# Group 16464.bz downloaded from the LMFDB on 13 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(45421665700307572098569436712618955596748514268968793262825862394399742438174290417538848460272927853195435668603213367,16464); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.5; e := GPC.7; f := GPC.8; GPerm := Group( (1,3,7,13,19,17,8)(2,5,9,16,14,20,12,15,21,4,6,11,18,10)(22,23), (1,2,4,3,6,10,7,12,16,13,9,15,19,18,11,17,21,5,8,14,20)(22,23) ); # Booleans booleans_16464_bz := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false); # Character Table chartbl_16464_bz:=rec(); chartbl_16464_bz.IsFinite:= true; chartbl_16464_bz.UnderlyingCharacteristic:= 0; chartbl_16464_bz.UnderlyingGroup:= GPC; chartbl_16464_bz.Size:= 16464; chartbl_16464_bz.InfoText:= "Character table for group 16464.bz downloaded from the LMFDB."; chartbl_16464_bz.Identifier:= " C2*C7^3:S4 "; chartbl_16464_bz.NrConjugacyClasses:= 140; chartbl_16464_bz.ConjugacyClasses:= [ of ..., f2*f3*f6^3*f7^6*f8^6, f1*f7^4*f8^5, f1*f2*f3*f4*f8^6, f4*f7^6*f8^3, f2*f3*f4*f5*f6^3*f7^2*f8^5, f3^2*f5*f6*f8, f1*f4*f5*f6^2*f7^2*f8^2, f1*f2*f3*f4*f5*f6^3*f7, f2*f3^2*f4*f5*f7^4*f8, f6*f7^2*f8^2, f6^6*f7^5*f8^5, f6^2*f7^4*f8^4, f6^5*f7^3*f8^3, f6^3*f7^6*f8^6, f6^4*f7*f8, f7^4*f8^2, f7*f8^4, f7^5*f8^6, f6*f7^2*f8, f6^2*f7^4*f8^2, f6^3*f7^6*f8^3, f6*f7^2*f8^4, f6^6*f7^5*f8^3, f6^2*f7^4*f8, f6^5*f7^3*f8^6, f6^3*f7^6*f8^5, f6^4*f7*f8^2, f6*f7^2*f8^6, f6^6*f7^5*f8, f6^2*f7^4*f8^5, f6^5*f7^3*f8^2, f6^3*f7^6*f8^4, f6^4*f7*f8^3, f6*f7*f8^2, f6^6*f7^6*f8^5, f6*f7^4*f8^2, f6^2*f7*f8^4, f6^3*f7^5*f8^6, f2*f3*f6^2*f7^4*f8^6, f2*f3*f6^4*f7*f8^6, f2*f3*f8^6, f2*f3*f6^6*f7^5*f8^6, f2*f3*f6^5*f7^3*f8^6, f2*f3*f6*f7^2*f8^6, f2*f3*f6^3*f7, f2*f3*f6^3*f8^3, f2*f3*f6^3*f7^3*f8, f2*f3*f8^3, f2*f3*f6*f7^3*f8, f2*f3*f6^2*f7, f2*f3*f8, f2*f3*f7^2, f2*f3*f6*f7^3, f2*f3*f6^5*f7^3, f2*f3*f7*f8, f2*f3*f6^2*f8^4, f2*f3*f8^2, f2*f3*f8^4, f2*f3*f6*f8, f2*f3*f6*f7^2, f2*f3*f6^2*f7^3, f2*f3*f6^4*f7^3, f2*f3*f7^3, f2*f3*f7*f8^2, f2*f3*f7, f2*f3*f7^3*f8, f2*f3*f6*f7, f1*f7^4, f1*f6^5*f8, f1*f6^3*f7^3, f1*f6*f7^6, f1*f7^4*f8, f1*f6^5, f1*f2*f3*f4, f1*f2*f3*f6^5, f1*f2*f3*f6^2*f7, f1*f2*f3*f4*f8^3, f1*f2*f3*f4*f8^4, f1*f2*f4*f8^2, f1*f7, f1*f6*f7, f1*f7^3*f8, f1*f2*f4*f6^2, f1*f2*f3*f7^2, f1*f2*f4*f6^2*f7, f1, f1*f8^6, f1*f7^2*f8^2, f1*f4*f8, f1*f7^3, f1*f7^3*f8^2, f1*f8, f1*f8^5, f1*f7^6, f1*f7^2*f8^3, f1*f6, f1*f4*f6^2, f1*f4, f1*f6^4, f1*f7^3*f8^3, f1*f7^5, f1*f8^4, f1*f8^2, f1*f2*f4, f1*f2*f3*f8, f1*f2*f3*f6^4, f1*f2*f4*f6*f8, f1*f2*f3*f7^3*f8, f1*f2*f3*f7^3, f1*f2*f3, f1*f2*f4*f6, f1*f2*f3*f7^2*f8^3, f1*f2*f3*f6*f7, f1*f2*f4*f7, f1*f2*f3^2*f4, f1*f2*f4*f8, f1*f2*f3*f7^2*f8^2, f1*f2*f3*f6, f1*f2*f4*f6*f7, f1*f2*f3*f7, f1*f2*f3*f8^2, f2*f3*f4*f5*f6^3*f7*f8, f2*f3*f4*f5*f6^3*f7^6, f2*f3*f4*f5*f6^3*f7^4*f8^6, f5*f6^2*f7^3, f5*f7^3, f5*f6^5*f7^3, f3^2*f5*f6^5*f7*f8, f3*f4*f5*f6^6*f7^4*f8, f3*f4*f5*f6^4*f8, f3^2*f5*f7^5*f8, f3^2*f5*f6^3*f7^4*f8, f3*f4*f5*f6*f7*f8, f2*f3^2*f4*f5*f6^2*f7*f8, f2*f5*f6^3*f7^2, f2*f5*f6*f7^5, f2*f3^2*f4*f5*f6^4*f7^5*f8, f2*f5*f6^6*f7, f2*f3^2*f4*f5*f6^6*f7^2*f8]; chartbl_16464_bz.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140]; chartbl_16464_bz.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 7, 5, 5, 7, 13, 14, 16, 15, 12, 11, 18, 19, 17, 21, 22, 20, 25, 26, 28, 27, 24, 23, 31, 32, 34, 33, 30, 29, 35, 36, 38, 39, 37, 13, 14, 12, 11, 15, 16, 17, 19, 18, 20, 22, 21, 23, 24, 27, 28, 26, 25, 29, 30, 33, 34, 32, 31, 35, 36, 37, 39, 38, 18, 18, 17, 17, 19, 19, 17, 17, 19, 19, 18, 18, 21, 20, 22, 21, 20, 22, 25, 26, 24, 23, 27, 28, 32, 31, 29, 30, 34, 33, 11, 12, 15, 16, 14, 13, 32, 31, 29, 30, 34, 33, 14, 13, 11, 12, 16, 15, 24, 23, 28, 27, 25, 26, 19, 18, 17, 17, 19, 18, 131, 132, 133, 134, 129, 130, 129, 130, 132, 131, 133, 134], [1, 2, 3, 4, 5, 6, 1, 8, 9, 2, 15, 16, 12, 11, 13, 14, 19, 17, 18, 22, 20, 21, 27, 28, 24, 23, 25, 26, 33, 34, 30, 29, 31, 32, 36, 35, 39, 37, 38, 42, 43, 45, 44, 40, 41, 47, 48, 46, 50, 51, 49, 54, 55, 57, 56, 52, 53, 60, 61, 63, 62, 58, 59, 65, 64, 67, 68, 66, 71, 72, 74, 73, 69, 70, 77, 78, 80, 79, 75, 76, 82, 83, 81, 85, 86, 84, 89, 90, 92, 91, 87, 88, 95, 96, 98, 97, 93, 94, 101, 102, 104, 103, 99, 100, 107, 108, 110, 109, 105, 106, 113, 114, 116, 115, 111, 112, 119, 120, 122, 121, 117, 118, 124, 125, 123, 127, 128, 126, 13, 14, 16, 15, 11, 12, 40, 41, 44, 45, 43, 42], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 5, 5, 5, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10]]; chartbl_16464_bz.SizesCentralizers:= [16464, 16464, 392, 392, 112, 112, 42, 8, 8, 42, 4116, 4116, 4116, 4116, 4116, 4116, 2744, 2744, 2744, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 686, 686, 686, 686, 686, 4116, 4116, 4116, 4116, 4116, 4116, 2744, 2744, 2744, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 1372, 686, 686, 686, 686, 686, 392, 392, 392, 392, 392, 392, 392, 392, 392, 392, 392, 392, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 56, 56, 56, 56, 56, 56, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42]; chartbl_16464_bz.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "3A", "4A", "4B", "6A", "7A1", "7A-1", "7A2", "7A-2", "7A3", "7A-3", "7B1", "7B2", "7B3", "7C1", "7C2", "7C3", "7D1", "7D-1", "7D2", "7D-2", "7D3", "7D-3", "7E1", "7E-1", "7E2", "7E-2", "7E3", "7E-3", "7F1", "7F-1", "7G1", "7G2", "7G3", "14A1", "14A-1", "14A3", "14A-3", "14A5", "14A-5", "14B1", "14B3", "14B5", "14C1", "14C3", "14C5", "14D1", "14D-1", "14D3", "14D-3", "14D5", "14D-5", "14E1", "14E-1", "14E3", "14E-3", "14E5", "14E-5", "14F1", "14F-1", "14G1", "14G3", "14G5", "14H1", "14H-1", "14H3", "14H-3", "14H5", "14H-5", "14I1", "14I-1", "14I3", "14I-3", "14I5", "14I-5", "14J1", "14J3", "14J5", "14K1", "14K3", "14K5", "14L1", "14L-1", "14L3", "14L-3", "14L5", "14L-5", "14M1", "14M-1", "14M3", "14M-3", "14M5", "14M-5", "14N1", "14N-1", "14N3", "14N-3", "14N5", "14N-5", "14O1", "14O-1", "14O3", "14O-3", "14O5", "14O-5", "14P1", "14P-1", "14P3", "14P-3", "14P5", "14P-5", "14Q1", "14Q-1", "14Q3", "14Q-3", "14Q5", "14Q-5", "14R1", "14R3", "14R5", "14S1", "14S3", "14S5", "21A1", "21A-1", "21A2", "21A-2", "21A4", "21A-4", "42A1", "42A-1", "42A5", "42A-5", "42A11", "42A-11"]; chartbl_16464_bz.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 3, 4, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 21, 21, 21, 21, 21, 21, 42, 42, 42, 42, 42, 42]; chartbl_16464_bz.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1], [1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1], [1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 0, 0, 2, 2, -1, 0, 0, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, -2, 0, 0, 2, -2, -1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1], [3, 3, 1, 1, -1, -1, 0, -1, -1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 3, -1, -1, -1, -1, 0, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, -3, -1, 1, -1, 1, 0, 1, -1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, -3, 1, -1, -1, 1, 0, -1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^2+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), 1+E(7)^-2, E(7)^-2+E(7)^-1, 1+E(7)^3, E(7)+E(7)^-3, 1+E(7)^-3, E(7)+E(7)^-3, 1+E(7), E(7)+E(7)^-1, E(7)+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, 1+E(7), E(7)+E(7)^3, E(7)+E(7)^3, E(7)+E(7)^2, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^2, 1+E(7)^-1, E(7)^3+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^2, E(7)^-2+E(7)^-1, E(7)^2+E(7)^-3, 1+E(7)^2, 1+E(7)^-2, E(7)^-3+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^-1, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-3, E(7)^2+E(7)^-1, E(7)^2+E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-3], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 1+E(7)+2*E(7)^3, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+E(7)^2+2*E(7)^-1, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, 1+E(7)^2, E(7)+E(7)^2, 1+E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^3, E(7)^3+E(7)^-1, 1+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, 1+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-2+E(7)^-1, E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, 1+E(7)^-2, 1+E(7), E(7)+E(7)^-3, E(7)+E(7)^-1, E(7)^-2+E(7)^-1, E(7)+E(7)^2, E(7)^3+E(7)^-2, 1+E(7)^-2, 1+E(7)^2, E(7)+E(7)^3, E(7)+E(7)^3, E(7)^2+E(7)^-2, 1+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-2, 1+E(7), E(7)+E(7)^-3, E(7)^2+E(7)^3, 1+E(7)^3, E(7)^2+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-2, E(7)+E(7)^-2, E(7)+E(7)^-2, 0, 0, 0, 0, 0, 0, E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7)^3], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)+E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, 1+E(7)+2*E(7)^3, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, 1+E(7), E(7)+E(7)^-3, 1+E(7)^2, E(7)^3+E(7)^-2, 1+E(7)^-2, E(7)^3+E(7)^-2, 1+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^2, 1+E(7)^3, E(7)^2+E(7)^3, E(7)^2+E(7)^3, E(7)^3+E(7)^-1, E(7)+E(7)^-2, E(7)^2+E(7)^-1, 1+E(7)^-1, 1+E(7)^-3, E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-1, E(7)+E(7)^-3, E(7)^-2+E(7)^-1, 1+E(7)^-1, 1+E(7), E(7)^-3+E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^-1, 1+E(7)^2, E(7)^2+E(7)^-2, E(7)+E(7)^2, E(7)^2+E(7)^-1, 1+E(7)^-3, E(7)^2+E(7)^-3, E(7)+E(7)^-2, 1+E(7)^-2, E(7)+E(7)^3, E(7)+E(7)^-1, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-3+E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7)^-2], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)+E(7)^-1, 1+2*E(7)^2+E(7)^3, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, 1+E(7)^-1, E(7)^3+E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-3, 1+E(7)^2, E(7)^2+E(7)^-3, 1+E(7)^-3, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, 1+E(7)^-3, E(7)^-3+E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^-3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, 1+E(7), 1+E(7)^3, E(7)^3+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-3, E(7)^3+E(7)^-1, E(7)+E(7)^2, 1+E(7), 1+E(7)^-1, E(7)^2+E(7)^3, E(7)^2+E(7)^3, E(7)+E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^-2, 1+E(7)^3, E(7)^3+E(7)^-2, E(7)^2+E(7)^-1, 1+E(7)^2, E(7)^-3+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^2, E(7)+E(7)^3, E(7)+E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^2], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)^3+E(7)^-3, 1+E(7)^2+2*E(7)^-1, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, 1+E(7)^-3+2*E(7)^-2, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, 1+E(7)^-3, E(7)^2+E(7)^-3, 1+E(7), E(7)^-2+E(7)^-1, 1+E(7)^-1, E(7)^-2+E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-3, 1+E(7)^-2, E(7)+E(7)^-2, E(7)+E(7)^-2, E(7)^3+E(7)^-2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, 1+E(7)^3, 1+E(7)^2, E(7)+E(7)^2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^3, 1+E(7)^-3, E(7)^2+E(7)^-1, E(7)^2+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7), E(7)+E(7)^-1, E(7)+E(7)^-3, E(7)+E(7)^3, 1+E(7)^2, E(7)+E(7)^2, E(7)^-3+E(7)^-1, 1+E(7)^-1, E(7)^-3+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-1, E(7)^2+E(7)^3, E(7)^2+E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^-1], [4, 4, 2, 2, 0, 0, 1, 0, 0, 1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2+E(7)^3+E(7)^-3, 1+2*E(7)+E(7)^-2, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+2*E(7)^2+E(7)^3, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, 1+E(7)^3, E(7)^3+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^2, 1+E(7), E(7)+E(7)^2, 1+E(7)^2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, E(7)+E(7)^-1, E(7)^3+E(7)^-1, 1+E(7)^2, E(7)^2+E(7)^-1, E(7)^2+E(7)^-1, E(7)^2+E(7)^-3, E(7)+E(7)^3, E(7)^-3+E(7)^-1, 1+E(7)^-3, 1+E(7)^-2, E(7)^-2+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, E(7)+E(7)^-3, 1+E(7)^-3, 1+E(7)^3, E(7)+E(7)^-2, E(7)+E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-1, 1+E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^3, 1+E(7), E(7)^2+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^-3, E(7)^-3+E(7)^-2, E(7)^-3+E(7)^-2, 0, 0, 0, 0, 0, 0, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2-E(7)^3-E(7)^-3, -1*E(7)-2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2-E(7)-E(7)^-1, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, -1-2*E(7)^2-E(7)^3, -2-E(7)^2-E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-E(7)^-3-2*E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1-E(7)^2-2*E(7)^-1, -1-E(7)-2*E(7)^3, -1-2*E(7)-E(7)^-2, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, -2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), -1-E(7)^-2, E(7)^-2+E(7)^-1, -1-E(7)^3, -1*E(7)-E(7)^-3, -1-E(7)^-3, E(7)+E(7)^-3, -1-E(7), E(7)+E(7)^-1, E(7)+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, 1+E(7), -1*E(7)-E(7)^3, E(7)+E(7)^3, E(7)+E(7)^2, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^2, 1+E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, E(7)^2+E(7)^-3, 1+E(7)^2, 