/* Group 1728.34661 downloaded from the LMFDB on 10 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([9, 2, 2, 3, 2, 2, 3, 2, 2, 3, 181, 46, 25490, 6338, 34131, 17940, 102, 2713, 130, 2606, 13614, 6819, 3813, 186, 8674, 214, 7811]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.4, GPC.7]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4", "d", "d2", "d4"]); GPerm := PermutationGroup< 25 | (1,2)(3,5)(12,13)(14,17)(15,19)(16,18)(20,21)(22,24)(23,25), (1,3,2,5)(4,8,6,7)(12,13)(14,17)(15,19)(16,18)(20,21)(22,25)(23,24), (1,4)(2,6)(3,7)(5,8)(10,11)(12,14,16,15)(13,17,18,19), (1,5,2,3)(4,8,6,7)(12,15,16,14)(13,17,18,19), (12,16)(13,18)(14,15)(17,19), (1,2)(3,5)(4,6)(7,8), (20,22,23)(21,24,25), (20,23,22)(21,24,25), (9,10,11) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1728_34661 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^6>,< 2, 1, c^6*d^6>,< 2, 1, d^6>,< 2, 12, a>,< 2, 12, b^3*d^9>,< 2, 54, a*b^3*c*d^11>,< 2, 54, a*b^3*c^11*d^3>,< 3, 2, d^8>,< 3, 2, c^8>,< 3, 2, b^2*c^6*d^6>,< 3, 4, c^4*d^8>,< 3, 4, b^4*d^4>,< 3, 4, b^2*c^10*d^6>,< 3, 8, b^4*c^8*d^8>,< 4, 2, d^3>,< 4, 2, d^9>,< 4, 6, c^3>,< 4, 6, c^9>,< 4, 6, c^3*d^7>,< 4, 6, c^9*d>,< 4, 9, a*b*c^6*d^6>,< 4, 9, a*b>,< 4, 9, a*b*c^6>,< 4, 9, a*b*d^6>,< 4, 12, a*c^6*d^3>,< 4, 12, b^3*c^6*d^6>,< 4, 18, a*b*c^6*d^9>,< 4, 18, a*b^3*c^6*d^9>,< 4, 36, a*b^2*c^9*d^5>,< 4, 36, b^3*c^11*d^2>,< 4, 36, b^3*c*d^3>,< 4, 36, a*b^4*c^3*d^2>,< 4, 54, a*b*c*d^4>,< 4, 54, a*b*c*d^10>,< 6, 2, d^2>,< 6, 2, c^8*d^6>,< 6, 2, b^4*d^6>,< 6, 2, c^2>,< 6, 2, c^2*d^6>,< 6, 2, c^6*d^2>,< 6, 2, b^4*c^6>,< 6, 2, b^4*c^6*d^6>,< 6, 2, c^6*d^8>,< 6, 4, c^2*d^4>,< 6, 4, b^2*d^2>,< 6, 4, b^4*c^8*d^6>,< 6, 4, c^8*d^2>,< 6, 4, b^4*d^2>,< 6, 4, b^4*c^2>,< 6, 4, b^4*c^2*d^6>,< 6, 4, b^2*d^8>,< 6, 4, c^2*d^2>,< 6, 8, b^2*c^4*d^4>,< 6, 8, b^2*c^4*d^2>,< 6, 8, b^4*c^8*d^2>,< 6, 12, a*d^4>,< 6, 12, a*d^8>,< 6, 12, b^3*d>,< 6, 12, b^3*d^5>,< 6, 24, a*c^4>,< 6, 24, b*d^3>,< 6, 24, b*d>,< 6, 24, b*d^5>,< 6, 24, a*c^4*d^4>,< 6, 24, a*c^4*d^8>,< 12, 4, d>,< 12, 4, d^7>,< 12, 4, c^4*d^3>,< 12, 4, c^4*d^9>,< 12, 4, b^2*d^3>,< 12, 4, b^2*d^9>,< 12, 4, b^2*c^4*d^3>,< 12, 4, b^2*c^4*d^9>,< 12, 4, b^2*c^8*d^3>,< 12, 4, b^2*c^8*d^9>,< 12, 8, c^4*d>,< 12, 8, c^4*d^7>,< 12, 8, b^2*d>,< 12, 8, b^4*d>,< 12, 8, b^2*c^4*d>,< 12, 8, b^4*c^4*d>,< 12, 8, b^2*c^8*d>,< 12, 8, b^4*c^8*d>,< 12, 12, c>,< 12, 12, c*d^2>,< 12, 12, c*d>,< 12, 12, c^7*d>,< 12, 12, b^2*c>,< 12, 12, b^2*c^5*d^2>,< 12, 12, a*d>,< 12, 12, a*d^5>,< 12, 12, b^2*c*d^2>,< 12, 12, b^2*c^5>,< 12, 12, b^2*c*d>,< 12, 12, b^4*c*d^3>,< 12, 12, b^2*c^3>,< 12, 12, b^2*c^9>,< 12, 12, b^3*d^4>,< 12, 12, b^3*d^8>,< 12, 12, b^4*c*d>,< 12, 12, b^2*c*d^3>,< 12, 12, b^2*c^3*d>,< 12, 12, b^2*c^9*d>,< 12, 18, a*b*d^4>,< 12, 18, a*b*c^2*d^2>,< 12, 18, a*b*d^2>,< 12, 18, a*b*c^2*d^4>,< 12, 24, b>,< 12, 24, a*c^4*d^3>,< 12, 24, b*d^4>,< 12, 24, b*d^8>,< 12, 24, a*c^4*d>,< 12, 24, a*c^4*d^5>,< 12, 36, a*b*d>,< 12, 36, a*b^3*d>,< 12, 72, a*b^2*c^7*d^5>,< 12, 72, b^5*c^11*d^8>,< 12, 72, b^5*c^7*d^3>,< 12, 72, a*b^4*c^11*d^8>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, 2, 0, 2, 0, -1, -1, -1, 0, 0, 0, 2, -1, -1, 2, -1, -1, -1, 2, -1, 2, -1, -1, 2, 2, -1, -1, -1, -1, -1, 2, 0, -1, -1, -1, -1, 2, -1, -1, 2, -1, -1, 2, 2, 2, -1, 0, -1, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, 2, 0, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -1, 2, -1, 2, -1, 0, 2, -1, 2, -1, -1, -1, -1, -1, -1, 2, 2, -1, 0, -1, -1, 2, -1, 2, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, -1, -1, 2, -1, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, 2, -1, -1, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -1, -1, -1, -1, 2, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, -1, -1, 2, -1, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, 1, 1, 1, 1, 1, -2, 1, -2, 1, 1, -2, -2, -2, -2, -2, -2, -2, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, 