4*c>,< 10, 22, a*b^16*c>,< 10, 22, a*b^2*c>,< 10, 22, a*b^8*c>,< 10, 22, a*b*c>,< 10, 22, a*b^9*c>,< 10, 22, a*b^3*c>,< 10, 22, a*b^17*c>,< 10, 22, a*b^4*c^3>,< 10, 22, a*b^16*c^3>,< 10, 22, a*b^2*c^3>,< 10, 22, a*b^8*c^3>,< 10, 22, a*b*c^3>,< 10, 22, a*b^9*c^3>,< 10, 22, a*b^3*c^3>,< 10, 22, a*b^17*c^3>,< 11, 10, c^8>,< 20, 11, b*c>,< 20, 11, b^19*c^3>,< 20, 11, b^3*c^3>,< 20, 11, b^17*c>,< 20, 11, b^7*c^3>,< 20, 11, b^13*c>,< 20, 11, b^9*c>,< 20, 11, b^11*c^3>,< 20, 11, b*c^3>,< 20, 11, b^19*c>,< 20, 11, b^3*c>,< 20, 11, b^17*c^3>,< 20, 11, b^7*c>,< 20, 11, b^13*c^3>,< 20, 11, b^9*c^3>,< 20, 11, b^11*c>,< 20, 22, b>,< 20, 22, b^9>,< 20, 22, b^3>,< 20, 22, b^17>,< 20, 22, b*c^2>,< 20, 22, b^9*c^2>,< 20, 22, b^3*c^2>,< 20, 22, b^17*c^2>,< 20, 22, b^4*c>,< 20, 22, b^16*c^3>,< 20, 22, b^2*c^3>,< 20, 22, b^8*c>,< 20, 22, b^8*c^3>,< 20, 22, b^2*c>,< 20, 22, b^16*c>,< 20, 22, b^4*c^3>,< 20, 22, a*b^4>,< 20, 22, a*b^16*c^2>,< 20, 22, a*b^2*c^2>,< 20, 22, a*b^8>,< 20, 22, a*b^8*c^2>,< 20, 22, a*b^2>,< 20, 22, a*b^16>,< 20, 22, a*b^4*c^2>,< 20, 22, a*b>,< 20, 22, a*b^9*c^2>,< 20, 22, a*b^3*c^2>,< 20, 22, a*b^17>,< 20, 22, a*b^17*c^2>,< 20, 22, a*b^3>,< 20, 22, a*b^9>,< 20, 22, a*b*c^2>,< 22, 10, b^10*c^4>,< 22, 10, c^2>,< 22, 10, b^10*c^30>,< 22, 20, a*c>,< 22, 20, a*c^3>,< 44, 20, c>,< 44, 20, c^3>,< 44, 20, a*c^4>,< 44, 20, a*c^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,1,K.1,1,-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,1,-1*K.1,1,-1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,-1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,K.1,-1,-1*K.1,-1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1,K.1,-1,1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,K.1,-1,-1*K.1,-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,1,1,-1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1,K.1,-1,1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,1,1,-1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,1,K.1,1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,-1,1,1,-1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,1,-1*K.1,1,-1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,1,1,-1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^2,K.1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^2,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1,-1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1,K.1^-2,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,K.1,K.1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,K.1^2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-1,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^2,K.1^-1,-1*K.1,K.1^2,-1*K.1,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^2,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-2,1,1,1,-1,-1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,K.1,K.1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,K.1^2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,-1*K.1^-1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,-1*K.1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,-1*K.1^2,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,-1*K.1^-2,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1,K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^2,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-2,1,1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,1,K.1^3,K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^7,K.1,K.1^9,K.1^9,K.1^6,K.1^3,-1*K.1,K.1,K.1^7,K.1^2,-1*K.1^7,-1*K.1^2,K.1^3,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^4,-1*K.1^9,K.1^4,K.1^9,K.1^8,-1*K.1^8,-1*K.1^3,K.1,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^6,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,1,-1*K.1^7,-1*K.1^9,K.1,K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^4,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^8,K.1^3,K.1^8,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,K.1^6,K.1,-1*K.1^6,-1*K.1,-1*K.1^2,K.1^2,K.1^7,-1*K.1^9,-1*K.1^3,K.1,K.1^9,K.1^3,K.1^4,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,1,K.1^7,K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^9,K.1,K.1,-1*K.1^4,K.1^7,-1*K.1^9,K.1^9,K.1^3,-1*K.1^8,-1*K.1^3,K.1^8,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^6,-1*K.1,-1*K.1^6,