1+E(7)^-2, E(7)^-3+E(7)^-1, -1*E(7)^-3-E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, E(7)^2+E(7)^3, -1-E(7)^-1, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-1, -1*E(7)^2-E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-1, E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2-E(7)^3-E(7)^-3, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, -2-E(7)-E(7)^-1, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1-E(7)^-3-2*E(7)^-2, -2-E(7)^2-E(7)^-2, -1-E(7)-2*E(7)^3, -1-2*E(7)^2-E(7)^3, -1*E(7)-2*E(7)^-3-E(7)^-2, -1-2*E(7)-E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-E(7)^2-2*E(7)^-1, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, -2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, -1-E(7)^2, E(7)+E(7)^2, -1-E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^3, E(7)^3+E(7)^-1, -1-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, 1+E(7)^-1, -1*E(7)^-3-E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-2+E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, -1-E(7)^-2, 1+E(7), -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, E(7)^3+E(7)^-2, 1+E(7)^-2, 1+E(7)^2, E(7)+E(7)^3, -1*E(7)-E(7)^3, E(7)^2+E(7)^-2, 1+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-2, -1-E(7), E(7)+E(7)^-3, E(7)^2+E(7)^3, 1+E(7)^3, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-2, E(7)+E(7)^-2, -1*E(7)-E(7)^-2, 0, 0, 0, 0, 0, 0, E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7), E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2-E(7)^2-E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, -2-E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, -1-E(7)^2-2*E(7)^-1, -2-E(7)-E(7)^-1, -1-E(7)^-3-2*E(7)^-2, -1-2*E(7)-E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-2*E(7)^2-E(7)^3, -1-E(7)-2*E(7)^3, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, -2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, -1-E(7), E(7)+E(7)^-3, -1-E(7)^2, -1*E(7)^3-E(7)^-2, -1-E(7)^-2, E(7)^3+E(7)^-2, -1-E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, 1+E(7)^3, -1*E(7)^2-E(7)^3, E(7)^2+E(7)^3, E(7)^3+E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, -1-E(7)^-1, 1+E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, E(7)^-2+E(7)^-1, 1+E(7)^-1, 1+E(7), E(7)^-3+E(7)^-2, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^-1, 1+E(7)^2, E(7)^2+E(7)^-2, E(7)+E(7)^2, E(7)^2+E(7)^-1, -1-E(7)^-3, E(7)^2+E(7)^-3, E(7)+E(7)^-2, 1+E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^-2-E(7)^-1, E(7)^-3+E(7)^-1, -1*E(7)^-3-E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7)^-3, E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7), -1*E(7)^-2], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2-E(7)^2-E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -2-E(7)^3-E(7)^-3, -2*E(7)-E(7)^2-E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1-2*E(7)-E(7)^-2, -2-E(7)-E(7)^-1, -1-2*E(7)^2-E(7)^3, -1-E(7)^2-2*E(7)^-1, -1*E(7)-E(7)^3-2*E(7)^-2, -1-E(7)-2*E(7)^3, -1-E(7)^-3-2*E(7)^-2, -1-2*E(7)^-3-E(7)^-1, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, -2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, -1-E(7)^-1, E(7)^3+E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-3, -1-E(7)^2, E(7)^2+E(7)^-3, -1-E(7)^-3, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, 1+E(7)^-3, -1*E(7)^-3-E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7), 1+E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, E(7)+E(7)^2, 1+E(7), 1+E(7)^-1, E(7)^2+E(7)^3, -1*E(7)^2-E(7)^3, E(7)+E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^-2, -1-E(7)^3, E(7)^3+E(7)^-2, E(7)^2+E(7)^-1, 1+E(7)^2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^2, E(7)+E(7)^3, -1*E(7)-E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^3, E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -2-E(7)^2-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, -1-E(7)-2*E(7)^3, -2-E(7)^3-E(7)^-3, -1-E(7)^2-2*E(7)^-1, -1-2*E(7)^-3-E(7)^-1, -2*E(7)-E(7)^2-E(7)^3, -1-2*E(7)^2-E(7)^3, -1-2*E(7)-E(7)^-2, -1-E(7)^-3-2*E(7)^-2, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, -2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, -1-E(7)^-3, E(7)^2+E(7)^-3, -1-E(7), -1*E(7)^-2-E(7)^-1, -1-E(7)^-1, E(7)^-2+E(7)^-1, -1-E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, 1+E(7)^-2, -1*E(7)-E(7)^-2, E(7)+E(7)^-2, E(7)^3+E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, -1-E(7)^3, 1+E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^3, 1+E(7)^-3, E(7)^2+E(7)^-1, -1*E(7)^2-E(7)^-1, E(7)^3+E(7)^-3, 1+E(7), E(7)+E(7)^-1, E(7)+E(7)^-3, E(7)+E(7)^3, -1-E(7)^2, E(7)+E(7)^2, E(7)^-3+E(7)^-1, 1+E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-1, E(7)^2+E(7)^3, -1*E(7)^2-E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-3, -1*E(7)^-1], [4, -4, -2, 2, 0, 0, 1, 0, 0, -1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^-1, -2*E(7)-E(7)^2-E(7)^3, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, -2-E(7)^2-E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -2-E(7)^3-E(7)^-3, -1-2*E(7)-E(7)^-2, -1-E(7)-2*E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1-E(7)^-3-2*E(7)^-2, -1-E(7)^2-2*E(7)^-1, -1-2*E(7)^2-E(7)^3, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, -2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, -1-E(7)^3, E(7)^3+E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7), E(7)+E(7)^2, -1-E(7)^2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, 1+E(7)^2, -1*E(7)^2-E(7)^-1, E(7)^2+E(7)^-1, E(7)^2+E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, -1-E(7)^-3, 1+E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, E(7)+E(7)^-3, 1+E(7)^-3, 1+E(7)^3, E(7)+E(7)^-2, -1*E(7)-E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-1, -1-E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^3, 1+E(7), -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-3, E(7)^-3+E(7)^-2, -1*E(7)^-3-E(7)^-2, 0, 0, 0, 0, 0, 0, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2-E(7)^3-E(7)^-3, -1*E(7)-2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2-E(7)-E(7)^-1, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, -1-2*E(7)^2-E(7)^3, -2-E(7)^2-E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-E(7)^-3-2*E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1-E(7)^2-2*E(7)^-1, -1-E(7)-2*E(7)^3, -1-2*E(7)-E(7)^-2, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, 2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), 1+E(7)^-2, -1*E(7)^-2-E(7)^-1, 1+E(7)^3, E(7)+E(7)^-3, 1+E(7)^-3, -1*E(7)-E(7)^-3, 1+E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, -1-E(7), E(7)+E(7)^3, -1*E(7)-E(7)^3, -1*E(7)-E(7)^2, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^2, -1-E(7)^-1, E(7)^3+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^2, E(7)^-2+E(7)^-1, -1*E(7)^2-E(7)^-3, -1-E(7)^2, -1-E(7)^-2, -1*E(7)^-3-E(7)^-1, E(7)^-3+E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^3, 1+E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-1, E(7)^2+E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-1, E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2-E(7)^3-E(7)^-3, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, -2-E(7)-E(7)^-1, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1-E(7)^-3-2*E(7)^-2, -2-E(7)^2-E(7)^-2, -1-E(7)-2*E(7)^3, -1-2*E(7)^2-E(7)^3, -1*E(7)-2*E(7)^-3-E(7)^-2, -1-2*E(7)-E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-E(7)^2-2*E(7)^-1, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, 1+E(7)^2, -1*E(7)-E(7)^2, 1+E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^3, -1*E(7)^3-E(7)^-1, 1+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, -1-E(7)^-1, E(7)^-3+E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-2-E(7)^-1, E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, 1+E(7)^-2, -1-E(7), E(7)+E(7)^-3, E(7)+E(7)^-1, E(7)^-2+E(7)^-1, E(7)+E(7)^2, -1*E(7)^3-E(7)^-2, -1-E(7)^-2, -1-E(7)^2, -1*E(7)-E(7)^3, E(7)+E(7)^3, -1*E(7)^2-E(7)^-2, -1-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-2, 1+E(7), -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^3, -1-E(7)^3, E(7)^2+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-2, -1*E(7)-E(7)^-2, E(7)+E(7)^-2, 0, 0, 0, 0, 0, 0, E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7), E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2-E(7)^2-E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, -2-E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2-E(7)^3, -1-E(7)^2-2*E(7)^-1, -2-E(7)-E(7)^-1, -1-E(7)^-3-2*E(7)^-2, -1-2*E(7)-E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -1-2*E(7)^2-E(7)^3, -1-E(7)-2*E(7)^3, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, 1+E(7), -1*E(7)-E(7)^-3, 1+E(7)^2, E(7)^3+E(7)^-2, 1+E(7)^-2, -1*E(7)^3-E(7)^-2, 1+E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^2, -1-E(7)^3, E(7)^2+E(7)^3, -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-1, E(7)+E(7)^-2, E(7)^2+E(7)^-1, 1+E(7)^-1, -1-E(7)^-3, E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-1, E(7)+E(7)^-3, -1*E(7)^-2-E(7)^-1, -1-E(7)^-1, -1-E(7), -1*E(7)^-3-E(7)^-2, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-1, 1+E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7)^-2, E(7)+E(7)^3, E(7)+E(7)^-1, E(7)^-2+E(7)^-1, -1*E(7)^-3-E(7)^-1, E(7)^-3+E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7)^-3, E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7), -1*E(7)^-2], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2-E(7)^2-E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -2-E(7)^3-E(7)^-3, -2*E(7)-E(7)^2-E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1-2*E(7)-E(7)^-2, -2-E(7)-E(7)^-1, -1-2*E(7)^2-E(7)^3, -1-E(7)^2-2*E(7)^-1, -1*E(7)-E(7)^3-2*E(7)^-2, -1-E(7)-2*E(7)^3, -1-E(7)^-3-2*E(7)^-2, -1-2*E(7)^-3-E(7)^-1, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, 1+E(7)^2+E(7)^-2, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, 2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, 1+E(7)^-1, -1*E(7)^3-E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-3, 1+E(7)^2, -1*E(7)^2-E(7)^-3, 1+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, -1-E(7)^-3, E(7)^-3+E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, 1+E(7), -1-E(7)^3, E(7)^3+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-3, E(7)^3+E(7)^-1, -1*E(7)-E(7)^2, -1-E(7), -1-E(7)^-1, -1*E(7)^2-E(7)^3, E(7)^2+E(7)^3, -1*E(7)-E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-2, 1+E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-1, -1-E(7)^2, E(7)^-3+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^2, -1*E(7)-E(7)^3, E(7)+E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^3, E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, -3*E(7)-E(7)^-3, -1*E(7)^3-3*E(7)^-1, -3*E(7)^-2-E(7)^-1, -1*E(7)-3*E(7)^2, -3*E(7)^3-E(7)^-2, -1*E(7)^2-3*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -2-E(7)^2-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, -1-E(7)-2*E(7)^3, -2-E(7)^3-E(7)^-3, -1-E(7)^2-2*E(7)^-1, -1-2*E(7)^-3-E(7)^-1, -2*E(7)-E(7)^2-E(7)^3, -1-2*E(7)^2-E(7)^3, -1-2*E(7)-E(7)^-2, -1-E(7)^-3-2*E(7)^-2, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, 1+E(7)^-3, -1*E(7)^2-E(7)^-3, 1+E(7), E(7)^-2+E(7)^-1, 1+E(7)^-1, -1*E(7)^-2-E(7)^-1, 1+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-3, -1-E(7)^-2, E(7)+E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, 1+E(7)^3, -1-E(7)^2, E(7)+E(7)^2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^3, -1-E(7)^-3, -1*E(7)^2-E(7)^-1, E(7)^2+E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^3, 1+E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^-3-E(7)^-1, -1-E(7)^-1, E(7)^-3+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-1, -1*E(7)^2-E(7)^3, E(7)^2+E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-3, -1*E(7)^-1], [4, -4, 2, -2, 0, 0, 1, 0, 0, -1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)^3-3*E(7)^-1, -3*E(7)-E(7)^-3, -1*E(7)-3*E(7)^2, -3*E(7)^-2-E(7)^-1, -1*E(7)^2-3*E(7)^-3, -3*E(7)^3-E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^-1, -2*E(7)-E(7)^2-E(7)^3, 1+E(7)-E(7)^2+E(7)^3+E(7)^-2, -1*E(7)-E(7)^3-2*E(7)^-2, -2-E(7)^2-E(7)^-2, -1*E(7)-2*E(7)^-3-E(7)^-2, 1+E(7)-E(7)^3+E(7)^-3+E(7)^-2, -1-2*E(7)^-3-E(7)^-1, -2-E(7)^3-E(7)^-3, -1-2*E(7)-E(7)^-2, -1-E(7)-2*E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^3+E(7)^-3+E(7)^-2, -1-E(7)^-3-2*E(7)^-2, -1-E(7)^2-2*E(7)^-1, -1-2*E(7)^2-E(7)^3, 1+E(7)^2+E(7)^-2, 1+E(7)^3+E(7)^-3, 1+E(7)+E(7)^-1, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, 2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, 1+E(7)^3, -1*E(7)^3-E(7)^-2, 1+E(7)^-1, E(7)+E(7)^2, 1+E(7), -1*E(7)-E(7)^2, 1+E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, E(7)+E(7)^-1, E(7)^3+E(7)^-1, -1-E(7)^2, E(7)^2+E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-3, E(7)+E(7)^3, E(7)^-3+E(7)^-1, 1+E(7)^-3, -1-E(7)^-2, E(7)^-2+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, -1*E(7)-E(7)^-3, -1-E(7)^-3, -1-E(7)^3, -1*E(7)-E(7)^-2, E(7)+E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-1, 1+E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^3, -1-E(7), E(7)^2+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^-3, -1*E(7)^-3-E(7)^-2, E(7)^-3+E(7)^-2, 0, 0, 0, 0, 0, 0, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^2+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)+2*E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), -1-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1-E(7)^3, -1*E(7)-E(7)^-3, -1-E(7)^-3, -1*E(7)-E(7)^-3, -1-E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, -1-E(7), -1*E(7)-E(7)^3, -1*E(7)-E(7)^3, -1*E(7)-E(7)^2, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^2, -1-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^-3, -1-E(7)^2, -1-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-3, E(7)^3, E(7)^2, E(7), E(7)^-1, E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-3], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, 