1, 1, 2, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, -1, -1, 2, -1, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, 1, 1, 1, 1, 1, -2, 1, -2, 1, 1, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, -1, -1, -1, -1, -2, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, -2, 0, -2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, -2, -2, 1, -2, 1, -2, 1, 1, 1, 1, 1, -2, 1, -2, 1, 0, 2, -1, -2, -1, 1, -1, -1, 1, 1, 2, 2, -1, 0, 1, -1, 2, 1, -2, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, -1, 1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, -2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, -2, 0, -2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, -2, -2, 1, -2, 1, -2, 1, 1, 1, 1, 1, -2, 1, -2, -1, 0, 2, 1, 2, 1, -1, 1, 1, -1, -1, -2, -2, 1, 0, -1, 1, 2, -1, 2, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, 1, -1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, -2, 0, -2, 0, 0, 0, 1, 1, 1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -1, 2, -1, 2, 1, 0, -2, 1, -2, 1, 1, 1, 1, 1, 1, -2, -2, 1, 0, 1, 1, -2, 1, -2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, -2, 0, -2, 0, 0, 0, 1, 1, 1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -1, 2, -1, 2, -1, 0, -2, -1, 2, -1, -1, -1, -1, -1, -1, 2, 2, -1, 0, -1, -1, -2, -1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 2, 0, 0, -1, 2, 2, -1, -1, 2, -1, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, -1, 1, -1, 1, -1, 2, -1, -2, 1, 1, -2, -2, -2, -2, -2, -2, -2, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, -1, -1, -1, -2, -1, 1, 2, -1, 1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 2, 0, 0, -1, 2, 2, -1, -1, 2, -1, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, -1, 1, -1, 1, -1, 2, -1, -2, 1, 1, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, -1, -2, 1, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, -2, 0, 0, 2, 2, -1, 2, -1, -1, -1, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -2, 0, -2, 0, 1, 1, 1, 0, 0, 0, -2, 1, 1, -2, 1, 1, 1, -2, 1, -2, 1, 1, -2, -2, 1, 1, 1, 1, 1, 2, 0, -1, 1, -1, 1, 2, -1, 1, -2, -1, -1, 2, 2, -2, -1, 0, 1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, -2, 0, 0, 2, 2, -1, 2, -1, -1, -1, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -2, 0, -2, 0, 1, 1, 1, 0, 0, 0, -2, 1, 1, -2, 1, 1, 1, -2, 1, -2, 1, 1, -2, -2, 1, 1, 1, 1, -1, 2, 0, 1, -1, 1, -1, -2, 1, -1, 2, 1, 1, -2, 2, 2, 1, 0, -1, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, -2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -2, 0, -2, 0, 1, 1, 1, 0, 0, 0, 2, -1, -1, 2, -1, -1, -1, 2, -1, 2, -1, -1, 2, 2, -1, -1, -1, -1, 1, -2, 0, 1, 1, 1, 1, -2, 1, 1, -2, 1, 1, -2, -2, -2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, -2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -2, 0, -2, 0, 1, 1, 1, 0, 0, 0, 2, -1, -1, 2, -1, -1, -1, 2, -1, 2, -1, -1, 2, 2, -1, -1, -1, -1, -1, -2, 0, -1, -1, -1, -1, 2, -1, -1, 2, -1, -1, 2, -2, 2, -1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 2, 0, 0, 2, 2, -1, 2, -1, -1, -1, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, 2, 0, 2, 0, -1, -1, -1, 0, 0, 0, -2, 1, 1, -2, 1, 1, 1, -2, 1, -2, 1, 1, -2, -2, 1, 1, 1, 1, 1, -2, 0, -1, 1, -1, 1, 2, -1, 1, -2, -1, -1, 2, -2, -2, -1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 2, 0, 0, 2, 2, -1, 2, -1, -1, -1, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, 2, 0, 2, 0, -1, -1, -1, 0, 0, 0, -2, 1, 1, -2, 1, 1, 1, -2, 1, -2, 1, 1, -2, -2, 1, 1, 1, 1, -1, -2, 0, 1, -1, 1, -1, -2, 1, -1, 2, 1, 1, -2, -2, 2, 1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, -2, 0, 0, 0, 2, 2, 2, -1, -1, -1, 2, 2, 2, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, 2, 0, 2, 0, -1, -1, -1, 0, 0, 0, 2, -1, -1, 2, -1, -1, -1, 2, -1, 2, -1, -1, 2, 2, -1, -1, -1, -1, 1, 2, 0, 1, 1, 1, 1, -2, 1, 1, -2, 1, 1, -2, 2, -2, 1, 0, 