# Group 1728.46191 downloaded from the LMFDB on 21 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(23376162161478213194245095170671755249323963664956760040346089584363280572628095612062224233938721675401,1728); a := GPC.1; b := GPC.2; c := GPC.3; d := GPC.4; e := GPC.6; f := GPC.7; GPerm := Group( (2,4)(5,9)(7,8)(10,11)(12,13), (10,12,11,13), (10,11)(12,13), (2,5,8)(4,7,9), (2,6,7,3)(4,5,8,9), (2,5,7,9)(3,8,6,4), (2,7)(3,6)(4,8)(5,9), (1,2,7)(3,5,4)(6,8,9), (1,3,6)(2,5,8)(4,9,7) ); GLFq := Group([[[0*Z(9), Z(9)^0, Z(9)^1], [Z(9)^1, Z(9)^7, Z(9)^3], [Z(9)^7, Z(9)^7, Z(9)^4]],[[Z(9)^5, Z(9)^3, Z(9)^5], [Z(9)^6, Z(9)^4, Z(9)^3], [Z(9)^5, Z(9)^0, 0*Z(9)]],[[Z(9)^4, 0*Z(9), 0*Z(9)], [0*Z(9), Z(9)^4, 0*Z(9)], [0*Z(9), 0*Z(9), Z(9)^4]],[[Z(9)^1, Z(9)^3, Z(9)^2], [Z(9)^6, Z(9)^3, Z(9)^2], [Z(9)^0, Z(9)^0, Z(9)^0]],[[0*Z(9), Z(9)^7, Z(9)^6], [Z(9)^4, Z(9)^0, Z(9)^4], [Z(9)^3, Z(9)^4, Z(9)^4]],[[Z(9)^3, Z(9)^0, Z(9)^2], [Z(9)^2, Z(9)^2, Z(9)^0], [Z(9)^1, Z(9)^5, Z(9)^0]],[[Z(9)^6, 0*Z(9), 0*Z(9)], [0*Z(9), Z(9)^6, 0*Z(9)], [0*Z(9), 0*Z(9), Z(9)^6]],[[Z(9)^3, Z(9)^0, Z(9)^2], [Z(9)^7, 0*Z(9), Z(9)^0], [Z(9)^3, Z(9)^3, Z(9)^0]],[[Z(9)^5, Z(9)^2, Z(9)^0], [Z(9)^6, Z(9)^5, Z(9)^6], [Z(9)^2, Z(9)^6, Z(9)^7]]]); # Booleans booleans_1728_46191 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false); # Character Table chartbl_1728_46191:=rec(); chartbl_1728_46191.IsFinite:= true; chartbl_1728_46191.UnderlyingCharacteristic:= 0; chartbl_1728_46191.UnderlyingGroup:= GPerm; chartbl_1728_46191.Size:= 1728; chartbl_1728_46191.InfoText:= "Character table for group 1728.46191 downloaded from the LMFDB."; chartbl_1728_46191.Identifier:= " C4*C3^2:GL(2,3) "; chartbl_1728_46191.NrConjugacyClasses:= 44; chartbl_1728_46191.ConjugacyClasses:= [(), (10,11)(12,13), (2,7)(3,6)(4,8)(5,9), (1,8)(2,6)(3,5)(7,9)(10,11)(12,13), (1,6)(4,7)(5,8)(10,11)(12,13), (2,7)(4,5)(8,9), (1,2,7)(3,5,4)(6,8,9), (3,4,5)(6,8,9), (1,2,9)(3,5,7)(4,6,8), (10,13,11,12), (10,12,11,13), (1,4)(2,5)(3,7)(6,9)(10,12,11,13), (1,4)(2,5)(3,7)(6,9)(10,13,11,12), (1,6)(4,7)(5,8)(10,13,11,12), (1,6)(4,7)(5,8)(10,12,11,13), (2,5,7,9)(3,8,6,4), (2,6,7,3)(4,5,8,9)(10,11)(12,13), (1,5,8,3)(2,7,6,9)(10,13,11,12), (1,3,8,5)(2,9,6,7)(10,12,11,13), (1,7,2)(3,4,5)(6,9,8)(10,11)(12,13), (3,5,4)(6,9,8)(10,11)(12,13), (1,9,2)(3,7,5)(4,8,6)(10,11)(12,13), (1,3)(2,7,8,4,5,9), (1,7,8,6,4,5)(2,3,9)(10,11)(12,13), (1,2,4,9,8,3)(6,7)(10,11)(12,13), (1,3,6)(2,4,8,7,5,9), (2,6,5,4,7,3,9,8)(10,11)(12,13), (2,8,9,3,7,4,5,6)(10,11)(12,13), (1,8,7,2,5,6,4,3), (1,3,4,6,5,2,7,8), (2,9,6,4,7,5,3,8)(10,12,11,13), (2,8,3,5,7,4,6,9)(10,13,11,12), (2,4,3,9,7,8,6,5)(10,13,11,12), (2,5,6,8,7,9,3,4)(10,12,11,13), (1,2,7)(3,5,4)(6,8,9)(10,12,11,13), (1,2,7)(3,5,4)(6,8,9)(10,13,11,12), (3,4,5)(6,8,9)(10,12,11,13), (3,4,5)(6,8,9)(10,13,11,12), (1,2,9)(3,5,7)(4,6,8)(10,13,11,12), (1,9,2)(3,7,5)(4,8,6)(10,12,11,13), (1,9,3,4,6,7)(2,5)(10,13,11,12), (1,7,6,4,3,9)(2,5)(10,12,11,13), (1,5,4,6,8,7)(2,9,3)(10,12,11,13), (1,7,8,6,4,5)(2,3,9)(10,13,11,12)]; chartbl_1728_46191.