3*E(7)^3+E(7)^-2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, E(7)+3*E(7)^2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, -1-E(7)-E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, 1+E(7)+2*E(7)^3, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)+E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+E(7)^2+2*E(7)^-1, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, -1-E(7)^2, -1*E(7)-E(7)^2, -1-E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^3, -1*E(7)^3-E(7)^-1, -1-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, -1-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, -1-E(7)^-2, -1-E(7), -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)^3-E(7)^-2, -1-E(7)^-2, -1-E(7)^2, -1*E(7)-E(7)^3, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-2, -1-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1-E(7), -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^3, -1-E(7)^3, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-2, 0, 0, 0, 0, 0, 0, E(7)^3, E(7)^-3, E(7)^-2, E(7)^-1, E(7), E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7)^3], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 2+E(7)+E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^2+2*E(7)^-1, 2+E(7)+E(7)^-1, 1+E(7)^-3+2*E(7)^-2, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)^2+E(7)^3, 1+E(7)+2*E(7)^3, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, -1-E(7), -1*E(7)-E(7)^-3, -1-E(7)^2, -1*E(7)^3-E(7)^-2, -1-E(7)^-2, -1*E(7)^3-E(7)^-2, -1-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, -1-E(7)^3, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, -1-E(7)^-1, -1-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1-E(7)^-1, -1-E(7), -1*E(7)^-3-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-1, -1-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-3-E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^-2, E(7)^2, E(7)^-1, E(7)^3, E(7)^-3, E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7)^-2], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, E(7)+3*E(7)^2, 3*E(7)+E(7)^-3, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)^3+3*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)+E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^3-E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, 2*E(7)+E(7)^2+E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)+E(7)^-1, 1+2*E(7)^2+E(7)^3, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+2*E(7)^-3+E(7)^-1, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1-E(7)^2-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, -1-E(7)^-1, -1*E(7)^3-E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-3, -1-E(7)^2, -1*E(7)^2-E(7)^-3, -1-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7), -1-E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7), -1-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-1, -1-E(7)^2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)-E(7)^3, -1*E(7)-E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^2, E(7)^-2, E(7), E(7)^-3, E(7)^3, E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^2], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, E(7)+2*E(7)^-3+E(7)^-2, 2+E(7)^3+E(7)^-3, E(7)+E(7)^3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, 3*E(7)+E(7)^-3, E(7)^3+3*E(7)^-1, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, 3*E(7)^3+E(7)^-2, E(7)^2+3*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 2+E(7)^2+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+E(7)+2*E(7)^3, 2+E(7)^3+E(7)^-3, 1+E(7)^2+2*E(7)^-1, 1+2*E(7)^-3+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, 1+2*E(7)^2+E(7)^3, 1+2*E(7)+E(7)^-2, 1+E(7)^-3+2*E(7)^-2, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, -1-E(7)^-3, -1*E(7)^2-E(7)^-3, -1-E(7), -1*E(7)^-2-E(7)^-1, -1-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, -1-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, -1-E(7)^3, -1-E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^3, -1-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^3, -1-E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^-3-E(7)^-1, -1-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^3, 0, 0, 0, 0, 0, 0, E(7)^-1, E(7), E(7)^3, E(7)^-2, E(7)^2, E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^-1], [4, 4, -2, -2, 0, 0, 1, 0, 0, 1, 3*E(7)+E(7)^-3, E(7)^2+3*E(7)^-3, 3*E(7)^-2+E(7)^-1, E(7)+3*E(7)^2, E(7)^3+3*E(7)^-1, 3*E(7)^3+E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 2+E(7)^3+E(7)^-3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, 1+2*E(7)+E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, 1+2*E(7)^2+E(7)^3, 1+2*E(7)^-3+E(7)^-1, 2+E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)+2*E(7)^3, 2*E(7)+E(7)^2+E(7)^3, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, E(7)+E(7)^3+2*E(7)^-2, -1*E(7)-E(7)^2-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1-E(7)^3-E(7)^-3, -1-E(7)^2-E(7)^-2, E(7)^3+3*E(7)^-1, 3*E(7)+E(7)^-3, E(7)+3*E(7)^2, 3*E(7)^-2+E(7)^-1, E(7)^2+3*E(7)^-3, 3*E(7)^3+E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^-1, 2*E(7)+E(7)^2+E(7)^3, -1-E(7)+E(7)^2-E(7)^3-E(7)^-2, E(7)+E(7)^3+2*E(7)^-2, 2+E(7)^2+E(7)^-2, E(7)+2*E(7)^-3+E(7)^-2, -1-E(7)+E(7)^3-E(7)^-3-E(7)^-2, 1+2*E(7)^-3+E(7)^-1, 2+E(7)^3+E(7)^-3, 1+2*E(7)+E(7)^-2, 1+E(7)+2*E(7)^3, -2-2*E(7)-2*E(7)^2-2*E(7)^3-E(7)^-3-E(7)^-2, 1+E(7)^-3+2*E(7)^-2, 1+E(7)^2+2*E(7)^-1, 1+2*E(7)^2+E(7)^3, -1-E(7)^2-E(7)^-2, -1-E(7)^3-E(7)^-3, -1-E(7)-E(7)^-1, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -1-E(7)^3, -1*E(7)^3-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7), -1*E(7)-E(7)^2, -1-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, -1-E(7)^2, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, -1-E(7)^-3, -1-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-3, -1-E(7)^-3, -1-E(7)^3, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^3, -1-E(7), -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)^-3-E(7)^-2, 0, 0, 0, 0, 0, 0, E(7), E(7)^-1, E(7)^-3, E(7)^2, E(7)^-2, E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)], [6, 6, 2, 2, 2, 2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, -1, -1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 2, E(7)^3+E(7)^-3, 2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, 2, E(7)^2+E(7)^-2, 2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 2, 2, 2, 2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, -1, -1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 2, E(7)^2+E(7)^-2, 2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, 2, E(7)+E(7)^-1, 2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 2, 2, 2, 2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, -1, -1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 2, E(7)+E(7)^-1, 2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, 2, E(7)^3+E(7)^-3, 2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, -2, -2, 2, 2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, -1, -1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, -2, -2, 2, 2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, -1, -1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -2, -1*E(7)-E(7)^-1, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, -2, -2, 2, 2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, -1, -1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -2, -1*E(7)-E(7)^-1, -2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, -2, 2, 2, -2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, 1, 1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, 2, E(7)^3+E(7)^-3, -2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, 2, E(7)^2+E(7)^-2, 2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, -2, 2, 2, -2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -2-2*E(7)-2*E(7)^-1, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, 1, 1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, 2, E(7)^2+E(7)^-2, -2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, 2, E(7)+E(7)^-1, 2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, -2, 2, 2, -2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, 1, 1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, 2, E(7)+E(7)^-1, -2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, 2, E(7)^3+E(7)^-3, 2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 2, -2, 2, -2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, 1, 1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -2, -1*E(7)^3-E(7)^-3, 2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, 2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -2, -1*E(7)^2-E(7)^-2, -2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, 2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 2, -2, 2, -2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -2-2*E(7)-2*E(7)^-1, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, 1, 1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -2, -1*E(7)^2-E(7)^-2, 2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, 2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -2, -1*E(7)-E(7)^-1, -2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, 2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 2, -2, 2, -2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, 1, 1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -2, -1*E(7)-E(7)^-1, 2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, 2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -2, -1*E(7)^3-E(7)^-3, -2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, 2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, 1, 1, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, 0, E(7)^3-E(7)^-3, 0, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, 0, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, 0, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, 0, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, 1, 1, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, 0, -1*E(7)^3+E(7)^-3, 0, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, 0, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, 0, E(7)^2-E(7)^-2, 0, E(7)^3-E(7)^-3, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, 0, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -2-2*E(7)-2*E(7)^-1, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, 1, 1, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, 0, E(7)^2-E(7)^-2, 0, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, 0, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, 0, E(7)-E(7)^-1, 0, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -4-E(7)^2-E(7)^-2, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -2-2*E(7)-2*E(7)^-1, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, -1+E(7)^3+E(7)^-3, 1, 1, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, 0, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, 0, -1*E(7)+E(7)^-1, 0, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, E(7)^2-E(7)^-2, 0, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, 1, 1, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)-E(7)^-1, 0, E(7)-E(7)^-1, 0, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, E(7)^2-E(7)^-2, 0, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, 0, -1*E(7)^3+E(7)^-3, 0, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, 0, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, -6, 0, 0, -2, 2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, -3*E(7)-3*E(7)^-1, -3*E(7)-3*E(7)^-1, -3*E(7)^2-3*E(7)^-2, -3*E(7)^2-3*E(7)^-2, -3*E(7)^3-3*E(7)^-3, -3*E(7)^3-3*E(7)^-3, -4-E(7)-E(7)^-1, -4-E(7)^3-E(7)^-3, -4-E(7)^2-E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)^3+E(7)^-3, -1+E(7)+E(7)^-1, -1+E(7)^2+E(7)^-2, 1, 1, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, 0, -1*E(7)+E(7)^-1, 0, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, 0, E(7)^3-E(7)^-3, 0, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, 0, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, -1, -1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, E(7)^3-E(7)^-3, 0, -1*E(7)^3+E(7)^-3, 0, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, 0, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, 0, E(7)^2-E(7)^-2, 0, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, 0, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1, 1-E(7)-E(7)^-1, -1, 1-E(7)^3-E(7)^-3, 1-E(7)^2-E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, -1, -1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, 0, E(7)^3-E(7)^-3, 0, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, 0, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, 0, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, -1, -1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)-E(7)^-1, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, 0, -1*E(7)^2+E(7)^-2, 0, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, 0, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, 0, -1*E(7)+E(7)^-1, 0, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^2+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -1, 1-E(7)^3-E(7)^-3, -1, 1-E(7)^2-E(7)^-2, 1-E(7)-E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 