1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, -2, 0, 0, -1, 2, 2, -1, -1, 2, -1, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, 1, -1, 1, -1, 1, -2, 1, 2, -1, -1, -2, -2, -2, -2, -2, -2, -2, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, -1, -1, -1, 2, 1, -1, -2, 1, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, -2, 0, 0, -1, 2, 2, -1, -1, 2, -1, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, 1, -1, 1, -1, 1, -2, 1, 2, -1, -1, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 1, 1, 1, -2, -1, 1, 2, -1, 1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, -2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, 2, 0, 2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, -2, -2, 1, -2, 1, -2, 1, 1, 1, 1, 1, -2, 1, -2, 1, 0, -2, -1, -2, -1, 1, -1, -1, 1, 1, 2, 2, -1, 0, 1, -1, -2, 1, -2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, -1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, 2, 0, 2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, -2, -2, 1, -2, 1, -2, 1, 1, 1, 1, 1, -2, 1, -2, -1, 0, -2, 1, 2, 1, -1, 1, 1, -1, -1, -2, -2, 1, 0, -1, 1, -2, -1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, -1, 1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, -2, 0, 0, 2, -1, -1, 2, 2, 2, 2, 2, -1, 2, -1, -1, -1, -1, -1, 2, 2, -1, -1, -1, -1, 0, 2, 0, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -1, 2, -1, 2, 1, 0, 2, 1, -2, 1, 1, 1, 1, 1, 1, -2, -2, 1, 0, 1, 1, 2, 1, -2, 0, 0, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, -1, -1, 2, -1, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, -1, -1, 2, -1, 2, -1, 2, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, 2, -1, -1, -2, -2, -2, -2, -2, -2, -2, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, -2, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,2,2,2,2,2,2,2,0,0,-2*K.1,2*K.1,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,-2*K.1,0,0,2*K.1,2*K.1,0,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,2,2,2,2,2,2,2,2,0,0,2*K.1,-2*K.1,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,2*K.1,0,0,-2*K.1,-2*K.1,0,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,2,2,2,2,2,2,2,0,0,-2*K.1,2*K.1,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,-2*K.1,0,0,2*K.1,2*K.1,0,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,2,2,2,2,2,2,2,0,0,2*K.1,-2*K.1,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,2*K.1,0,0,-2*K.1,-2*K.1,0,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,-2*K.1,2*K.1,-2,-2,2,2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,0,-2*K.1,2*K.1,0,0,-2*K.1,2*K.1,2*K.1,0,0,-2*K.1,0,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,2*K.1,-2*K.1,-2,-2,2,2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,0,2*K.1,-2*K.1,0,0,2*K.1,-2*K.1,-2*K.1,0,0,2*K.1,0,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,-2*K.1,2*K.1,2,2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,0,-2*K.1,2*K.1,0,0,-2*K.1,2*K.1,2*K.1,0,0,-2*K.1,0,0,0,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,2*K.1,-2*K.1,2,2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,0,2*K.1,-2*K.1,0,0,2*K.1,-2*K.1,-2*K.1,0,0,2*K.1,0,0,0,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,2,2,2,2,-2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,-2,2,0,0,0,0,0,0,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,-2,2,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,2,2,2,2,2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,-2,2,0,0,0,0,0,0,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,-2,2,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,2,2,2,2,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,2,-2,0,0,0,0,0,0,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,2,-2,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,2,2,2,2,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,2,-2,0,0,0,0,0,0,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,2,-2