# Group 16384.cw downloaded from the LMFDB on 06 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(285343994728385976596876783738663529795946882732611442963509245618610511848627084633539921935432875752139612281406532501890938016977875230947522860291891277924517400888576224058656663392984063,16384); a := GPC.1; b := GPC.3; c := GPC.4; d := GPC.7; e := GPC.9; f := GPC.12; GLZq := Group([[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(1,32), ZmodnZObj(8,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(3,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(3,32)]],[[ZmodnZObj(19,32), ZmodnZObj(26,32)], [ZmodnZObj(10,32), ZmodnZObj(9,32)]],[[ZmodnZObj(1,32), ZmodnZObj(4,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(9,32)]],[[ZmodnZObj(11,32), ZmodnZObj(9,32)], [ZmodnZObj(2,32), ZmodnZObj(9,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(1,32), ZmodnZObj(2,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(17,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(16,32), ZmodnZObj(17,32)]],[[ZmodnZObj(13,32), ZmodnZObj(24,32)], [ZmodnZObj(24,32), ZmodnZObj(21,32)]],[[ZmodnZObj(1,32), ZmodnZObj(24,32)], [ZmodnZObj(8,32), ZmodnZObj(25,32)]]]); # Booleans booleans_16384_cw := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true);