4+E(7)^2+E(7)^-2, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 2+2*E(7)+2*E(7)^-1, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, 1-E(7)^3-E(7)^-3, -1, -1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, 0, E(7)^2-E(7)^-2, 0, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, 0, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, E(7)-E(7)^-1, 0, E(7)-E(7)^-1, 0, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, 0, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, -1, -1, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^2+E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, 0, -1*E(7)+E(7)^-1, 0, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, 0, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, 0, E(7)^3-E(7)^-3, 0, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)+E(7)^-1, 0, -1*E(7)+E(7)^-1, E(7)-E(7)^-1, E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 0, 0, -2, -2, 0, 0, 0, 0, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)+3*E(7)^-1, 3*E(7)^3+3*E(7)^-3, 4+E(7)^2+E(7)^-2, 4+E(7)^3+E(7)^-3, 4+E(7)+E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1, 1-E(7)^2-E(7)^-2, -1, 1-E(7)-E(7)^-1, 1-E(7)^3-E(7)^-3, 3*E(7)+3*E(7)^-1, 3*E(7)+3*E(7)^-1, 3*E(7)^2+3*E(7)^-2, 3*E(7)^2+3*E(7)^-2, 3*E(7)^3+3*E(7)^-3, 3*E(7)^3+3*E(7)^-3, 4+E(7)+E(7)^-1, 4+E(7)^3+E(7)^-3, 4+E(7)^2+E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)^3-E(7)^-3, 1-E(7)-E(7)^-1, 1-E(7)^2-E(7)^-2, -1, -1, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)-E(7)^-1, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, E(7)^2-E(7)^-2, E(7)^3-E(7)^-3, E(7)^2-E(7)^-2, -1*E(7)+E(7)^-1, 0, E(7)-E(7)^-1, 0, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, E(7)^3-E(7)^-3, E(7)^3-E(7)^-3, -1*E(7)^3+E(7)^-3, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, 0, -1*E(7)^3+E(7)^-3, E(7)^3-E(7)^-3, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, E(7)^2-E(7)^-2, -1*E(7)^3+E(7)^-3, -1*E(7)^3+E(7)^-3, 0, -1*E(7)^3+E(7)^-3, 0, -1*E(7)+E(7)^-1, E(7)^2-E(7)^-2, E(7)-E(7)^-1, -1*E(7)^2+E(7)^-2, -1*E(7)^2+E(7)^-2, E(7)^3-E(7)^-3, E(7)-E(7)^-1, 0, E(7)-E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 2*E(7)^2+6*E(7)^-3, 2*E(7)+6*E(7)^2, 2*E(7)^3+6*E(7)^-1, 6*E(7)+2*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 6*E(7)^-2+2*E(7)^-1, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 2*E(7)+2*E(7)^3+4*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 4+2*E(7)+2*E(7)^-1, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 4+2*E(7)^3+2*E(7)^-3, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+2*E(7)+4*E(7)^3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)-2*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 2*E(7)^2+6*E(7)^-3, 6*E(7)+2*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 2*E(7)+6*E(7)^2, 6*E(7)^-2+2*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 4+2*E(7)^3+2*E(7)^-3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)+2*E(7)^-1, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 4+2*E(7)^2+2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 2+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+2*E(7)+4*E(7)^3, 2+4*E(7)+2*E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-3], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 6*E(7)^3+2*E(7)^-2, 6*E(7)^-2+2*E(7)^-1, 6*E(7)+2*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 2*E(7)+6*E(7)^2, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4+2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+2*E(7)^-3+4*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)-2*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 2*E(7)^3+6*E(7)^-1, 6*E(7)+2*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)+6*E(7)^2, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 4+2*E(7)^3+2*E(7)^-3, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 4+2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+4*E(7)^2+2*E(7)^3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 2+2*E(7)^2+4*E(7)^-1, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^2, -1*E(7)^-1, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^2, -1*E(7)^3], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 6*E(7)^-2+2*E(7)^-1, 2*E(7)^3+6*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 2*E(7)+6*E(7)^2, 6*E(7)+2*E(7)^-3, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 4+2*E(7)+2*E(7)^-1, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+2*E(7)^2+4*E(7)^-1, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 2+4*E(7)^2+2*E(7)^3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^3-2*E(7)^-3, 2*E(7)+6*E(7)^2, 6*E(7)^-2+2*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 2*E(7)^2+6*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 6*E(7)+2*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+2*E(7)^2+4*E(7)^-1, 4+2*E(7)+2*E(7)^-1, 2+2*E(7)^-3+4*E(7)^-2, 2+4*E(7)+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 2+4*E(7)^2+2*E(7)^3, 2+2*E(7)+4*E(7)^3, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7), -1*E(7)^-2], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 2*E(7)+6*E(7)^2, 6*E(7)+2*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 2*E(7)^2+6*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)^3+6*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)+2*E(7)^-1, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 4+2*E(7)^3+2*E(7)^-3, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 2+4*E(7)+2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^3-2*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)+6*E(7)^2, 2*E(7)^2+6*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 6*E(7)+2*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, 4*E(7)+2*E(7)^2+2*E(7)^3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 4+2*E(7)+2*E(7)^-1, 2+4*E(7)^2+2*E(7)^3, 2+2*E(7)^2+4*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+2*E(7)^-3+4*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, -1*E(7)^-3, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^2], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 2*E(7)^3+6*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 2*E(7)+6*E(7)^2, 6*E(7)^-2+2*E(7)^-1, 6*E(7)+2*E(7)^-3, 2*E(7)^2+6*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4+2*E(7)+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 2+4*E(7)+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, 6*E(7)+2*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 6*E(7)^-2+2*E(7)^-1, 2*E(7)+6*E(7)^2, 6*E(7)^3+2*E(7)^-2, 2*E(7)^2+6*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4+2*E(7)+2*E(7)^-1, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4+2*E(7)^3+2*E(7)^-3, 2+2*E(7)^2+4*E(7)^-1, 2+4*E(7)^-3+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^2+2*E(7)^3, 2+4*E(7)+2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^2-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-3, -1*E(7)^-1], [8, 8, 0, 0, 0, 0, -1, 0, 0, -1, 6*E(7)+2*E(7)^-3, 2*E(7)^2+6*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)+6*E(7)^2, 2*E(7)^3+6*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 4+2*E(7)+2*E(7)^-1, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+2*E(7)^-3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, 2*E(7)^3+6*E(7)^-1, 6*E(7)+2*E(7)^-3, 2*E(7)+6*E(7)^2, 6*E(7)^-2+2*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4+2*E(7)+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 4+2*E(7)^3+2*E(7)^-3, 2+4*E(7)+2*E(7)^-2, 2+2*E(7)+4*E(7)^3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+4*E(7)^2+2*E(7)^3, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, -1*E(7)^2, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 2*E(7)^2+6*E(7)^-3, 2*E(7)+6*E(7)^2, 2*E(7)^3+6*E(7)^-1, 6*E(7)+2*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 6*E(7)^-2+2*E(7)^-1, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 2*E(7)+2*E(7)^3+4*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 4+2*E(7)+2*E(7)^-1, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 4+2*E(7)^3+2*E(7)^-3, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+2*E(7)+4*E(7)^3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)-2*E(7)^-1, -6*E(7)^3-2*E(7)^-2, -2*E(7)^2-6*E(7)^-3, -6*E(7)-2*E(7)^-3, -2*E(7)^3-6*E(7)^-1, -2*E(7)-6*E(7)^2, -6*E(7)^-2-2*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4-2*E(7)^3-2*E(7)^-3, -2*E(7)-4*E(7)^-3-2*E(7)^-2, -4*E(7)-2*E(7)^2-2*E(7)^3, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -4-2*E(7)-2*E(7)^-1, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -2*E(7)-2*E(7)^3-4*E(7)^-2, -2-4*E(7)^2-2*E(7)^3, -4-2*E(7)^2-2*E(7)^-2, -2-4*E(7)^-3-2*E(7)^-1, -2-2*E(7)^-3-4*E(7)^-2, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-4*E(7)^-1, -2-2*E(7)-4*E(7)^3, -2-4*E(7)-2*E(7)^-2, 2+2*E(7)+2*E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-3, -1*E(7)^3, -1*E(7)^2, -1*E(7), -1*E(7)^-1, -1*E(7)^-2, E(7), E(7)^2, E(7)^-1, E(7)^3, E(7)^-2, E(7)^-3], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 6*E(7)^3+2*E(7)^-2, 6*E(7)^-2+2*E(7)^-1, 6*E(7)+2*E(7)^-3, 2*E(7)^3+6*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 2*E(7)+6*E(7)^2, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4+2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2+2*E(7)^-3+4*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2-2*E(7)-2*E(7)^-1, -2*E(7)^2-6*E(7)^-3, -6*E(7)^3-2*E(7)^-2, -2*E(7)^3-6*E(7)^-1, -6*E(7)-2*E(7)^-3, -6*E(7)^-2-2*E(7)^-1, -2*E(7)-6*E(7)^2, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4-2*E(7)^3-2*E(7)^-3, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -4*E(7)-2*E(7)^2-2*E(7)^3, -4-2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^3-4*E(7)^-2, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -2-2*E(7)^-3-4*E(7)^-2, -4-2*E(7)^2-2*E(7)^-2, -2-2*E(7)-4*E(7)^3, -2-4*E(7)^2-2*E(7)^3, -2*E(7)-4*E(7)^-3-2*E(7)^-2, -2-4*E(7)-2*E(7)^-2, -2-4*E(7)^-3-2*E(7)^-1, -2-2*E(7)^2-4*E(7)^-1, 2+2*E(7)+2*E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3, -1*E(7)^-3, -1*E(7)^-2, -1*E(7)^-1, -1*E(7), -1*E(7)^2, E(7)^-1, E(7)^-2, E(7), E(7)^-3, E(7)^2, E(7)^3], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 6*E(7)^-2+2*E(7)^-1, 2*E(7)^3+6*E(7)^-1, 2*E(7)^2+6*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 2*E(7)+6*E(7)^2, 6*E(7)+2*E(7)^-3, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)+2*E(7)^2+2*E(7)^3, 4+2*E(7)+2*E(7)^-1, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+2*E(7)^2+4*E(7)^-1, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+4*E(7)^-3+2*E(7)^-1, 2+4*E(7)^2+2*E(7)^3, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^3-2*E(7)^-3, -2*E(7)-6*E(7)^2, -6*E(7)^-2-2*E(7)^-1, -6*E(7)^3-2*E(7)^-2, -2*E(7)^2-6*E(7)^-3, -2*E(7)^3-6*E(7)^-1, -6*E(7)-2*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4-2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^3-4*E(7)^-2, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2*E(7)-4*E(7)^-3-2*E(7)^-2, -4-2*E(7)^3-2*E(7)^-3, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -4*E(7)-2*E(7)^2-2*E(7)^3, -2-2*E(7)^2-4*E(7)^-1, -4-2*E(7)-2*E(7)^-1, -2-2*E(7)^-3-4*E(7)^-2, -2-4*E(7)-2*E(7)^-2, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -2-4*E(7)^-3-2*E(7)^-1, -2-4*E(7)^2-2*E(7)^3, -2-2*E(7)-4*E(7)^3, 2+2*E(7)^3+2*E(7)^-3, 2+2*E(7)+2*E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-1, -1*E(7)^3, -1*E(7)^-3, -1*E(7), E(7)^3, E(7)^-1, E(7)^-3, E(7)^2, E(7), E(7)^-2], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 2*E(7)+6*E(7)^2, 6*E(7)+2*E(7)^-3, 6*E(7)^3+2*E(7)^-2, 2*E(7)^2+6*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)^3+6*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)+2*E(7)^-1, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 4+2*E(7)^3+2*E(7)^-3, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 2+4*E(7)+2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 2+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2-2*E(7)^3-2*E(7)^-3, -6*E(7)^-2-2*E(7)^-1, -2*E(7)-6*E(7)^2, -2*E(7)^2-6*E(7)^-3, -6*E(7)^3-2*E(7)^-2, -6*E(7)-2*E(7)^-3, -2*E(7)^3-6*E(7)^-1, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4-2*E(7)^2-2*E(7)^-2, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -2*E(7)-4*E(7)^-3-2*E(7)^-2, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -4-2*E(7)^3-2*E(7)^-3, -4*E(7)-2*E(7)^2-2*E(7)^3, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-4*E(7)-2*E(7)^-2, -4-2*E(7)-2*E(7)^-1, -2-4*E(7)^2-2*E(7)^3, -2-2*E(7)^2-4*E(7)^-1, -2*E(7)-2*E(7)^3-4*E(7)^-2, -2-2*E(7)-4*E(7)^3, -2-2*E(7)^-3-4*E(7)^-2, -2-4*E(7)^-3-2*E(7)^-1, 2+2*E(7)^3+2*E(7)^-3, 2+2*E(7)+2*E(7)^-1, 2+2*E(7)^2+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2, -1*E(7)^-2, -1*E(7), -1*E(7)^-3, -1*E(7)^3, -1*E(7)^-1, E(7)^-3, E(7), E(7)^3, E(7)^-2, E(7)^-1, E(7)^2], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 2*E(7)^3+6*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 2*E(7)+6*E(7)^2, 6*E(7)^-2+2*E(7)^-1, 6*E(7)+2*E(7)^-3, 2*E(7)^2+6*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 4+2*E(7)^2+2*E(7)^-2, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)^-3+4*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4+2*E(7)+2*E(7)^-1, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 