,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,-2*K.1^3,2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,-2,2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,0,-1+2*K.1^2,0,-1+2*K.1^2,1-2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,K.1+K.1^-1,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,2*K.1^3,-2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,-2,2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,0,1-2*K.1^2,0,1-2*K.1^2,-1+2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,K.1+K.1^-1,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,-2*K.1^3,2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,-2,2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,0,1-2*K.1^2,0,1-2*K.1^2,-1+2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,-1*K.1-K.1^-1,K.1+K.1^-1,0,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,2*K.1^3,-2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,-2,2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,0,-1+2*K.1^2,0,-1+2*K.1^2,1-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,-1*K.1-K.1^-1,K.1+K.1^-1,0,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,-2*K.1^3,2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,2,-2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,0,-1+2*K.1^2,0,1-2*K.1^2,-1+2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,-1*K.1-K.1^-1,0,0,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,K.1+K.1^-1,K.1+K.1^-1,-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,2*K.1^3,-2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,2,-2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,0,1-2*K.1^2,0,-1+2*K.1^2,1-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,-1*K.1-K.1^-1,0,0,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,K.1+K.1^-1,K.1+K.1^-1,-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,-2*K.1^3,2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,2,-2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,0,1-2*K.1^2,0,-1+2*K.1^2,1-2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,K.1+K.1^-1,0,0,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,K.1+K.1^-1,K.1+K.1^-1,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-1,-1,2,-1,2*K.1^3,-2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,2,-2,0,0,0,0,0,0,1,-2,2,-2,2,-2,1,-1,-2,1,-2,-1,2,1,1,-1,1,-2,1,-1,1,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,0,-1+2*K.1^2,0,1-2*K.1^2,-1+2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,K.1+K.1^-1,0,0,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,K.1+K.1^-1,K.1+K.1^-1,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 0, 0, 0, 4, -2, -2, -2, -2, 1, 1, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, -2, -2, -2, 4, 4, -2, -2, 1, -2, 1, -2, -2, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 1, -2, -2, -2, 1, 4, 1, 4, 1, 1, -2, -2, 1, -2, 1, -2, 1, 0, 0, 1, -2, 1, 1, -2, 1, 1, -2, -2, -2, -2, 0, -2, 1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 4, 0, 0, -2, 4, -2, -2, 1, -2, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, -2, -2, -2, -2, -2, 4, 1, -2, -2, -2, -2, -2, 1, 1, -2, 1, 1, 1, -2, 0, -2, 0, 1, -2, 1, 0, 0, 0, 4, -2, -2, 4, -2, -2, -2, -2, -2, -2, 1, 1, -2, -2, 1, 1, 1, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 0, 0, 0, -2, -2, 4, 1, -2, -2, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4, 4, 4, -2, -2, -2, -2, -2, 1, -2, 1, 1, -2, -2, -2, 1, 1, 1, 0, -2, 0, -2, 0, 0, 0, -2, 1, 1, -2, -2, -2, -2, 4, 4, -2, -2, -2, -2, 1, 1, 1, 1, 1, -2, 1, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, 0, 0, 0, -2, -2, 4, 1, -2, -2, 1, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4, 4, 4, -2, -2, -2, -2, -2, 1, -2, 1, 1, -2, -2, -2, 1, 1, 1, 0, 2, 0, 2, 0, 0, 0, 2, -1, -1, 2, 2, 2, 2, -4, -4, 2, 2, 2, 2, -1, -1, -1, -1, -1, 2, -1, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, -4, 0, 0, 