K.1,-1*K.1^2,K.1^2,-1*K.1^7,K.1^9,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^4,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,1,-1*K.1^3,-1*K.1,K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1,K.1,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^6,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,K.1^2,K.1^7,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^4,K.1^9,K.1^4,-1*K.1^9,K.1^8,-1*K.1^8,K.1^3,-1*K.1,-1*K.1^7,K.1^9,K.1,K.1^7,-1*K.1^6,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,1,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1,K.1^6,K.1,-1*K.1^6,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^2,K.1^7,-1*K.1^2,-1*K.1^7,K.1^4,-1*K.1^4,K.1^9,-1*K.1^3,-1*K.1,K.1^7,K.1^3,K.1,K.1^8,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,1,K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1^7,K.1^3,K.1^3,K.1^2,K.1,-1*K.1^7,K.1^7,K.1^9,-1*K.1^4,-1*K.1^9,K.1^4,K.1,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^8,-1*K.1^3,K.1^8,K.1^3,-1*K.1^6,K.1^6,-1*K.1,K.1^7,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^2,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,1,-1*K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1^2,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^4,K.1^9,K.1^4,-1*K.1,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^8,K.1^3,K.1^8,-1*K.1^3,-1*K.1^6,K.1^6,K.1,-1*K.1^7,-1*K.1^9,K.1^3,K.1^7,K.1^9,-1*K.1^2,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,1,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^3,K.1^7,K.1^7,-1*K.1^8,K.1^9,-1*K.1^3,K.1^3,K.1,K.1^6,-1*K.1,-1*K.1^6,K.1^9,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^2,-1*K.1^7,-1*K.1^2,K.1^7,K.1^4,-1*K.1^4,-1*K.1^9,K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^8,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^8,K.1^2,1,-1*K.1^3,-1*K.1,K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1,K.1,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^9,K.1^9,-1*K.1^6,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,-1*K.1^2,K.1^7,K.1^2,K.1^3,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^4,K.1^9,-1*K.1^4,-1*K.1^9,-1*K.1^8,K.1^8,K.1^3,K.1,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,K.1^6,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,K.1^4,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,1,K.1^7,K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^9,K.1,-1*K.1,K.1^4,K.1^7,-1*K.1^9,K.1^9,K.1^3,K.1^8,-1*K.1^3,-1*K.1^8,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^6,-1*K.1,K.1^6,K.1,K.1^2,-1*K.1^2,-1*K.1^7,-1*K.1^9,-1*K.1^3,K.1,K.1^9,K.1^3,-1*K.1^4,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,K.1^4,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,1,-1*K.1^7,-1*K.1^9,K.1,K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1,K.1,K.1^4,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^3,K.1^8,K.1^3,-1*K.1^8,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,-1*K.1^6,K.1,K.1^6,-1*K.1,K.1^2,-1*K.1^2,K.1^7,K.1^9,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^4,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^8,K.1^2,1,K.1^3,K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^7,K.1,K.1^9,-1*K.1^9,-1*K.1^6,K.1^3,-1*K.1,K.1,K.1^7,-1*K.1^2,-1*K.1^7,K.1^2,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^4,-1*K.1^9,-1*K.1^4,K.1^9,-1*K.1^8,K.1^8,-1*K.1^3,-1*K.1,-1*K.1^7,K.1^9,K.1,K.1^7,K.1^6,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^4,K.1^6,-1*K.1^4,K.1^6,1,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^3,K.1^7,-1*K.1^7,K.1^8,K.1^9,-1*K.1^3,K.1^3,K.1,-1*K.1^6,-1*K.1,K.1^6,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^2,-1*K.1^7,K.1^2,K.1^7,-1*K.1^4,K.1^4,-1*K.1^9,-1*K.1^3,-1*K.1,K.1^7,K.1^3,K.1,-1*K.1^8,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,1,-1*K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^9,K.1^4,K.1^9,-1*K.1^4,K.1,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,K.1^8,K.1^3,-1*K.1^8,-1*K.1^3,K.1^6,-1*K.1^6,K.1,K.1^7,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,K.1^2,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,1,K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1^7,K.1^3,-1*K.1^3,-1*K.1^2,K.1,-1*K.1^7,K.1^7,K.1^9,K.1^4,-1*K.1^9,-1*K.1^4,-1*K.1,