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]; chartbl_1728_46191.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 7, 8, 9, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 7, 8, 9, 8, 7, 8, 7, 16, 16, 16, 16, 17, 17, 17, 17, 20, 20, 21, 21, 22, 22, 21, 21, 20, 20], [1, 2, 3, 4, 5, 6, 1, 1, 1, 11, 10, 13, 12, 15, 14, 16, 17, 19, 18, 2, 2, 2, 3, 5, 4, 6, 27, 28, 29, 30, 33, 34, 31, 32, 10, 11, 10, 11, 11, 10, 12, 13, 14, 15]]; chartbl_1728_46191.SizesCentralizers:= [1728, 1728, 192, 192, 48, 48, 216, 72, 36, 1728, 1728, 192, 192, 48, 48, 32, 32, 32, 32, 216, 72, 36, 24, 24, 24, 24, 32, 32, 32, 32, 32, 32, 32, 32, 216, 216, 72, 72, 36, 36, 24, 24, 24, 24]; chartbl_1728_46191.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "3A", "3B", "3C", "4A1", "4A-1", "4B1", "4B-1", "4C1", "4C-1", "4D", "4E", "4F1", "4F-1", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "8A1", "8A-1", "8B1", "8B-1", "8C1", "8C-1", "8C3", "8C-3", "12A1", "12A-1", "12B1", "12B-1", "12C1", "12C-1", "12D1", "12D-1", "12E1", "12E-1"]; chartbl_1728_46191.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]; chartbl_1728_46191.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1], [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, -1, 1, 1, 1, 1, -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), 1, -1, -1*E(4), E(4), -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1*E(4), E(4), 1, -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4)], [1, -1, 1, -1, -1, 1, 1, 1, 1, E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), 1, -1, E(4), -1*E(4), -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, E(4), -1*E(4), 1, E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4)], [1, -1, 1, -1, 1, -1, 1, 1, 1, -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), 1, -1, -1*E(4), E(4), -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, E(4), -1*E(4), -1, E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4)], [1, -1, 1, -1, 1, -1, 1, 1, 1, E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), 1, -1, E(4), -1*E(4), -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1*E(4), E(4), -1, -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4)], [2, 2, 2, 2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, -1, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, -1, -1, -1, 0, 0], [2, 2, 2, 2, 0, 0, 2, -1, -1, -2, -2, -2, -2, 0, 0, 2, 2, -2, -2, 2, -1, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 1, 1, 1, 0, 0], [2, -2, 2, -2, 0, 0, 2, -1, -1, -2*E(4), 2*E(4), 2*E(4), -2*E(4), 0, 0, 2, -2, -2*E(4), 2*E(4), -2, 1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(4), -2*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), 0, 0], [2, -2, 2, -2, 0, 0, 2, -1, -1, 2*E(4), -2*E(4), -2*E(4), 2*E(4), 0, 0, 2, -2, 2*E(4), -2*E(4), -2, 1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 2*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), 0, 0], [2, 2, -2, -2, 0, 0, 2, -1, -1, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 2, -1, -1, 1, 0, 1, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -2, -2, 1, 1, 1, 1, -1, -1, 0, 0], [2, 2, -2, -2, 0, 0, 2, -1, -1, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 2, -1, -1, 1, 0, 1, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -2, -2, 1, 1, 1, 1, -1, -1, 0, 0], [2, 2, -2, -2, 0, 0, 2, -1, -1, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 2, -1, -1, 1, 0, 1, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, 2, 2, -1, -1, -1, -1, 1, 1, 0, 0], [2, 2, -2, -2, 0, 0, 2, -1, -1, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 2, -1, -1, 1, 0, 1, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^3, 2, 2, -1, -1, -1, -1, 1, 1, 0, 0], [2, -2, -2, 2, 0, 0, 2, -1, -1, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, -1, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^3, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 2*E(8)^2, -2*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, 0, 0], [2, -2, -2, 2, 0, 0, 2, -1, -1, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, -1, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^3, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -2*E(8)^2, 2*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, 0, 0], [2, -2, -2, 2, 0, 0, 2, -1, -1, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, -1, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^3, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 2*E(8)^2, -2*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, 0, 0], [2, -2, -2, 2, 0, 0, 2, -1, -1, 2*E(8)^2, -2*E(8)^2, 2*E(8)^2, -2*E(8)^2, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, -1, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, -1*E(8)-E(8)^3, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^3, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -2*E(8)^2, 2*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, 0, 0], [3, 3, 3, 3, 1, 1, 3, 0, 0, 3, 3, 3, 3, 1, 1, -1, -1, -1, -1, 3, 0, 0, 0, 1, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1], [3, 3, 3, 3, -1, -1, 3, 0, 0, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, -1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0, 0, 0, -1, -1], [3, 3, 3, 3, -1, -1, 3, 0, 0, -3, -3, -3, -3, 1, 1, -1, -1, 1, 1, 3, 0, 0, 0, -1, 0, -1, 1, 1, 1, -1, -1, 1, -1, -1, -3, -3, 0, 0, 0, 0, 0, 0, 1, 1], [3, 3, 3, 3, 1, 1, 3, 0, 0, -3, -3, -3, -3, -1, -1, -1, -1, 1, 1, 3, 0, 0, 0, 1, 0, 1, -1, -1, -1, 1, 1, -1, 1, 1, -3, -3, 0, 0, 0, 0, 0, 0, -1, -1], [3, -3, 3, -3, -1, 1, 3, 0, 0, -3*E(4), 3*E(4), 3*E(4), -3*E(4), -1*E(4), E(4), -1, 1, E(4), -1*E(4), -3, 0, 0, 0, -1, 0, 1, 1, 1, -1, E(4), -1*E(4), -1, E(4), -1*E(4), 3*E(4), -3*E(4), 0, 0, 0, 0, 0, 0, E(4), -1*E(4)], [3, -3, 3, -3, -1, 1, 3, 0, 0, 3*E(4), -3*E(4), -3*E(4), 3*E(4), E(4), -1*E(4), -1, 1, -1*E(4), E(4), -3, 0, 0, 0, -1, 0, 1, 1, 1, -1, -1*E(4), E(4), -1, -1*E(4), E(4), -3*E(4), 3*E(4), 0, 0, 0, 0, 0, 0, -1*E(4), E(4)], [3, -3, 3, -3, 1, -1, 3, 0, 0, -3*E(4), 3*E(4), 3*E(4), -3*E(4), E(4), -1*E(4), -1, 1, E(4), -1*E(4), -3, 0, 0, 0, 1, 0, -1, -1, -1, 1, -1*E(4), E(4), 