# Group 16.7 downloaded from the LMFDB on 12 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(2499614,16); a := GPC.1; b := GPC.2; GPerm := Group( (1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) ); GLZ := Group([[[-1, 1, 1, 0], [0, 0, 0, -1], [0, 1, 1, 1], [0, -1, 0, 0]], [[0, 1, 0, 1], [0, 1, 0, 0], [0, 0, -1, 0], [1, -1, 0, 0]]]); GLFp := Group([[[ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ]], [[ Z(7)^5, Z(7)^4 ], [ Z(7)^3, Z(7)^5 ]]]); # Booleans booleans_16_7 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_16_7:=rec(); chartbl_16_7.IsFinite:= true; chartbl_16_7.UnderlyingCharacteristic:= 0; chartbl_16_7.UnderlyingGroup:= GPC; chartbl_16_7.Size:= 16; chartbl_16_7.InfoText:= "Character table for group 16.7 downloaded from the LMFDB."; chartbl_16_7.Identifier:= " D8 "; chartbl_16_7.NrConjugacyClasses:= 7; chartbl_16_7.ConjugacyClasses:= [ of ..., f4, f1, f1*f2, f3, f2, f2*f4]; chartbl_16_7.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7]; chartbl_16_7.ComputedPowerMaps:= [ , [1, 1, 1, 1, 2, 5, 5]]; chartbl_16_7.SizesCentralizers:= [16, 16, 4, 4, 8, 8, 8]; chartbl_16_7.ClassNames:= ["1A", "2A", "2B", "2C", "4A", "8A1", "8A3"]; chartbl_16_7.OrderClassRepresentatives:= [1, 2, 2, 2, 4, 8, 8]; chartbl_16_7.Irr:= [[1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, 1, 1, 1], [1, 1, -1, 1, 1, -1, -1], [1, 1, 1, -1, 1, -1, -1], [2, 2, 0, 0, -2, 0, 0], [2, -2, 0, 0, 0, -1*E(8)-E(8)^-1, E(8)+E(8)^-1], [2, -2, 0, 0, 0, E(8)+E(8)^-1, -1*E(8)-E(8)^-1]]; ConvertToLibraryCharacterTableNC(chartbl_16_7);