2+4*E(7)+2*E(7)^-2, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -6*E(7)-2*E(7)^-3, -2*E(7)^3-6*E(7)^-1, -6*E(7)^-2-2*E(7)^-1, -2*E(7)-6*E(7)^2, -6*E(7)^3-2*E(7)^-2, -2*E(7)^2-6*E(7)^-3, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4-2*E(7)-2*E(7)^-1, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2*E(7)-2*E(7)^3-4*E(7)^-2, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -4-2*E(7)^2-2*E(7)^-2, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2*E(7)-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)-4*E(7)^3, -4-2*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-4*E(7)^-1, -2-4*E(7)^-3-2*E(7)^-1, -4*E(7)-2*E(7)^2-2*E(7)^3, -2-4*E(7)^2-2*E(7)^3, -2-4*E(7)-2*E(7)^-2, -2-2*E(7)^-3-4*E(7)^-2, 2+2*E(7)^2+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, 2+2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^-1, -1*E(7), -1*E(7)^3, -1*E(7)^-2, -1*E(7)^2, -1*E(7)^-3, E(7)^-2, E(7)^3, E(7)^2, E(7), E(7)^-3, E(7)^-1], [8, -8, 0, 0, 0, 0, -1, 0, 0, 1, 6*E(7)+2*E(7)^-3, 2*E(7)^2+6*E(7)^-3, 6*E(7)^-2+2*E(7)^-1, 2*E(7)+6*E(7)^2, 2*E(7)^3+6*E(7)^-1, 6*E(7)^3+2*E(7)^-2, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, -2-2*E(7)+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 4+2*E(7)^3+2*E(7)^-3, -2-2*E(7)+2*E(7)^2-2*E(7)^3-2*E(7)^-2, 2+4*E(7)+2*E(7)^-2, 4+2*E(7)^2+2*E(7)^-2, 2*E(7)+4*E(7)^-3+2*E(7)^-2, 2+4*E(7)^2+2*E(7)^3, 2+4*E(7)^-3+2*E(7)^-1, 4+2*E(7)+2*E(7)^-1, -4-4*E(7)-4*E(7)^2-4*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+4*E(7)^3, 4*E(7)+2*E(7)^2+2*E(7)^3, 2+2*E(7)^-3+4*E(7)^-2, 2+2*E(7)^2+4*E(7)^-1, 2*E(7)+2*E(7)^3+4*E(7)^-2, -2*E(7)-2*E(7)^2-2*E(7)^-3, -2-2*E(7)-2*E(7)^-1, 2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2-2*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-2*E(7)^-2, -2*E(7)^3-6*E(7)^-1, -6*E(7)-2*E(7)^-3, -2*E(7)-6*E(7)^2, -6*E(7)^-2-2*E(7)^-1, -2*E(7)^2-6*E(7)^-3, -6*E(7)^3-2*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4-2*E(7)-2*E(7)^-1, -4*E(7)-2*E(7)^2-2*E(7)^3, 2+2*E(7)-2*E(7)^2+2*E(7)^3+2*E(7)^-2, -2*E(7)-2*E(7)^3-4*E(7)^-2, -4-2*E(7)^2-2*E(7)^-2, -2*E(7)-4*E(7)^-3-2*E(7)^-2, 2+2*E(7)-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-4*E(7)^-3-2*E(7)^-1, -4-2*E(7)^3-2*E(7)^-3, -2-4*E(7)-2*E(7)^-2, -2-2*E(7)-4*E(7)^3, 4+4*E(7)+4*E(7)^2+4*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-2*E(7)^-3-4*E(7)^-2, -2-2*E(7)^2-4*E(7)^-1, -2-4*E(7)^2-2*E(7)^3, 2+2*E(7)^2+2*E(7)^-2, 2+2*E(7)^3+2*E(7)^-3, 2+2*E(7)+2*E(7)^-1, -2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)+2*E(7)^2+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7), -1*E(7)^-1, -1*E(7)^-3, -1*E(7)^2, -1*E(7)^-2, -1*E(7)^3, E(7)^2, E(7)^-3, E(7)^-2, E(7)^-1, E(7)^3, E(7)], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^3+4*E(7)^-3, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)^2+4*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^3-E(7)^-3, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)+4*E(7)^-1, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -4-4*E(7)^2-4*E(7)^-2, -4-4*E(7)-4*E(7)^-1, -4-4*E(7)^3-4*E(7)^-3, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, E(7)+E(7)^-1, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -4-4*E(7)-4*E(7)^-1, -4-4*E(7)^3-4*E(7)^-3, -4-4*E(7)^2-4*E(7)^-2, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)^3+E(7)^-3, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -4-4*E(7)^3-4*E(7)^-3, -4-4*E(7)^2-4*E(7)^-2, -4-4*E(7)-4*E(7)^-1, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -4-4*E(7)^2-4*E(7)^-2, -4-4*E(7)-4*E(7)^-1, -4-4*E(7)^3-4*E(7)^-3, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, E(7)+E(7)^-1, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -4-4*E(7)-4*E(7)^-1, -4-4*E(7)^3-4*E(7)^-3, -4-4*E(7)^2-4*E(7)^-2, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)^3+E(7)^-3, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)-3*E(7)^-1, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^2-3*E(7)^-2, -6-3*E(7)^3-3*E(7)^-3, -6-3*E(7)^3-3*E(7)^-3, -4-4*E(7)^3-4*E(7)^-3, -4-4*E(7)^2-4*E(7)^-2, -4-4*E(7)-4*E(7)^-1, -2-4*E(7)^2-E(7)^3-E(7)^-3-4*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -1+E(7)^2-3*E(7)^3-3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, 2+3*E(7)^2+4*E(7)^3+4*E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2+E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 3+E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-E(7)^3-E(7)^-3-2*E(7)^-2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^3+4*E(7)^-3, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)^2+4*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^3-E(7)^-3, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)+4*E(7)^-1, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)^3+4*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)+3*E(7)^-1, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^2+3*E(7)^-2, 6+3*E(7)^3+3*E(7)^-3, 6+3*E(7)^3+3*E(7)^-3, 4+4*E(7)^3+4*E(7)^-3, 4+4*E(7)^2+4*E(7)^-2, 4+4*E(7)+4*E(7)^-1, 2+4*E(7)^2+E(7)^3+E(7)^-3+4*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+3*E(7)^3+3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -2-3*E(7)^2-4*E(7)^3-4*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2-E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1+2*E(7)^2+E(7)^3+E(7)^-3+2*E(7)^-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), E(7)+E(7)^-3, E(7)+E(7)^3, E(7)+E(7)^2, E(7)^2+E(7)^3, E(7)^-2+E(7)^-1, E(7)^2+E(7)^3, E(7)^3+E(7)^-2, E(7)^2+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-1, E(7)^3+E(7)^-2, 1+E(7)^-3, 1+E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7)^2, 1+E(7)^-2, E(7)^3+E(7)^-1, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, E(7)+E(7)^-2, E(7)^3+E(7)^-1, E(7)+E(7)^-3, 1+E(7)^3, 1+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^2, E(7)+E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^-2, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-2, 1+E(7)^2, E(7)^-2+E(7)^-1, 1+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-2, 1+E(7), 1+E(7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-2, E(7)+E(7)^2, E(7)^-3+E(7)^-2, E(7)^2+E(7)^-3, E(7)^2+E(7)^-2, 1+E(7), E(7)+E(7)^-1, E(7)+E(7)^-2, E(7)^2+E(7)^-3, 1+E(7)^3, 1+E(7)^3, E(7)+E(7)^3, 1+E(7)^-2, 1+E(7)^2, E(7)+E(7)^-3, E(7)^3+E(7)^-2, E(7)^2+E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^3, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-1, E(7)+E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^-3, 1+E(7)^-3, E(7)^3+E(7)^-3, E(7)^-2+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-2, 1+E(7)^2, E(7)^3+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^-2, E(7)+E(7)^2, 1+E(7), E(7)^3+E(7)^-3, E(7)^2+E(7)^-1, 1+E(7)^-1, 1+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, E(7)^3+E(7)^-2, E(7)^2+E(7)^3, E(7)^3+E(7)^-1, E(7)^2+E(7)^-1, E(7)+E(7)^-3, E(7)^2+E(7)^-1, E(7)+E(7)^2, E(7)+E(7)^-1, 1+E(7)^-3, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, E(7)+E(7)^2, 1+E(7)^-2, 1+E(7)^-2, E(7)^-3+E(7)^-2, 1+E(7)^-1, 1+E(7), E(7)^2+E(7)^-3, E(7)^-2+E(7)^-1, E(7)+E(7)^-2, E(7)+E(7)^-1, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, E(7)+E(7)^3, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, 1+E(7)^2, 1+E(7)^2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-1, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7), E(7)^-2+E(7)^-1, E(7)+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^-3, 1+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^3, 1+E(7)^3, 1+E(7)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-2, E(7)+E(7)^-3, E(7)+E(7)^-2, E(7)^3+E(7)^-1, E(7)+E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^-1, 1+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^3, E(7)^-2+E(7)^-1, 1+E(7)^2, 1+E(7)^2, E(7)^2+E(7)^3, 1+E(7), 1+E(7)^-1, E(7)^3+E(7)^-2, E(7)+E(7)^2, E(7)^2+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, 1+E(7)^-2, 1+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^3, 1+E(7)^-1, E(7)+E(7)^2, E(7)^2+E(7)^-1, 1+E(7), E(7)^3+E(7)^-1, 1+E(7)^3, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-1, 1+E(7)^-3, 1+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^-2, E(7)^3+E(7)^-2, E(7)+E(7)^3, E(7)^2+E(7)^-3, E(7)+E(7)^3, E(7)+E(7)^-3, E(7)^3+E(7)^-3, 1+E(7)^2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, E(7)+E(7)^-3, 1+E(7)^-1, 1+E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^3, 1+E(7)^-3, E(7)+E(7)^2, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^2, E(7)^-2+E(7)^-1, 1+E(7), 1+E(7), E(7)+E(7)^-1, E(7)^3+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^-3, E(7)^3+E(7)^-1, E(7)^-3+E(7)^-1, 1+E(7)^3, E(7)^2+E(7)^-3, 1+E(7)^2, E(7)+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^-2, 1+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, E(7)+E(7)^2, E(7)^2+E(7)^-1, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-2, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, E(7)^3+E(7)^-1, 1+E(7), 1+E(7), E(7)+E(7)^-2, 1+E(7)^-3, 1+E(7)^3, E(7)^-2+E(7)^-1, E(7)+E(7)^-3, E(7)+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-1, E(7)^2+E(7)^3, E(7)^-2+E(7)^-1, E(7)+E(7)^2, 1+E(7)^-1, 1+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-3, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, 1+E(7)^3, E(7)+E(7)^-3, E(7)+E(7)^3, 1+E(7)^-3, E(7)^3+E(7)^-2, 1+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^3, 1+E(7)^2, 1+E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, E(7)^2+E(7)^-1, 1+E(7)^-2, E(7)^-3+E(7)^-2, 1+E(7), E(7)^2+E(7)^3, 1+E(7), E(7)^-3+E(7)^-1, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, E(7)+E(7)^-1, 1+E(7)^3, E(7)^-3+E(7)^-1, E(7)+E(7)^-3, E(7)+E(7)^-3, 1+E(7)^2, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, E(7)+E(7)^-2, E(7)+E(7)^3, 1+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^2, 1+E(7)^-2, 1+E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-1, E(7)^3+E(7)^-1, E(7)^3+E(7)^-1, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-2, E(7)+E(7)^-1, 1+E(7)^3, E(7)^3+E(7)^-2, E(7)+E(7)^3, 1+E(7)^-1, E(7)^2+E(7)^-3, E(7)^2+E(7)^3, E(7)^-2+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-3, E(7)+E(7)^2, E(7)+E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, E(7)+E(7)^-2, 1+E(7)^2, E(7)^2+E(7)^3, 1+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^2, E(7)+E(7)^-1, 1+E(7)^-3, E(7)+E(7)^3, E(7)^3+E(7)^-1, E(7)^3+E(7)^-1, 1+E(7)^-2, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, E(7)^2+E(7)^-1, E(7)^-3+E(7)^-1, 1+E(7), E(7)^2+E(7)^-2, 1+E(7)^-2, 1+E(7)^2, 1+E(7)^3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, E(7)+E(7)^-3, E(7)+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^3, E(7)+E(7)^-1, 1+E(7)^-3, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7), E(7)^3+E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^2, E(7)^3+E(7)^-3, 1+E(7)^3, E(7)^-2+E(7)^-1, E(7)^-2+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-1, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), E(7)^2+E(7)^3, 1+E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7)^-2, E(7)+E(7)^3, 1+E(7)^-2, E(7)^2+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, E(7)^2+E(7)^-2, 1+E(7), E(7)^2+E(7)^-1, E(7)^-2+E(7)^-1, E(7)^-2+E(7)^-1, 1+E(7)^3, E(7)^3+E(7)^-1, E(7)+E(7)^-3, E(7)^-3+E(7)^-2, E(7)+E(7)^-2, 1+E(7)^2, E(7)^3+E(7)^-3, 1+E(7)^3, 1+E(7)^-3, 1+E(7)^-1, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, E(7)+E(7)^2, E(7)+E(7)^2, E(7)+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7), E(7)+E(7)^-3, E(7)+E(7)^-2, 1+E(7)^2, E(7)^3+E(7)^-1, E(7)+E(7)^3, E(7)^2+E(7)^-3, E(7)+E(7)^-1, 1+E(7)^-1, E(7)^3+E(7)^-2, E(7)^3+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)-E(7)^-1, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^3, E(7)+E(7)^3, 1+E(7)^2, E(7)^-3+E(7)^-1, 1+E(7)^2, E(7)+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, E(7)^2+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^-2, E(7)+E(7)^2, E(7)+E(7)^2, 1+E(7)^-3, E(7)+E(7)^-3, E(7)^3+E(7)^-1, E(7)^2+E(7)^3, E(7)^2+E(7)^-1, 1+E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^-3, 1+E(7)^3, 1+E(7), E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, E(7)^-2+E(7)^-1, E(7)^-2+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^3, E(7)^2+E(7)^-2, 1+E(7)^-1, E(7)^3+E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^-2, E(7)+E(7)^-3, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-2, E(7)+E(7)^-1, 1+E(7), E(7)^2+E(7)^-3, E(7)^2+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^2-E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 2*E(7), 2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, E(7)+E(7)^3, 1+E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^-3, E(7)+E(7)^-2, 1+E(7)^-3, E(7)^2+E(7)^3, E(7)+E(7)^-1, E(7)^3+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, E(7)^2+E(7)^3, E(7)^2+E(7)^-3, E(7)^2+E(7)^-3, 1+E(7), E(7)+E(7)^2, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^3, E(7)+E(7)^-1, 1+E(7), 1+E(7)^-1, 1+E(7)^2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, E(7)^3+E(7)^-2, E(7)^3+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-2, 1+E(7)^3, E(7)+E(7)^2, E(7)+E(7)^-2, E(7)^3+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^2, E(7)+E(7)^-3, E(7)+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, 2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 2*E(7)^-1, 2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, E(7)^-3+E(7)^-1, 1+E(7), E(7)+E(7)^-2, 1+E(7)^3, E(7)^2+E(7)^-1, 1+E(7)^3, E(7)^-3+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-3, E(7)^3+E(7)^-3, 1+E(7)^2, E(7)^-3+E(7)^-2, E(7)^3+E(7)^-2, E(7)^3+E(7)^-2, 