1, -1*E(4), E(4), 3*E(4), -3*E(4), 0, 0, 0, 0, 0, 0, -1*E(4), E(4)], [3, -3, 3, -3, 1, -1, 3, 0, 0, 3*E(4), -3*E(4), -3*E(4), 3*E(4), -1*E(4), E(4), -1, 1, -1*E(4), E(4), -3, 0, 0, 0, 1, 0, -1, -1, -1, 1, E(4), -1*E(4), 1, E(4), -1*E(4), -3*E(4), 3*E(4), 0, 0, 0, 0, 0, 0, E(4), -1*E(4)], [4, 4, -4, -4, 0, 0, 4, 1, 1, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 4, 1, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -1, -1, -1, -1, 1, 1, 0, 0], [4, 4, -4, -4, 0, 0, 4, 1, 1, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 4, 1, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 1, 1, 1, 1, -1, -1, 0, 0], [4, -4, -4, 4, 0, 0, 4, 1, 1, -4*E(4), 4*E(4), -4*E(4), 4*E(4), 0, 0, 0, 0, 0, 0, -4, -1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4*E(4), -4*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), 0, 0], [4, -4, -4, 4, 0, 0, 4, 1, 1, 4*E(4), -4*E(4), 4*E(4), -4*E(4), 0, 0, 0, 0, 0, 0, -4, -1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4*E(4), 4*E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), 0, 0], [8, 8, 0, 0, 2, 2, -1, 2, -1, 8, 8, 0, 0, 2, 2, 0, 0, 0, 0, -1, 2, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, 0, 0, -1, -1], [8, 8, 0, 0, -2, -2, -1, 2, -1, 8, 8, 0, 0, -2, -2, 0, 0, 0, 0, -1, 2, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, 2, -1, -1, 0, 0, 1, 1], [8, 8, 0, 0, -2, -2, -1, 2, -1, -8, -8, 0, 0, 2, 2, 0, 0, 0, 0, -1, 2, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, 1, 1, 0, 0, -1, -1], [8, 8, 0, 0, 2, 2, -1, 2, -1, -8, -8, 0, 0, -2, -2, 0, 0, 0, 0, -1, 2, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, 1, 1, 0, 0, 1, 1], [8, -8, 0, 0, -2, 2, -1, 2, -1, -8*E(4), 8*E(4), 0, 0, -2*E(4), 2*E(4), 0, 0, 0, 0, 1, -2, 1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(4), E(4), 2*E(4), -2*E(4), E(4), -1*E(4), 0, 0, -1*E(4), E(4)], [8, -8, 0, 0, -2, 2, -1, 2, -1, 8*E(4), -8*E(4), 0, 0, 2*E(4), -2*E(4), 0, 0, 0, 0, 1, -2, 1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, E(4), -1*E(4), -2*E(4), 2*E(4), -1*E(4), E(4), 0, 0, E(4), -1*E(4)], [8, -8, 0, 0, 2, -2, -1, 2, -1, -8*E(4), 8*E(4), 0, 0, 2*E(4), -2*E(4), 0, 0, 0, 0, 1, -2, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(4), E(4), 2*E(4), -2*E(4), E(4), -1*E(4), 0, 0, E(4), -1*E(4)], [8, -8, 0, 0, 2, -2, -1, 2, -1, 8*E(4), -8*E(4), 0, 0, -2*E(4), 2*E(4), 0, 0, 0, 0, 1, -2, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, E(4), -1*E(4), -2*E(4), 2*E(4), -1*E(4), E(4), 0, 0, -1*E(4), E(4)], [16, 16, 0, 0, 0, 0, -2, -2, 1, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 1, 1, 0, 0, 0, 0], [16, 16, 0, 0, 0, 0, -2, -2, 1, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, 0, 0, 0, 0], [16, -16, 0, 0, 0, 0, -2, -2, 1, -16*E(4), 16*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 2*E(4), -2*E(4), 2*E(4), -1*E(4), E(4), 0, 0, 0, 0], [16, -16, 0, 0, 0, 0, -2, -2, 1, 16*E(4), -16*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(4), -2*E(4), 2*E(4), -2*E(4), E(4), -1*E(4), 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_1728_46191);