0, -2, -2, 4, 1, -2, -2, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4, 4, 4, -2, -2, -2, -2, -2, 1, -2, 1, 1, -2, -2, -2, 1, 1, 1, 0, 2, 0, 2, 0, 0, 0, 2, -1, -1, -2, -2, -2, -2, 4, 4, -2, -2, -2, -2, 1, 1, 1, 1, 1, -2, 1, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, -4, 0, 0, -2, 4, -2, -2, 1, -2, 1, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, -2, -2, -2, -2, -2, 4, 1, -2, -2, -2, -2, -2, 1, 1, -2, 1, 1, 1, 2, 0, 2, 0, -1, 2, -1, 0, 0, 0, -4, 2, 2, -4, 2, 2, 2, 2, 2, 2, -1, -1, 2, 2, -1, -1, -1, -1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, -4, 0, 0, -2, 4, -2, -2, 1, -2, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, -2, -2, -2, -2, -2, 4, 1, -2, -2, -2, -2, -2, 1, 1, -2, 1, 1, 1, 2, 0, 2, 0, -1, 2, -1, 0, 0, 0, 4, -2, -2, 4, -2, -2, -2, -2, -2, -2, 1, 1, -2, -2, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 0, 0, 0, 4, -2, -2, -2, -2, 1, 1, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, -2, -2, -2, 4, 4, -2, -2, 1, -2, 1, -2, -2, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, -1, 2, 2, 2, -1, -4, -1, -4, -1, -1, 2, 2, -1, 2, -1, 2, -1, 0, 0, 1, 2, 1, -1, -2, 1, -1, 2, -2, -2, -2, 0, 2, 1, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 0, 0, 0, 4, -2, -2, -2, -2, 1, 1, -4, -4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, -2, -2, -2, 4, 4, -2, -2, 1, -2, 1, -2, -2, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, -1, 2, 2, 2, -1, -4, -1, -4, -1, -1, 2, 2, -1, 2, -1, 2, 1, 0, 0, -1, -2, -1, 1, 2, -1, 1, -2, 2, 2, 2, 0, -2, -1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 0, 0, 0, 4, -2, -2, -2, -2, 1, 1, 4, 4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, -2, -2, -2, 4, 4, -2, -2, 1, -2, 1, -2, -2, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 1, -2, -2, -2, 1, 4, 1, 4, 1, 1, -2, -2, 1, -2, 1, -2, -1, 0, 0, -1, 2, -1, -1, 2, -1, -1, 2, 2, 2, 2, 0, 2, -1, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 4, 0, 0, -2, 4, -2, -2, 1, -2, 1, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, -2, -2, -2, -2, -2, 4, 1, -2, -2, -2, -2, -2, 1, 1, -2, 1, 1, 1, -2, 0, -2, 0, 1, -2, 1, 0, 0, 0, -4, 2, 2, -4, 2, 2, 2, 2, 2, 2, -1, -1, 2, 2, -1, -1, -1, -1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 0, 0, 0, -2, -2, 4, 1, -2, -2, 1, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4, 4, 4, -2, -2, -2, -2, -2, 1, -2, 1, 1, -2, -2, -2, 1, 1, 1, 0, -2, 0, -2, 0, 0, 0, -2, 1, 1, 2, 2, 2, 2, -4, -4, 2, 2, 2, 2, -1, -1, -1, -1, -1, 2, -1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, 0, -2, 4, 4, -2, -2, 4, -2, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -4, -4, 4, -4, -4, -2, 2, 4, -2, -4, 2, -4, 2, -2, 2, 2, 4, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, 0, -2, 4, 4, -2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -4, -4, 4, -4, -4, -2, 2, 4, -2, -4, 2, -4, 2, -2, 2, 2, 4, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4,4,-2,-2,4,-2,0,0,0,0,0,0,-4*K.1,4*K.1,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,-2,4,-4,-4,-4,4,2,2,-4,2,4,2,-4,-2,2,2,-2,-4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4,4,-2,-2,4,-2,0,0,0,0,0,0,4*K.1,-4*K.1,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,-2,4,-4,-4,-4,4,2,2,-4,2,4,2,-4,-2,2,2,-2,-4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,4,-2,4,-2,-2,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,-4,-4,4,-4,-4,2,-4,-2,2,2,-2,2,-4,4,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,4*K.1,0,2*K.1,0,0,-2*K.1,-2*K.1,0,0,0,0,2*K.1,0,0,-2*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,4,-2,4,-2,-2,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,-4,-4,4,-4,-4,2,-4,-2,2,2,-2,2,-4,4,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-4*K.1,0,-2*K.1,0,0,2*K.1,2*K.1,0,0,0,0,-2*K.1,0,0,2*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,4,-2,4,-2,-2,-2,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-4,2,2,