1+E(7)^-1, E(7)^-2+E(7)^-1, E(7)+E(7)^2, E(7)+E(7)^3, E(7)^2+E(7)^3, 1+E(7)^-3, E(7)+E(7)^-1, 1+E(7)^-1, 1+E(7), 1+E(7)^-2, E(7)+E(7)^3, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-3, E(7)^2+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^2, E(7)+E(7)^2, E(7)^2+E(7)^3, 1+E(7)^-3, E(7)^-2+E(7)^-1, E(7)^2+E(7)^-1, E(7)+E(7)^-3, E(7)^2+E(7)^-2, 1+E(7)^-2, E(7)^3+E(7)^-1, E(7)^3+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), -1*E(7)-E(7)^-3, E(7)+E(7)^3, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^3, -1*E(7)^-2-E(7)^-1, E(7)^2+E(7)^3, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^-2, 1+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, E(7)^3+E(7)^-2, -1-E(7)^-3, 1+E(7)^-3, E(7)^-3+E(7)^-1, -1-E(7)^2, -1-E(7)^-2, -1*E(7)^3-E(7)^-1, E(7)^2+E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, E(7)+E(7)^-2, E(7)^3+E(7)^-1, E(7)+E(7)^-3, 1+E(7)^3, -1-E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^2, E(7)+E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^-2, -1*E(7)^2-E(7)^-3, E(7)^-3+E(7)^-2, 1+E(7)^2, E(7)^-2+E(7)^-1, -1-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-2, 1+E(7), -1-E(7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 2*E(7)+E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^-3+E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2, E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, 1+E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, E(7)^2+E(7)^-3, -1-E(7)^3, 1+E(7)^3, E(7)+E(7)^3, -1-E(7)^-2, -1-E(7)^2, -1*E(7)-E(7)^-3, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, E(7)^2+E(7)^-1, E(7)+E(7)^-3, E(7)^3+E(7)^-1, 1+E(7)^-3, -1-E(7)^-3, E(7)^3+E(7)^-3, E(7)^-2+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-2, 1+E(7)^2, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^-2, E(7)+E(7)^2, -1-E(7), -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-1, 1+E(7)^-1, -1-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-3, E(7)^2+E(7)^-1, -1*E(7)-E(7)^2, E(7)+E(7)^-1, 1+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, E(7)+E(7)^2, -1-E(7)^-2, 1+E(7)^-2, E(7)^-3+E(7)^-2, -1-E(7)^-1, -1-E(7), -1*E(7)^2-E(7)^-3, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, E(7)+E(7)^3, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, 1+E(7)^2, -1-E(7)^2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-1, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7), -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-2, 1+E(7)^-1, E(7)+E(7)^-3, -1-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^3, 1+E(7)^3, -1-E(7)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, -1*E(7)^2-E(7)^-3, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-1, E(7)+E(7)^-2, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-1, 1+E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, E(7)^-2+E(7)^-1, -1-E(7)^2, 1+E(7)^2, E(7)^2+E(7)^3, -1-E(7), -1-E(7)^-1, -1*E(7)^3-E(7)^-2, E(7)+E(7)^2, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, 1+E(7)^-2, -1-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^3, 1+E(7)^-1, -1*E(7)-E(7)^2, E(7)^2+E(7)^-1, 1+E(7), E(7)^3+E(7)^-1, -1-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-1, 1+E(7)^-3, -1-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-3, E(7)+E(7)^3, -1*E(7)-E(7)^-3, E(7)^3+E(7)^-3, 1+E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, E(7)+E(7)^-3, -1-E(7)^-1, 1+E(7)^-1, E(7)^2+E(7)^-1, -1-E(7)^3, -1-E(7)^-3, -1*E(7)-E(7)^2, E(7)^3+E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, E(7)^-3+E(7)^-2, E(7)+E(7)^2, E(7)^-2+E(7)^-1, 1+E(7), -1-E(7), E(7)+E(7)^-1, E(7)^3+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, 1+E(7)^-3, -1*E(7)^3-E(7)^-1, E(7)^-3+E(7)^-1, 1+E(7)^3, E(7)^2+E(7)^-3, -1-E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-2, 1+E(7)^-2, -1-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, -1*E(7)-E(7)^2, E(7)^2+E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-2, E(7)^-3+E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, E(7)^3+E(7)^-1, -1-E(7), 1+E(7), E(7)+E(7)^-2, -1-E(7)^-3, -1-E(7)^3, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, E(7)^2+E(7)^3, E(7)^-2+E(7)^-1, E(7)+E(7)^2, 1+E(7)^-1, -1-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-3, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, 1+E(7)^3, -1*E(7)-E(7)^-3, E(7)+E(7)^3, 1+E(7)^-3, E(7)^3+E(7)^-2, -1-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^3, 1+E(7)^2, -1-E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, E(7)^3+E(7)^-3, 2+E(7)-3*E(7)^3+2*E(7)^-3, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, -2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-1, 2*E(7)^-3, 2*E(7)^3, -1*E(7)^2-E(7)^-1, 1+E(7)^-2, -1*E(7)^-3-E(7)^-2, -1-E(7), -1*E(7)^2-E(7)^3, 1+E(7), -1*E(7)^-3-E(7)^-1, E(7)^2+E(7)^-2, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-1, -1-E(7)^3, E(7)^-3+E(7)^-1, -1*E(7)-E(7)^-3, E(7)+E(7)^-3, 1+E(7)^2, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-2, E(7)+E(7)^3, -1-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^2, -1-E(7)^-2, 1+E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-2, E(7)+E(7)^-1, 1+E(7)^3, E(7)^3+E(7)^-2, -1*E(7)-E(7)^3, 1+E(7)^-1, E(7)^2+E(7)^-3, E(7)^2+E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-3, E(7)+E(7)^2, -1*E(7)-E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, E(7)-E(7)^2+2*E(7)^-3, 2*E(7)+E(7)^2-E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, E(7)^3+E(7)^-3, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, -2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7), 2*E(7)^3, 2*E(7)^-3, -1*E(7)-E(7)^-2, 1+E(7)^2, -1*E(7)^2-E(7)^3, -1-E(7)^-1, -1*E(7)^-3-E(7)^-2, 1+E(7)^-1, -1*E(7)-E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^2, -1*E(7)-E(7)^-1, -1-E(7)^-3, E(7)+E(7)^3, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-1, 1+E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-1, E(7)^-3+E(7)^-1, -1-E(7), -1*E(7)^2-E(7)^-2, -1-E(7)^-2, -1-E(7)^2, 1+E(7)^3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, E(7)+E(7)^-3, -1*E(7)-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^3, E(7)+E(7)^-1, 1+E(7)^-3, E(7)^2+E(7)^-3, -1*E(7)^-3-E(7)^-1, 1+E(7), E(7)^3+E(7)^-2, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^3-E(7)^-3, -1-E(7)^3, E(7)^-2+E(7)^-1, -1*E(7)^-2-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, E(7)+E(7)^-1, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, -2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^2, 2*E(7)^-1, 2*E(7), -1*E(7)^2-E(7)^3, 1+E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7)^-2, -1*E(7)-E(7)^3, 1+E(7)^-2, -1*E(7)^2-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7), E(7)^2+E(7)^-1, -1*E(7)^-2-E(7)^-1, E(7)^-2+E(7)^-1, 1+E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^-2, -1-E(7)^2, -1*E(7)^3-E(7)^-3, -1-E(7)^3, -1-E(7)^-3, 1+E(7)^-1, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, E(7)+E(7)^2, -1*E(7)-E(7)^2, E(7)+E(7)^-1, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7), E(7)+E(7)^-3, -1*E(7)-E(7)^-2, 1+E(7)^2, E(7)^3+E(7)^-1, E(7)+E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)^-1, E(7)^3+E(7)^-2, -1*E(7)^3-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 2+E(7)-3*E(7)^3+2*E(7)^-3, E(7)+E(7)^-1, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, -2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^-2, 2*E(7), 2*E(7)^-1, -1*E(7)^-3-E(7)^-2, 1+E(7)^3, -1*E(7)-E(7)^3, -1-E(7)^2, -1*E(7)^-3-E(7)^-1, 1+E(7)^2, -1*E(7)-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, E(7)+E(7)^-2, -1*E(7)-E(7)^2, E(7)+E(7)^2, 1+E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^3, E(7)^2+E(7)^-1, -1-E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^-3, -1-E(7)^3, 1+E(7), E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, E(7)^-2+E(7)^-1, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^3, E(7)^2+E(7)^-2, 1+E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^2-E(7)^-1, 1+E(7)^-2, E(7)+E(7)^-3, E(7)^-3+E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7), E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, E(7)^2+E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, -2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^3, 2*E(7)^2, 2*E(7)^-2, -1*E(7)-E(7)^3, 1+E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^-3, -1*E(7)-E(7)^-2, 1+E(7)^-3, -1*E(7)^2-E(7)^3, E(7)+E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, E(7)^2+E(7)^3, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-3, 1+E(7), -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-1, E(7)^-3+E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^-1, -1-E(7), -1-E(7)^-1, 1+E(7)^2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, E(7)^3+E(7)^-2, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, E(7)^-2+E(7)^-1, -1*E(7)^-3-E(7)^-2, 1+E(7)^3, E(7)+E(7)^2, E(7)+E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^2, E(7)+E(7)^-3, -1*E(7)-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, -2, 2, 0, 0, 0, 0, 0, 0, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)+E(7)^-1, 2*E(7)+E(7)^2-E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, -2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7)^-3, 2*E(7)^-2, 2*E(7)^2, -1*E(7)^-3-E(7)^-1, 1+E(7), -1*E(7)-E(7)^-2, -1-E(7)^3, -1*E(7)^2-E(7)^-1, 1+E(7)^3, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-3, -1*E(7)^3-E(7)^-3, -1-E(7)^2, E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-2, E(7)^3+E(7)^-2, 1+E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)-E(7)^3, E(7)^2+E(7)^3, -1-E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)^-1, -1-E(7), 1+E(7)^-2, E(7)+E(7)^3, E(7)^-3+E(7)^-1, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^2, E(7)+E(7)^2, -1*E(7)^2-E(7)^3, 1+E(7)^-3, E(7)^-2+E(7)^-1, E(7)^2+E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)^-2, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), E(7)+E(7)^-3, -1*E(7)-E(7)^3, E(7)+E(7)^2, E(7)^2+E(7)^3, E(7)^-2+E(7)^-1, -1*E(7)^2-E(7)^3, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-1, -1*E(7)^3-E(7)^-2, 1+E(7)^-3, -1-E(7)^-3, -1*E(7)^-3-E(7)^-1, 1+E(7)^2, 1+E(7)^-2, E(7)^3+E(7)^-1, -1*E(7)^2-E(7)^-3, E(7)^-3+E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-1, E(7)+E(7)^3, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, -1-E(7)^3, 1+E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^-2, E(7)^2+E(7)^-3, -1*E(7)^-3-E(7)^-2, -1-E(7)^2, -1*E(7)^-2-E(7)^-1, 1+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-2, -1-E(7), 1+E(7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 2*E(7)+E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^-3-E(7)^-1, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-2, E(7)+E(7)^2, -1*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7), E(7)+E(7)^-1, E(7)+E(7)^-2, -1*E(7)^2-E(7)^-3, 1+E(7)^3, -1-E(7)^3, -1*E(7)-E(7)^3, 1+E(7)^-2, 1+E(7)^2, E(7)+E(7)^-3, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^3, E(7)^2+E(7)^-2, E(7)+E(7)^3, E(7)^-3+E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^-3, 1+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7)^2, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^-2, -1*E(7)-E(7)^2, 1+E(7), E(7)^3+E(7)^-3, E(7)^2+E(7)^-1, -1-E(7)^-1, 1+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^3, E(7)^3+E(7)^-1, E(7)^2+E(7)^-1, E(7)+E(7)^-3, -1*E(7)^2-E(7)^-1, E(7)+E(7)^2, -1*E(7)-E(7)^-1, -1-E(7)^-3, E(7)^3+E(7)^-3, E(7)^-3+E(7)^-1, -1*E(7)-E(7)^2, 1+E(7)^-2, -1-E(7)^-2, -1*E(7)^-3-E(7)^-2, 1+E(7)^-1, 1+E(7), E(7)^2+E(7)^-3, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-2, E(7)+E(7)^-1, E(7)^-3+E(7)^-2, E(7)^2+E(7)^3, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, -1-E(7)^2, 1+E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7), E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^-3, 1+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^3, -1-E(7)^3, 1+E(7)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, E(7)^2+E(7)^-3, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^-3, E(7)+E(7)^-2, E(7)^3+E(7)^-1, -1*E(7)-E(7)^-2, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-1, -1-E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^3, -1*E(7)^-2-E(7)^-1, 1+E(7)^2, -1-E(7)^2, -1*E(7)^2-E(7)^3, 1+E(7), 1+E(7)^-1, E(7)^3+E(7)^-2, -1*E(7)-E(7)^2, E(7)^2+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^3, E(7)^-3+E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1-E(7)^-2, 1+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, -1-E(7)^-1, E(7)+E(7)^2, -1*E(7)^2-E(7)^-1, -1-E(7), -1*E(7)^3-E(7)^-1, 1+E(7)^3, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-1, -1-E(7)^-3, 1+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -6*E(7)-3*E(7)^2-3*E(7)^3, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-2, E(7)^3+E(7)^-2, E(7)+E(7)^3, E(7)^2+E(7)^-3, -1*E(7)-E(7)^3, E(7)+E(7)^-3, -1*E(7)^3-E(7)^-3, -1-E(7)^2, E(7)^2+E(7)^-2, E(7)^2+E(7)^3, -1*E(7)-E(7)^-3, 1+E(7)^-1, -1-E(7)^-1, -1*E(7)^2-E(7)^-1, 1+E(7)^3, 1+E(7)^-3, E(7)+E(7)^2, -1*E(7)^3-E(7)^-1, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-1, E(7)+E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, -1-E(7), 1+E(7), -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^-3, E(7)^3+E(7)^-1, -1*E(7)^-3-E(7)^-1, -1-E(7)^3, -1*E(7)^2-E(7)^-3, 1+E(7)^2, E(7)+E(7)^-1, E(7)^-3+E(7)^-2, -1-E(7)^-2, 