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^8,-1*K.1^3,-1*K.1^8,K.1^3,K.1^6,-1*K.1^6,-1*K.1,-1*K.1^7,-1*K.1^9,K.1^3,K.1^7,K.1^9,K.1^2,-1,-1,1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^4,K.1^6,-1*K.1^4,K.1^6,1,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^7,K.1^7,K.1^8,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^6,K.1,K.1^6,K.1^9,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^2,K.1^7,K.1^2,-1*K.1^7,-1*K.1^4,K.1^4,K.1^9,K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^8,-1,-1,1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^4,-1*K.1^8,-1*K.1^6,K.1^4,K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,1,K.1^3,K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^7,K.1,K.1^9,K.1^9,-1*K.1^6,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,-1*K.1^2,K.1^7,K.1^2,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^4,K.1^9,-1*K.1^4,-1*K.1^9,-1*K.1^8,K.1^8,K.1^3,-1*K.1,K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^6,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^2,K.1^8,1,-1*K.1^7,-1*K.1^9,K.1,K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1,-1*K.1,K.1^4,K.1^7,-1*K.1^9,K.1^9,K.1^3,K.1^8,-1*K.1^3,-1*K.1^8,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^6,-1*K.1,K.1^6,K.1,K.1^2,-1*K.1^2,-1*K.1^7,K.1^9,-1*K.1^3,K.1,-1*K.1^9,K.1^3,-1*K.1^4,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^2,K.1^8,1,K.1^7,K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^9,K.1,K.1,K.1^4,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^3,K.1^8,K.1^3,-1*K.1^8,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,-1*K.1^6,K.1,K.1^6,-1*K.1,K.1^2,-1*K.1^2,K.1^7,-1*K.1^9,K.1^3,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^4,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^4,-1*K.1^8,-1*K.1^6,K.1^4,K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,1,-1*K.1^3,-1*K.1,K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1,K.1,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^6,K.1^3,-1*K.1,K.1,K.1^7,-1*K.1^2,-1*K.1^7,K.1^2,K.1^3,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^4,-1*K.1^9,-1*K.1^4,K.1^9,-1*K.1^8,K.1^8,-1*K.1^3,K.1,-1*K.1^7,K.1^9,-1*K.1,K.1^7,K.1^6,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,1,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^8,K.1^9,-1*K.1^3,K.1^3,K.1,-1*K.1^6,-1*K.1,K.1^6,K.1^9,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^2,-1*K.1^7,K.1^2,K.1^7,-1*K.1^4,K.1^4,-1*K.1^9,K.1^3,-1*K.1,K.1^7,-1*K.1^3,K.1,-1*K.1^8,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^2,K.1^8,-1*K.1^4,K.1^6,K.1^4,-1*K.1^6,K.1^4,1,K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1^7,K.1^3,K.1^3,-1*K.1^2,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^9,K.1^4,K.1^9,-1*K.1^4,-1*K.1,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,K.1^8,K.1^3,-1*K.1^8,-1*K.1^3,K.1^6,-1*K.1^6,K.1,-1*K.1^7,K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^2,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^2,K.1^8,-1*K.1^4,K.1^6,K.1^4,-1*K.1^6,K.1^4,1,-1*K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^2,K.1,-1*K.1^7,K.1^7,K.1^9,K.1^4,-1*K.1^9,-1*K.1^4,K.1,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^8,-1*K.1^3,-1*K.1^8,K.1^3,K.1^6,-1*K.1^6,-1*K.1,K.1^7,-1*K.1^9,K.1^3,-1*K.1^7,K.1^9,K.1^2,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,1,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^3,K.1^7,K.1^7,K.1^8,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^6,K.1,K.1^6,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^2,K.1^7,K.1^2,-1*K.1^7,-1*K.1^4,K.1^4,K.1^9,-1*K.1^3,K.1,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^8,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,1,-1*K.1^3,-1*K.1,K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1,K.1,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^9,K.1^9,K.1^6,K.1^3,-1*K.1,K.1,K.1^7,K.1^2,-1*K.1^7,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^4,-1*K.1^9,K.1^4,K.1^9,K.1^8,-1*K.1^8,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^9,K.1,-1*K.1^7,-1*K.1^6,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^2,-1*K.1^8,1,K.1^7,K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^9,K.1,-1*K.1,-1*K.1^4,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^8,K.1^3,K.1^8,K