-2,-4,-4,-4,2,-2,-4,2,4,-4,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,2*K.1,0,0,-2*K.1,4*K.1,0,0,0,0,-4*K.1,0,0,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,4,-2,4,-2,-2,-2,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-4,2,2,-2,-4,-4,-4,2,-2,-4,2,4,-4,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,-2*K.1,0,0,2*K.1,-4*K.1,0,0,0,0,4*K.1,0,0,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,4,-2,4,-2,-2,0,0,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,4,-4,-4,4,-4,-2,4,2,2,2,2,-2,-4,-4,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,0,2*K.1,-2*K.1,0,0,-4*K.1,4*K.1,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,4,-2,4,-2,-2,0,0,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,4,-4,-4,4,-4,-2,4,2,2,2,2,-2,-4,-4,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,0,-2*K.1,2*K.1,0,0,4*K.1,-4*K.1,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,4,-2,4,-2,-2,-2,0,0,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,-2,2,2,4,-4,4,-2,2,-4,2,-4,4,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2*K.1,0,-4*K.1,-2*K.1,0,0,2*K.1,-2*K.1,4*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,4,-2,4,-2,-2,-2,0,0,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,-2,2,2,4,-4,4,-2,2,-4,2,-4,4,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2*K.1,0,4*K.1,2*K.1,0,0,-2*K.1,2*K.1,-4*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,4,-2,4,-2,-2,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,-4,4,-4,-4,4,2,-4,2,-2,-2,2,2,4,-4,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,4*K.1,-4*K.1,-2*K.1,4*K.1,2*K.1,-4*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-4*K.1,2*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,4,-2,4,-2,-2,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,-4,4,-4,-4,4,2,-4,2,-2,-2,2,2,4,-4,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-4*K.1,4*K.1,2*K.1,-4*K.1,-2*K.1,4*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,4*K.1,-2*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,4,-2,4,-2,-2,-2,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,2,-2,2,-4,4,-4,2,2,4,-2,-4,-4,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,-4*K.1,-2*K.1,2*K.1,4*K.1,-2*K.1,2*K.1,-2*K.1,4*K.1,2*K.1,-4*K.1,2*K.1,-2*K.1,4*K.1,-4*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,4,-2,4,-2,-2,-2,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,2,-2,2,-4,4,-4,2,2,4,-2,-4,-4,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,4*K.1,2*K.1,-2*K.1,-4*K.1,2*K.1,-2*K.1,2*K.1,-4*K.1,-2*K.1,4*K.1,-2*K.1,2*K.1,-4*K.1,4*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,2,2,-2,-4,-4,2,2,1,2,-1,-2,2,2,-2,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,3,0,-3,0,3,3,0,0,-3,0,-3,0,-1*K.1,0,0,-3*K.1,-2*K.1,3*K.1,-1*K.1,0,3*K.1,K.1,-2*K.1,0,0,0,0,2*K.1,-3*K.1,0,K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,2,2,-2,-4,-4,2,2,1,2,-1,-2,2,2,-2,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,3,0,-3,0,3,3,0,0,-3,0,-3,0,K.1,0,0,3*K.1,2*K.1,-3*K.1,K.1,0,-3*K.1,-1*K.1,2*K.1,0,0,0,0,-2*K.1,3*K.1,0,-1*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,2,2,-2,-4,-4,2,2,1,2,-1,-2,2,2,-2,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,-3,0,3,0,-3,-3,0,0,3,0,3,0,-1*K.1,0,0,3*K.1,-2*K.1,-3*K.1,-1*K.1,0,-3*K.1,K.1,-2*K.1,0,0,0,0,2*K.1,3*K.1,0,K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,2,2,2,-2,-4,-4,2,2,1,2,-1,-2,2,2,-2,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,3,-3,0,0,0,-3,0,3,0,-3,-3,0,0,3,0,3,0,K.1,0,0,-3*K.1,2*K.1,3*K.1,K.1,0,3*K.1,-1*K.1,2*K.1,0,0,0,0,-2*K.1,-3*K.1,0,-1*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,-2,2,2,4,-4,-2,-2,-1,2,-1,2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,0,0,0,3*K.1,0,3*K.1,0,-3*K.1,3*K.1,0,0,-3*K.1,0,3*K.1,0,-3,0,0,K.1,0,-1*K.1,3,2*K.1,K.1,3,0,2*K.1,-2*K.1,-2*K.1,0,0,-1*K.1,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,