1+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 6+6*E(7)+6*E(7)^2+6*E(7)^3+3*E(7)^-3+3*E(7)^-2, -6*E(7)-3*E(7)^2-3*E(7)^3, 3+3*E(7)-3*E(7)^2+3*E(7)^3+3*E(7)^-2, -3*E(7)-3*E(7)^3-6*E(7)^-2, -3*E(7)-6*E(7)^-3-3*E(7)^-2, 3+3*E(7)-3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -1+2*E(7)^2+2*E(7)^3-2*E(7)^-3+E(7)^-2, -3-4*E(7)-2*E(7)^2-E(7)^3-2*E(7)^-2, 1+4*E(7)+2*E(7)^2+4*E(7)^3+3*E(7)^-3+2*E(7)^-2, 2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -2+E(7)-3*E(7)^2-E(7)^3-E(7)^-3+E(7)^-2, -3-E(7)-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 1+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -1+E(7)^2-2*E(7)^3+2*E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 3+2*E(7)+2*E(7)^2+2*E(7)^-3, 1-2*E(7)-2*E(7)^2-2*E(7)^-3, 2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, E(7)+E(7)^2, -1*E(7)^2-E(7)^-1, E(7)^2+E(7)^-3, E(7)^-3+E(7)^-1, E(7)^3+E(7)^-2, -1*E(7)^-3-E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, E(7)^2+E(7)^-2, E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-1, 1+E(7), -1-E(7), -1*E(7)-E(7)^-2, 1+E(7)^-3, 1+E(7)^3, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-3, E(7)+E(7)^3, E(7)^3+E(7)^-3, E(7)+E(7)^-2, E(7)^2+E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7)^-1, 1+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1-E(7)^3, E(7)+E(7)^-3, -1*E(7)-E(7)^3, -1-E(7)^-3, -1*E(7)^3-E(7)^-2, 1+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^3, -1-E(7)^2, 1+E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, E(7)^3+E(7)^-3, 2+E(7)-3*E(7)^3+2*E(7)^-3, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, 2*E(7)^2, -2*E(7)^-2, 2*E(7)^3, 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^-1, 2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, E(7)^2+E(7)^-1, -1-E(7)^-2, E(7)^-3+E(7)^-2, 1+E(7), E(7)^2+E(7)^3, -1-E(7), E(7)^-3+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, E(7)+E(7)^-1, 1+E(7)^3, -1*E(7)^-3-E(7)^-1, E(7)+E(7)^-3, -1*E(7)-E(7)^-3, -1-E(7)^2, E(7)^2+E(7)^-3, E(7)^3+E(7)^-2, E(7)+E(7)^-2, -1*E(7)-E(7)^3, 1+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^2, 1+E(7)^-2, -1-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^3, -1*E(7)^3-E(7)^-2, E(7)+E(7)^3, -1-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^3, E(7)^-2+E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-3, -1*E(7)-E(7)^2, E(7)+E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, E(7)+E(7)^-1, E(7)-E(7)^2+2*E(7)^-3, 2*E(7)+E(7)^2-E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, E(7)^3+E(7)^-3, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, 2*E(7)^-2, -2*E(7)^2, 2*E(7)^-3, 2*E(7)^2, 2*E(7)^3, 2*E(7), 2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, E(7)+E(7)^-2, -1-E(7)^2, E(7)^2+E(7)^3, 1+E(7)^-1, E(7)^-3+E(7)^-2, -1-E(7)^-1, E(7)+E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, E(7)+E(7)^-1, 1+E(7)^-3, -1*E(7)-E(7)^3, E(7)^3+E(7)^-1, -1*E(7)^3-E(7)^-1, -1-E(7)^-2, E(7)^3+E(7)^-2, E(7)^2+E(7)^-3, E(7)^2+E(7)^-1, -1*E(7)^-3-E(7)^-1, 1+E(7), E(7)^2+E(7)^-2, 1+E(7)^-2, 1+E(7)^2, -1-E(7)^3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-3, E(7)+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-1, -1-E(7)^-3, -1*E(7)^2-E(7)^-3, E(7)^-3+E(7)^-1, -1-E(7), -1*E(7)^3-E(7)^-2, -1*E(7)^-3-E(7)^-2, E(7)+E(7)^2, E(7)^3+E(7)^-3, 1+E(7)^3, -1*E(7)^-2-E(7)^-1, E(7)^-2+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, E(7)^3+E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, E(7)+E(7)^-1, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, 2*E(7)^3, -2*E(7)^-3, 2*E(7), 2*E(7)^-3, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), E(7)^2+E(7)^3, -1-E(7)^-3, E(7)^-3+E(7)^-1, 1+E(7)^-2, E(7)+E(7)^3, -1-E(7)^-2, E(7)^2+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-2, 1+E(7), -1*E(7)^2-E(7)^-1, E(7)^-2+E(7)^-1, -1*E(7)^-2-E(7)^-1, -1-E(7)^3, E(7)^3+E(7)^-1, E(7)+E(7)^-3, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-2, 1+E(7)^2, E(7)^3+E(7)^-3, 1+E(7)^3, 1+E(7)^-3, -1-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^2, E(7)+E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7), -1*E(7)-E(7)^-3, E(7)+E(7)^-2, -1-E(7)^2, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^3, E(7)^2+E(7)^-3, E(7)+E(7)^-1, 1+E(7)^-1, -1*E(7)^3-E(7)^-2, E(7)^3+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, E(7)^2+E(7)^-2, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)^3+E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, 2+E(7)-3*E(7)^3+2*E(7)^-3, E(7)+E(7)^-1, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -1-2*E(7)-2*E(7)^-1, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, 2*E(7)^-3, -2*E(7)^3, 2*E(7)^-1, 2*E(7)^3, 2*E(7), 2*E(7)^-2, 2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, E(7)^-3+E(7)^-2, -1-E(7)^3, E(7)+E(7)^3, 1+E(7)^2, E(7)^-3+E(7)^-1, -1-E(7)^2, E(7)+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, E(7)^2+E(7)^-2, 1+E(7)^-1, -1*E(7)-E(7)^-2, E(7)+E(7)^2, -1*E(7)-E(7)^2, -1-E(7)^-3, E(7)+E(7)^-3, E(7)^3+E(7)^-1, E(7)^2+E(7)^3, -1*E(7)^2-E(7)^-1, 1+E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)^-3, 1+E(7)^3, -1-E(7), -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, -1*E(7)^-2-E(7)^-1, E(7)^-2+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^2+E(7)^-1, -1-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)^-3-E(7)^-1, E(7)^3+E(7)^-2, E(7)+E(7)^-1, 1+E(7), -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, -3-6*E(7)-3*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)-6*E(7)^3, -3-6*E(7)^-3-3*E(7)^-1, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, E(7)^3+E(7)^-3, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)-E(7)^2+2*E(7)^-3, E(7)+E(7)^-1, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, 2*E(7)+E(7)^2-E(7)^-3, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, E(7)^2+E(7)^-2, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, -1*E(7)+2*E(7)^2+E(7)^-3, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -2-E(7)-E(7)^2-E(7)^-3, -1+E(7)+E(7)^2+E(7)^-3, 2*E(7), -2*E(7)^-1, 2*E(7)^-2, 2*E(7)^-1, 2*E(7)^2, 2*E(7)^3, 2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, E(7)+E(7)^3, -1-E(7)^-1, E(7)^2+E(7)^-1, 1+E(7)^-3, E(7)+E(7)^-2, -1-E(7)^-3, E(7)^2+E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-3, 1+E(7)^-2, -1*E(7)^2-E(7)^3, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-3, -1-E(7), E(7)+E(7)^2, E(7)^-2+E(7)^-1, E(7)^-3+E(7)^-1, -1*E(7)^-3-E(7)^-2, 1+E(7)^3, E(7)+E(7)^-1, 1+E(7), 1+E(7)^-1, -1-E(7)^2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^3-E(7)^-2, E(7)^3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, -1*E(7)^-2-E(7)^-1, E(7)^-3+E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-2, E(7)^3+E(7)^-1, E(7)^2+E(7)^-2, 1+E(7)^2, -1*E(7)-E(7)^-3, E(7)+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, -3-3*E(7)^2-6*E(7)^-1, -3-6*E(7)-3*E(7)^-2, -3-6*E(7)^2-3*E(7)^3, -3-3*E(7)^-3-6*E(7)^-2, -3-6*E(7)^-3-3*E(7)^-1, -3-3*E(7)-6*E(7)^3, 2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 4+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)+2*E(7)^2+E(7)^-3, E(7)-E(7)^2+2*E(7)^-3, -1-E(7)-E(7)^2+E(7)^3-E(7)^-3-2*E(7)^-2, E(7)+E(7)^-1, 2*E(7)+E(7)^2-E(7)^-3, -2-2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^-3-E(7)^-2, -5*E(7)-2*E(7)^2-2*E(7)^3-2*E(7)^-3-E(7)^-2, E(7)^2+E(7)^-2, 2-3*E(7)^2+E(7)^3+2*E(7)^-2, 5+5*E(7)+4*E(7)^2+3*E(7)^3+3*E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2+2*E(7)^3+E(7)^-3+3*E(7)^-2, 2+E(7)-3*E(7)^3+2*E(7)^-3, 2+2*E(7)^2+E(7)^-3-3*E(7)^-2, 1-E(7)-E(7)^2+E(7)^3-4*E(7)^-3-E(7)^-2, -1-2*E(7)^2-2*E(7)^-2, -1-2*E(7)^3-2*E(7)^-3, -1-2*E(7)-2*E(7)^-1, -1+E(7)+E(7)^2+E(7)^-3, -2-E(7)-E(7)^2-E(7)^-3, 2*E(7)^-1, -2*E(7), 2*E(7)^2, 2*E(7), 2*E(7)^-2, 2*E(7)^-3, 2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, E(7)^-3+E(7)^-1, -1-E(7), E(7)+E(7)^-2, 1+E(7)^3, E(7)^2+E(7)^-1, -1-E(7)^3, E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, E(7)^3+E(7)^-3, 1+E(7)^2, -1*E(7)^-3-E(7)^-2, E(7)^3+E(7)^-2, -1*E(7)^3-E(7)^-2, -1-E(7)^-1, E(7)^-2+E(7)^-1, E(7)+E(7)^2, E(7)+E(7)^3, -1*E(7)^2-E(7)^3, 1+E(7)^-3, E(7)+E(7)^-1, 1+E(7)^-1, 1+E(7), -1-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-3, E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^2, -1*E(7)-E(7)^2, E(7)^2+E(7)^3, -1-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^-1, E(7)+E(7)^-3, E(7)^2+E(7)^-2, 1+E(7)^-2, -1*E(7)^3-E(7)^-1, E(7)^3+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), -1*E(7)-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-2, -1-E(7)^-3, -1-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7)^2, -1-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, -1-E(7)^3, -1-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1-E(7)^2, -1*E(7)^-2-E(7)^-1, -1-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7), -1-E(7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7), -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-3, -1-E(7)^3, -1-E(7)^3, -1*E(7)-E(7)^3, -1-E(7)^-2, -1-E(7)^2, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, -1-E(7)^-3, -1-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7)^2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^-2, -1*E(7)-E(7)^2, -1-E(7), -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-1, -1-E(7)^-1, -1-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-1, -1-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7)^-2, -1-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1-E(7)^-1, -1-E(7), -1*E(7)^2-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, -1-E(7)^2, -1-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7), -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^-3, -1-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^3, -1-E(7)^3, -1-E(7)^3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-1, -1-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^-2-E(7)^-1, -1-E(7)^2, -1-E(7)^2, -1*E(7)^2-E(7)^3, -1-E(7), -1-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1-E(7)^-2, -1-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^3, -1-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-1, -1-E(7), -1*E(7)^3-E(7)^-1, -1-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1-E(7)^-3, -1-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 6*E(7)+3*E(7)^2+3*E(7)^3, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-3, -1-E(7)^2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-3, -1-E(7)^-1, -1-E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^3, -1-E(7)^-3, -1*E(7)-E(7)^2, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, -1-E(7), -1-E(7), -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^3, -1-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1-E(7)^3, -1*E(7)^2-E(7)^-3, -1-E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^-2, -1-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 6*E(7)+3*E(7)^2+3*E(7)^3, 3*E(7)+6*E(7)^-3+3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -6-6*E(7)-6*E(7)^2-6*E(7)^3-3*E(7)^-3-3*E(7)^-2, 6*E(7)+3*E(7)^2+3*E(7)^3, -3-3*E(7)+3*E(7)^2-3*E(7)^3-3*E(7)^-2, 3*E(7)+3*E(7)^3+6*E(7)^-2, 3*E(7)+6*E(7)^-3+3*E(7)^-2, -3-3*E(7)+3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -4-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2+3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 1-2*E(7)^2-2*E(7)^3+2*E(7)^-3-E(7)^-2, 3+4*E(7)+2*E(7)^2+E(7)^3+2*E(7)^-2, -1-4*E(7)-2*E(7)^2-4*E(7)^3-3*E(7)^-3-2*E(7)^-2, -2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 2-E(7)+3*E(7)^2+E(7)^3+E(7)^-3-E(7)^-2, 3+E(7)+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 