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,K.1^6,K.1,-1*K.1^6,-1*K.1,-1*K.1^2,K.1^2,K.1^7,K.1^9,-1*K.1^3,K.1,-1*K.1^9,K.1^3,K.1^4,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^2,-1*K.1^8,1,-1*K.1^7,-1*K.1^9,K.1,K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1,K.1,-1*K.1^4,K.1^7,-1*K.1^9,K.1^9,K.1^3,-1*K.1^8,-1*K.1^3,K.1^8,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^6,-1*K.1,-1*K.1^6,K.1,-1*K.1^2,K.1^2,-1*K.1^7,-1*K.1^9,K.1^3,-1*K.1,K.1^9,-1*K.1^3,K.1^4,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,1,K.1^3,K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^7,K.1,K.1^9,-1*K.1^9,K.1^6,-1*K.1^3,K.1,-1*K.1,-1*K.1^7,K.1^2,K.1^7,-1*K.1^2,K.1^3,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^4,K.1^9,K.1^4,-1*K.1^9,K.1^8,-1*K.1^8,K.1^3,K.1,-1*K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^6,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,1,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^3,K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1,K.1^6,K.1,-1*K.1^6,K.1^9,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^2,K.1^7,-1*K.1^2,-1*K.1^7,K.1^4,-1*K.1^4,K.1^9,K.1^3,-1*K.1,K.1^7,-1*K.1^3,K.1,K.1^8,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^8,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^4,K.1^6,-1*K.1^4,1,-1*K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,K.1^3,K.1^2,K.1,-1*K.1^7,K.1^7,K.1^9,-1*K.1^4,-1*K.1^9,K.1^4,-1*K.1,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^8,-1*K.1^3,K.1^8,K.1^3,-1*K.1^6,K.1^6,-1*K.1,-1*K.1^7,K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1^2,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^8,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^4,K.1^6,-1*K.1^4,1,K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1^7,K.1^3,-1*K.1^3,K.1^2,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^4,K.1^9,K.1^4,K.1,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^8,K.1^3,K.1^8,-1*K.1^3,-1*K.1^6,K.1^6,K.1,K.1^7,-1*K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^2,-1,-1,1,1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,-1,-1,1,1,-1,1,-1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,1,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1^8,K.1^9,-1*K.1^3,K.1^3,K.1,K.1^6,-1*K.1,-1*K.1^6,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^2,-1*K.1^7,-1*K.1^2,K.1^7,K.1^4,-1*K.1^4,-1*K.1^9,-1*K.1^3,K.1,-1*K.1^7,K.1^3,-1*K.1,K.1^8,-1,-1,1,1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,2,2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,2,2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^-1,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^3,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1^9,2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^9,2*K.1,2*K.1^7,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1^9,-2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^3,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1^9,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1,2*K.1^7,-2*K.1^7,-2*K.1,2*K.1,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1,2*K.1^7,-2*K.1^7,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1,-2*K.1^7,2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1^9,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^7,2*K.1,-2*K.1,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, 10, 10, 10, 10, 10, 0, 0, 10, 10, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 10, 10, -10, -10, 0, 0, -10, 10, -10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 10, 10, -10, -10, 0, 0, 10, -10, 10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 10, 10, 10, 10, 0, 0, -10, -10, -10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |10,-10,-10,10,-10,10,0,0,-10*K.1,10*K.1,10*K.1,-10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |10,-10,-10,10,-10,10,0,0,10*K.1,-10*K.1,-10*K.1,10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |10,-10,-10,10,10,-10,0,0,-10*K.1,-10*K.1,10*K.1,10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |10,-10,-10,10,10,-10,0,0,10*K.1,10*K.1,-10*K.1,-10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[20, -20, 20, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, -20, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1760_292:= KnownIrreducibles(CR);