-2,2,2,4,-4,-2,-2,-1,2,-1,2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,0,0,0,-3*K.1,0,-3*K.1,0,3*K.1,-3*K.1,0,0,3*K.1,0,-3*K.1,0,-3,0,0,-1*K.1,0,K.1,3,-2*K.1,-1*K.1,3,0,-2*K.1,2*K.1,2*K.1,0,0,K.1,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,0,0,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,-2,2,2,4,-4,-2,-2,-1,2,-1,2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,3*K.1,3*K.1,0,0,0,-3*K.1,0,-3*K.1,0,3*K.1,-3*K.1,0,0,3*K.1,0,-3*K.1,0,3,0,0,K.1,0,-1*K.1,-3,2*K.1,K.1,-3,0,2*K.1,-2*K.1,-2*K.1,0,0,-1*K.1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,0,0,0,0,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,2,-2,2,2,4,-4,-2,-2,-1,2,-1,2,-2,2,2,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1,0,0,0,3*K.1,0,3*K.1,0,-3*K.1,3*K.1,0,0,-3*K.1,0,3*K.1,0,3,0,0,-1*K.1,0,K.1,-3,-2*K.1,-1*K.1,-3,0,-2*K.1,2*K.1,2*K.1,0,0,K.1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,2,-2,2,-4,4,2,2,-1,-2,1,2,2,-2,2,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,2*K.1,K.1,-1*K.1,-2*K.1,-2*K.1,2*K.1,K.1,4*K.1,-1*K.1,-4*K.1,-1*K.1,K.1,-2*K.1,2*K.1,K.1,2*K.1,-1*K.1,-2*K.1,-3*K.1,0,0,-3,0,-3,3*K.1,0,3,-3*K.1,0,0,0,0,0,0,3,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,2,-2,2,-4,4,2,2,-1,-2,1,2,2,-2,2,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,-2*K.1,-1*K.1,K.1,2*K.1,2*K.1,-2*K.1,-1*K.1,-4*K.1,K.1,4*K.1,K.1,-1*K.1,2*K.1,-2*K.1,-1*K.1,-2*K.1,K.1,2*K.1,3*K.1,0,0,-3,0,-3,-3*K.1,0,3,3*K.1,0,0,0,0,0,0,3,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,2,-2,2,-4,4,2,2,-1,-2,1,2,2,-2,2,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,2*K.1,K.1,-1*K.1,-2*K.1,-2*K.1,2*K.1,K.1,4*K.1,-1*K.1,-4*K.1,-1*K.1,K.1,-2*K.1,2*K.1,K.1,2*K.1,-1*K.1,-2*K.1,3*K.1,0,0,3,0,3,-3*K.1,0,-3,3*K.1,0,0,0,0,0,0,-3,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,4,-2,-2,-2,-2,1,1,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,2,-2,2,-2,2,-4,4,2,2,-1,-2,1,2,2,-2,2,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,-2*K.1,-1*K.1,K.1,2*K.1,2*K.1,-2*K.1,-1*K.1,-4*K.1,K.1,4*K.1,K.1,-1*K.1,2*K.1,-2*K.1,-1*K.1,-2*K.1,K.1,2*K.1,-3*K.1,0,0,3,0,3,3*K.1,0,-3,-3*K.1,0,0,0,0,0,0,-3,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-2,4,1,-2,-2,1,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-4,4,-4,2,-2,2,2,2,1,-2,-1,-1,-2,2,2,-1,1,-1,0,2-4*K.1^2,0,-2+4*K.1^2,0,0,0,0,-1+2*K.1^2,1-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,4*K.1^3,-4*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-2,4,1,-2,-2,1,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-4,4,-4,2,-2,2,2,2,1,-2,-1,-1,-2,2,2,-1,1,-1,0,-2+4*K.1^2,0,2-4*K.1^2,0,0,0,0,1-2*K.1^2,-1+2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-4*K.1^3,4*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-2,4,1,-2,-2,1,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-4,4,-4,2,-2,2,2,2,1,-2,-1,-1,-2,2,2,-1,1,-1,0,-2+4*K.1^2,0,2-4*K.1^2,0,0,0,0,1-2*K.1^2,-1+2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,4*K.1^3,-4*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,2*K.1^3,-1*K.1^3,-2*K.1^3,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-2,4,1,-2,-2,1,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-4,4,-4,2,-2,2,2,2,1,-2,-1,-1,-2,2,2,-1,1,-1,0,2-4*K.1^2,0,-2+4*K.1^2,0,0,0,0,-1+2*K.1^2,1-2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-4*K.1^3,4*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-2*K.1^3,K.1^3,2*K.1^3,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,-2,-2,1,-2,1,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-4,4,2,-2,2,2,-2,-4,-1,2,-2,-2,2,2,1,-1,2,-1,1,-1,2-4*K.1^2,0,-2+4*K.1^2,0,-1+2*K.1^2,0,1-2*K.1^2,0,0,0,-4*K.1^3,-2*K.1^3,2*K.1^3,4*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-1*K.1^3,K.1^3,-2*K.1^3,2*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,-2,-2,1,-2,1,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-4,4,2,-2,2,2,-2,-4,-1,2,-2,-2,2,2,