1-E(7)^2+2*E(7)^3-2*E(7)^-3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -3-2*E(7)-2*E(7)^2-2*E(7)^-3, -1+2*E(7)+2*E(7)^2+2*E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-1, -1-E(7), -1-E(7), -1*E(7)-E(7)^-2, -1-E(7)^-3, -1-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, -1-E(7)^-1, -1-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^3, -1-E(7)^-3, -1*E(7)^3-E(7)^-2, -1-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^3, -1-E(7)^2, -1-E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-1, -2*E(7)^-3, -2*E(7)^3, -1*E(7)^2-E(7)^-1, -1-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1-E(7), -1*E(7)^2-E(7)^3, -1-E(7), -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-1, -1-E(7)^3, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-3, -1-E(7)^2, -1*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^3, -1-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^2, -1-E(7)^-2, -1-E(7)^-3, -1*E(7)-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^3, -1-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^3+2*E(7)^-3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)+E(7)^2-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7), -2*E(7)^3, -2*E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7)^2, -1*E(7)^2-E(7)^3, -1-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-1, -1-E(7)^-3, -1*E(7)-E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-1, -1-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1-E(7), -1*E(7)^2-E(7)^-2, -1-E(7)^-2, -1-E(7)^2, -1-E(7)^3, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-1, -1-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7), -1*E(7)^3-E(7)^-2, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)^3-E(7)^-3, -1-E(7)^3, -1*E(7)^-2-E(7)^-1, -1*E(7)^-2-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2*E(7)-E(7)^2+E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -1*E(7)-E(7)^-1, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^-2, -2*E(7)^3, -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-1, -2*E(7), -1*E(7)^2-E(7)^3, -1-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1-E(7)^-2, -1*E(7)-E(7)^3, -1-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7), -1*E(7)^2-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1-E(7)^3, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-2, -1-E(7)^2, -1*E(7)^3-E(7)^-3, -1-E(7)^3, -1-E(7)^-3, -1-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7), -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7)^2, -1*E(7)^3-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)^3-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+6*E(7)^2+3*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)^2-E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)^3-E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -1*E(7)-E(7)^-1, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+2*E(7)+2*E(7)^-1, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7), -2*E(7)^-2, -2*E(7)^2, -2*E(7)^-3, -2*E(7)^2, -2*E(7)^-2, -2*E(7), -2*E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^3, -1-E(7)^2, -1*E(7)^-3-E(7)^-1, -1-E(7)^2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, -1*E(7)-E(7)^-2, -1*E(7)-E(7)^2, -1*E(7)-E(7)^2, -1-E(7)^-3, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^-1, -1-E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^-3, -1-E(7)^3, -1-E(7), -1*E(7)^2-E(7)^3, -1*E(7)^-3-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^-2, -1-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^-2, -1*E(7)-E(7)^-3, -1*E(7)^-3-E(7)^-1, -1*E(7)^3-E(7)^-2, -1*E(7)-E(7)^-1, -1-E(7), -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -1*E(7)^2-E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 3+6*E(7)+3*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)+6*E(7)^3, 3+6*E(7)^-3+3*E(7)^-1, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -1*E(7)-E(7)^-1, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -2*E(7)-E(7)^2+E(7)^-3, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1*E(7)^2-E(7)^-2, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 2+E(7)+E(7)^2+E(7)^-3, 1-E(7)-E(7)^2-E(7)^-3, -2*E(7), -2*E(7)^-1, -2*E(7)^-2, -2*E(7)^-1, -2*E(7)^2, -2*E(7)^3, -2*E(7)^-3, -2*E(7), -2*E(7)^-3, -2*E(7)^3, -2*E(7)^2, -2*E(7)^-2, -1*E(7)-E(7)^3, -1-E(7)^-1, -1*E(7)^2-E(7)^-1, -1-E(7)^-3, -1*E(7)-E(7)^-2, -1-E(7)^-3, -1*E(7)^2-E(7)^3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, -1*E(7)^2-E(7)^3, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-3, -1-E(7), -1*E(7)-E(7)^2, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^-1, -1-E(7), -1-E(7)^-1, -1-E(7)^2, -1*E(7)^-3-E(7)^-1, -1*E(7)-E(7)^3, -1*E(7)^3-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-1, -1*E(7)^3-E(7)^-3, -1-E(7)^-2, -1*E(7)^-2-E(7)^-1, -1*E(7)^-3-E(7)^-2, -1-E(7)^3, -1*E(7)-E(7)^2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^2-E(7)^-2, -1-E(7)^2, -1*E(7)-E(7)^-3, -1*E(7)-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 12, -2, -2, 0, 0, 0, 0, 0, 0, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^2+6*E(7)^-1, 3+3*E(7)+6*E(7)^3, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)+E(7)^2-2*E(7)^-3, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, E(7)-2*E(7)^2-E(7)^-3, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, 2+E(7)+E(7)^2+E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)^2+2*E(7)^-2, 3+3*E(7)^2+6*E(7)^-1, 3+6*E(7)+3*E(7)^-2, 3+6*E(7)^2+3*E(7)^3, 3+3*E(7)^-3+6*E(7)^-2, 3+6*E(7)^-3+3*E(7)^-1, 3+3*E(7)+6*E(7)^3, -2-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -4-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)-2*E(7)^2-E(7)^-3, -1*E(7)+E(7)^2-2*E(7)^-3, 1+E(7)+E(7)^2-E(7)^3+E(7)^-3+2*E(7)^-2, -1*E(7)-E(7)^-1, -2*E(7)-E(7)^2+E(7)^-3, 2+2*E(7)+2*E(7)^2+3*E(7)^3+2*E(7)^-3+E(7)^-2, 5*E(7)+2*E(7)^2+2*E(7)^3+2*E(7)^-3+E(7)^-2, -1*E(7)^2-E(7)^-2, -2+3*E(7)^2-E(7)^3-2*E(7)^-2, -5-5*E(7)-4*E(7)^2-3*E(7)^3-3*E(7)^-3-3*E(7)^-2, -1-E(7)-E(7)^2-2*E(7)^3-E(7)^-3-3*E(7)^-2, -2-E(7)+3*E(7)^3-2*E(7)^-3, -2-2*E(7)^2-E(7)^-3+3*E(7)^-2, -1+E(7)+E(7)^2-E(7)^3+4*E(7)^-3+E(7)^-2, 1+2*E(7)^2+2*E(7)^-2, 1+2*E(7)^3+2*E(7)^-3, 1+2*E(7)+2*E(7)^-1, 1-E(7)-E(7)^2-E(7)^-3, 2+E(7)+E(7)^2+E(7)^-3, -2*E(7)^-1, -2*E(7), -2*E(7)^2, -2*E(7), -2*E(7)^-2, -2*E(7)^-3, -2*E(7)^3, -2*E(7)^-1, -2*E(7)^3, -2*E(7)^-3, -2*E(7)^-2, -2*E(7)^2, -1*E(7)^-3-E(7)^-1, -1-E(7), -1*E(7)-E(7)^-2, -1-E(7)^3, -1*E(7)^2-E(7)^-1, -1-E(7)^3, -1*E(7)^-3-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^3-E(7)^-3, -1-E(7)^2, -1*E(7)^-3-E(7)^-2, -1*E(7)^3-E(7)^-2, -1*E(7)^3-E(7)^-2, -1-E(7)^-1, -1*E(7)^-2-E(7)^-1, -1*E(7)-E(7)^2, -1*E(7)-E(7)^3, -1*E(7)^2-E(7)^3, -1-E(7)^-3, -1*E(7)-E(7)^-1, -1-E(7)^-1, -1-E(7), -1-E(7)^-2, -1*E(7)-E(7)^3, -1*E(7)^-3-E(7)^-1, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-2, -1*E(7)^3-E(7)^-3, -1-E(7)^2, -1*E(7)-E(7)^2, -1*E(7)^2-E(7)^3, -1-E(7)^-3, -1*E(7)^-2-E(7)^-1, -1*E(7)^2-E(7)^-1, -1*E(7)-E(7)^-3, -1*E(7)^2-E(7)^-2, -1-E(7)^-2, -1*E(7)^3-E(7)^-1, -1*E(7)^3-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, 24, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(7)-6*E(7)^2-6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -4, -4, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, E(7)+E(7)^2+E(7)^-3, 3, -1-E(7)-E(7)^2-E(7)^-3, 3, 3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -4, -4, -4, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -4, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 3, 3, 3, -1-E(7)-E(7)^2-E(7)^-3, E(7)+E(7)^2+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, 24, 0, 0, 0, 0, 0, 0, 0, 0, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -4, -4, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 3, E(7)+E(7)^2+E(7)^-3, 3, 3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -4, -4, -4, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -4, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 3, 3, 3, E(7)+E(7)^2+E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, -24, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(7)-6*E(7)^2-6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -4, -4, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, E(7)+E(7)^2+E(7)^-3, 3, -1-E(7)-E(7)^2-E(7)^-3, 3, 3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, 6*E(7)+6*E(7)^2+6*E(7)^-3, 6*E(7)+6*E(7)^2+6*E(7)^-3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, 6*E(7)+6*E(7)^2+6*E(7)^-3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, 4, 4, 4, 4, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, 4, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, 4, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, -3, -3, -3, 1+E(7)+E(7)^2+E(7)^-3, -1*E(7)-E(7)^2-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, -24, 0, 0, 0, 0, 0, 0, 0, 0, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, 6+6*E(7)+6*E(7)^2+6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -6*E(7)-6*E(7)^2-6*E(7)^-3, -4, -4, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -4, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-2*E(7)-2*E(7)^2-2*E(7)^-3, -4, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -6-4*E(7)-4*E(7)^2-4*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, 4+2*E(7)+2*E(7)^2+2*E(7)^-3, -2+4*E(7)+4*E(7)^2+4*E(7)^-3, -1-E(7)-E(7)^2-E(7)^-3, 3, E(7)+E(7)^2+E(7)^-3, 3, 3, 6*E(7)+6*E(7)^2+6*E(7)^-3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, 6*E(7)+6*E(7)^2+6*E(7)^-3, -6-6*E(7)-6*E(7)^2-6*E(7)^-3, 6*E(7)+6*E(7)^2+6*E(7)^-3, 4, 4, 4, 4, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, 4, 6+4*E(7)+4*E(7)^2+4*E(7)^-3, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, 4, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, 2-4*E(7)-4*E(7)^2-4*E(7)^-3, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, -4-2*E(7)-2*E(7)^2-2*E(7)^-3, -2+2*E(7)+2*E(7)^2+2*E(7)^-3, -3, -3, -3, -1*E(7)-E(7)^2-E(7)^-3, 1+E(7)+E(7)^2+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, 24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^2-4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)^3+4*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)+4*E(7)^-1, -2*E(7)-2*E(7)^-1, 3, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^3-6*E(7)^-3, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^3-4*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^3+4*E(7)^-3, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^2+4*E(7)^-2, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, 24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)^3-4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)+4*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, -2*E(7)-2*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 3, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)-6*E(7)^-1, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)-4*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)+4*E(7)^-1, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)+4*E(7)^-1, -2*E(7)-2*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)^3+4*E(7)^-3, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, 24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)-4*E(7)^-1, -2*E(7)-2*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^2+4*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 3, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)^2-4*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2+4*E(7)^2+4*E(7)^-2, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)+4*E(7)^-1, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, -24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^2-4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)^3+4*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, 2+4*E(7)+4*E(7)^-1, -2*E(7)-2*E(7)^-1, 3, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 6+6*E(7)+6*E(7)^-1, 6+6*E(7)+6*E(7)^-1, 6+6*E(7)^2+6*E(7)^-2, 6+6*E(7)^2+6*E(7)^-2, 6+6*E(7)^3+6*E(7)^-3, 6+6*E(7)^3+6*E(7)^-3, -4+4*E(7)^2+4*E(7)^-2, -4+4*E(7)+4*E(7)^-1, -4+4*E(7)^3+4*E(7)^-3, 2-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 4+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2-4*E(7)^3-4*E(7)^-3, 6+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, -2-4*E(7)-4*E(7)^-1, -2-4*E(7)^3-4*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2-4*E(7)^2-4*E(7)^-2, -2-4*E(7)-4*E(7)^-1, -2-4*E(7)^2-4*E(7)^-2, 3+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 2+2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, -24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, 4-4*E(7)-4*E(7)^-1, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)^3-4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)+4*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, -2*E(7)-2*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, 2+4*E(7)^2+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 3, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, 3, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 6+6*E(7)^2+6*E(7)^-2, 6+6*E(7)^2+6*E(7)^-2, 6+6*E(7)^3+6*E(7)^-3, 6+6*E(7)^3+6*E(7)^-3, 6+6*E(7)+6*E(7)^-1, 6+6*E(7)+6*E(7)^-1, -4+4*E(7)^3+4*E(7)^-3, -4+4*E(7)^2+4*E(7)^-2, -4+4*E(7)+4*E(7)^-1, 4+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 6+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2-4*E(7)-4*E(7)^-1, 2-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, -2-4*E(7)^2-4*E(7)^-2, -2-4*E(7)-4*E(7)^-1, 2*E(7)+2*E(7)^-1, -2-4*E(7)^3-4*E(7)^-3, -2-4*E(7)^2-4*E(7)^-2, -2-4*E(7)^3-4*E(7)^-3, -3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, 2+2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 3+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [24, -24, 0, 0, 0, 0, 0, 0, 0, 0, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)-6*E(7)^-1, -6-6*E(7)^3-6*E(7)^-3, -6-6*E(7)^2-6*E(7)^-2, 4-4*E(7)^2-4*E(7)^-2, 4-4*E(7)^3-4*E(7)^-3, 4-4*E(7)-4*E(7)^-1, -2*E(7)-2*E(7)^-1, -4-2*E(7)^2+2*E(7)^3+2*E(7)^-3-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2+4*E(7)^3+4*E(7)^-3, -2+4*E(7)^2+2*E(7)^3+2*E(7)^-3+4*E(7)^-2, -2*E(7)-2*E(7)^-1, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^2+4*E(7)^-2, -6-2*E(7)^2-4*E(7)^3-4*E(7)^-3-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)^2+4*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2+4*E(7)+4*E(7)^-1, 2+4*E(7)^3+4*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 3, 3*E(7)^2+2*E(7)^3+2*E(7)^-3+3*E(7)^-2, 3, -3-E(7)^2-3*E(7)^3-3*E(7)^-3-E(7)^-2, -2-2*E(7)^2+E(7)^3+E(7)^-3-2*E(7)^-2, 6+6*E(7)^3+6*E(7)^-3, 6+6*E(7)^3+6*E(7)^-3, 6+6*E(7)+6*E(7)^-1, 6+6*E(7)+6*E(7)^-1, 6+6*E(7)^2+6*E(7)^-2, 6+6*E(7)^2+6*E(7)^-2, -4+4*E(7)+4*E(7)^-1, -4+4*E(7)^3+4*E(7)^-3, -4+4*E(7)^2+4*E(7)^-2, 6+2*E(7)^2+4*E(7)^3+4*E(7)^-3+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2-4*E(7)^2-2*E(7)^3-2*E(7)^-3-4*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2-4*E(7)^2-4*E(7)^-2, 4+2*E(7)^2-2*E(7)^3-2*E(7)^-3+2*E(7)^-2, -2-4*E(7)^3-4*E(7)^-3, -2-4*E(7)^2-4*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2-4*E(7)-4*E(7)^-1, -2-4*E(7)^3-4*E(7)^-3, -2-4*E(7)-4*E(7)^-1, 2+2*E(7)^2-E(7)^3-E(7)^-3+2*E(7)^-2, 3+E(7)^2+3*E(7)^3+3*E(7)^-3+E(7)^-2, -3*E(7)^2-2*E(7)^3-2*E(7)^-3-3*E(7)^-2, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_16464_bz);