1,-1,2,-1,1,-1,-2+4*K.1^2,0,2-4*K.1^2,0,1-2*K.1^2,0,-1+2*K.1^2,0,0,0,4*K.1^3,2*K.1^3,-2*K.1^3,-4*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,K.1^3,-1*K.1^3,2*K.1^3,-2*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,-2,-2,1,-2,1,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-4,4,2,-2,2,2,-2,-4,-1,2,-2,-2,2,2,1,-1,2,-1,1,-1,-2+4*K.1^2,0,2-4*K.1^2,0,1-2*K.1^2,0,-1+2*K.1^2,0,0,0,-4*K.1^3,-2*K.1^3,2*K.1^3,4*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-1*K.1^3,K.1^3,-2*K.1^3,2*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,-2,-2,1,-2,1,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-4,4,2,-2,2,2,-2,-4,-1,2,-2,-2,2,2,1,-1,2,-1,1,-1,2-4*K.1^2,0,-2+4*K.1^2,0,-1+2*K.1^2,0,1-2*K.1^2,0,0,0,4*K.1^3,2*K.1^3,-2*K.1^3,-4*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,K.1^3,-1*K.1^3,2*K.1^3,-2*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 0, 0, 0, 0, -4, -4, -4, 2, 2, 2, -1, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, -4, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 2, 2, -4, -4, -4, 2, -4, 2, -4, -1, -1, 2, 2, -1, 2, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, -4, -4, 8, 2, -4, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -8, -8, 8, 4, 4, 4, 4, -4, -2, 4, 2, -2, 4, -4, 4, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, -4, 8, -4, -4, 2, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 8, -8, 4, 4, -4, 4, 4, -8, -2, -4, 4, 4, -4, 4, -2, 2, 4, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 0, 0, 0, 0, -4, -4, -4, 2, 2, 2, -1, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, -4, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, 4, 4, 4, -2, 4, -2, 4, 1, 1, -2, -2, 1, -2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, -4, -4, -4, 2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, 4, 4, 4, -2, 2, -2, -2, 2, -2, -2, 2, -2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 6, 0, 0, 0, 6, 0, -6, 0, -3, -3, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, 0, 0, 0, 0, -4, -4, -4, 2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, 4, 4, 4, -2, 2, -2, -2, 2, -2, -2, 2, -2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, -6, 0, 6, 0, 3, 3, 0, 0, -3, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, -4, -4, 8, 2, -4, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 8, -8, -8, -4, 4, -4, -4, 4, -2, 4, -2, 2, 4, 4, -4, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 0, 0, 0, 0, -4, 8, -4, -4, 2, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -8, -8, -4, 4, 4, -4, 4, 8, 2, 4, 4, 4, 4, -4, -2, -2, -4, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |8,-8,8,-8,0,0,0,0,-4,-4,-4,2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,-4,4,4,-4,4,-4,2,-2,-2,-2,-2,2,-2,-2,2,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,-6*K.1,-6*K.1,0,0,0,6*K.1,0,6*K.1,0,3*K.1,-3*K.1,0,0,3*K.1,0,-3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |8,-8,8,-8,0,0,0,0,-4,-4,-4,2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,-4,4,4,-4,4,-4,2,-2,-2,-2,-2,2,-2,-2,2,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,6*K.1,6*K.1,0,0,0,-6*K.1,0,-6*K.1,0,-3*K.1,3*K.1,0,0,-3*K.1,0,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |8,8,-8,-8,0,0,0,0,-4,-4,-4,2,2,2,-1,-8*K.1,8*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-4,4,-4,4,4,-4,4,-2,-2,2,2,-2,-2,2,-2,-2,1,-1,1,0,0,0,0,0,0,0,0,0,0,4*K.1,2*K.1,-2*K.1,-4*K.1,-4*K.1,4*K.1,2*K.1,-4*K.1,-2*K.1,4*K.1,K.1,-1*K.1,2*K.1,-2*K.1,-1*K.1,-2*K.1,K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |8,8,-8,-8,0,0,0,0,-4,-4,-4,2,2,2,-1,8*K.1,-8*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,-4,4,-4,4,4,-4,4,-2,-2,2,2,-2,-2,2,-2,-2,1,-1,1,0,0,0,0,0,0,0,0,0,0,-4*K.1,-2*K.1,2*K.1,4*K.1,4*K.1,-4*K.1,-2*K.1,4*K.1,2*K.1,-4*K.1,-1*K.1,K.1,-2*K.1,2*K.1,K.1,2*K.1,-1*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1728_34661:= KnownIrreducibles(CR);