/* Group 15840.e downloaded from the LMFDB on 21 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 51 | (1,2,6,15,30,40,45,29,21,10,23,19,5,9,18,32,39,42,47,13,27,25,36,35)(3,7,16,28,31,41,46,38,34,14,26,22,11,20,17,33,43,44,48,24,37,4,12,8)(49,50,51), (1,3,5,11)(2,7,9,20)(4,10,14,25)(6,16,18,17)(8,19,22,35)(12,23,26,36)(13,24,29,38)(15,28,32,33)(21,34,27,37)(30,31,39,43)(40,41,42,44)(45,46,47,48)(49,51,50), (49,50,51), (1,4,13,28,39,44,2,8,21,26,5,14,29,33,30,41,9,22,27,12)(3,10,24,32,43,40,7,19,34,36,11,25,38,15,31,42,20,35,37,23)(6,17,18,16)(45,46,47,48)(49,50,51), (1,5)(2,9)(3,11)(4,14)(6,18)(7,20)(8,22)(10,25)(12,26)(13,29)(15,32)(16,17)(19,35)(21,27)(23,36)(24,38)(28,33)(30,39)(31,43)(34,37)(40,42)(41,44)(45,47)(46,48)(49,50,51) >; GLFp := MatrixGroup< 4, GF(11) | [[1, 1, 7, 6, 4, 7, 0, 7, 8, 3, 4, 10, 8, 8, 7, 10], [9, 3, 10, 7, 1, 5, 0, 10, 2, 9, 7, 8, 2, 2, 10, 3], [9, 6, 9, 3, 8, 2, 10, 9, 4, 2, 3, 5, 3, 6, 6, 8], [4, 9, 6, 6, 9, 7, 4, 4, 5, 7, 1, 2, 0, 4, 0, 3], [10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_15840_e := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GLFp; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(4, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1])>,< 2, 1, Matrix(4, [10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10])>,< 2, 110, Matrix(4, [1, 0, 3, 0, 2, 10, 0, 8, 0, 0, 10, 0, 0, 0, 2, 1])>,< 2, 132, Matrix(4, [7, 6, 7, 0, 2, 10, 9, 7, 4, 9, 1, 5, 1, 4, 9, 4])>,< 3, 1, Matrix(4, [8, 3, 10, 7, 1, 4, 0, 10, 2, 9, 6, 8, 2, 2, 10, 2])>,< 3, 1, Matrix(4, [2, 8, 1, 4, 10, 6, 0, 1, 9, 2, 4, 3, 9, 9, 1, 8])>,< 3, 110, Matrix(4, [3, 10, 8, 6, 7, 0, 4, 8, 3, 1, 10, 1, 6, 3, 4, 7])>,< 3, 110, Matrix(4, [10, 0, 0, 3, 4, 1, 5, 10, 0, 0, 1, 0, 7, 0, 4, 0])>,< 3, 110, Matrix(4, [0, 0, 1, 8, 4, 1, 6, 0, 0, 0, 1, 0, 4, 0, 4, 10])>,< 4, 1, Matrix(4, [10, 10, 4, 5, 7, 4, 0, 4, 3, 8, 7, 1, 3, 3, 4, 1])>,< 4, 1, Matrix(4, [1, 1, 7, 6, 4, 7, 0, 7, 8, 3, 4, 10, 8, 8, 7, 10])>,< 4, 110, Matrix(4, [3, 4, 9, 4, 1, 7, 10, 9, 3, 4, 4, 7, 9, 3, 10, 8])>,< 4, 132, Matrix(4, [6, 0, 10, 0, 8, 5, 0, 1, 4, 0, 5, 0, 0, 7, 8, 6])>,< 5, 132, Matrix(4, [10, 1, 3, 0, 4, 5, 7, 3, 8, 7, 9, 10, 2, 8, 7, 4])>,< 5, 132, Matrix(4, [7, 3, 9, 0, 1, 3, 10, 9, 2, 10, 4, 8, 6, 2, 10, 0])>,< 6, 1, Matrix(4, [9, 3, 10, 7, 1, 5, 0, 10, 2, 9, 7, 8, 2, 2, 10, 3])>,< 6, 1, Matrix(4, [3, 8, 1, 4, 10, 7, 0, 1, 9, 2, 5, 3, 9, 9, 1, 9])>,< 6, 110, Matrix(4, [4, 1, 5, 1, 3, 5, 8, 5, 9, 1, 7, 10, 5, 9, 8, 8])>,< 6, 110, Matrix(4, [0, 0, 4, 8, 6, 10, 6, 8, 0, 0, 10, 0, 4, 0, 6, 10])>,< 6, 110, Matrix(4, [10, 0, 3, 3, 6, 10, 5, 7, 0, 0, 10, 0, 7, 0, 6, 0])>,< 6, 110, Matrix(4, [0, 0, 7, 3, 5, 1, 5, 3, 0, 0, 1, 0, 7, 0, 5, 1])>,< 6, 110, Matrix(4, [1, 0, 8, 8, 5, 1, 6, 4, 0, 0, 1, 0, 4, 0, 5, 0])>,< 6, 110, Matrix(4, [0, 0, 4, 6, 6, 2, 1, 0, 0, 0, 7, 7, 5, 6, 8, 2])>,< 6, 110, Matrix(4, [0, 3, 10, 0, 0, 10, 4, 6, 9, 0, 0, 3, 3, 10, 8, 1])>,< 6, 110, Matrix(4, [0, 2, 0, 4, 0, 9, 0, 2, 9, 2, 7, 8, 9, 9, 2, 6])>,< 6, 110, Matrix(4, [0, 9, 0, 7, 0, 2, 0, 9, 2, 9, 4, 3, 2, 2, 9, 5])>,< 6, 110, Matrix(4, [6, 7, 9, 10, 3, 2, 7, 9, 3, 5, 5, 3, 4, 5, 7, 8])>,< 6, 110, Matrix(4, [8, 3, 2, 1, 7, 5, 4, 2, 6, 6, 2, 7, 7, 8, 3, 6])>,< 6, 132, Matrix(4, [5, 7, 2, 0, 6, 3, 1, 2, 9, 1, 2, 2, 5, 9, 8, 1])>,< 6, 132, Matrix(4, [10, 9, 2, 0, 3, 9, 1, 2, 9, 1, 8, 4, 5, 9, 5, 6])>,< 8, 110, Matrix(4, [8, 5, 3, 5, 4, 2, 7, 3, 1, 5, 1, 6, 3, 1, 7, 6])>,< 8, 110, Matrix(4, [5, 5, 3, 5, 4, 10, 7, 3, 1, 5, 9, 6, 3, 1, 7, 3])>,< 8, 110, Matrix(4, [8, 8, 2, 9, 5, 4, 0, 8, 3, 10, 5, 5, 1, 10, 4, 5])>,< 8, 110, Matrix(4, [5, 5, 3, 2, 4, 5, 0, 9, 1, 1, 4, 8, 10, 8, 5, 8])>,< 10, 132, Matrix(4, [8, 2, 4, 2, 9, 10, 2, 4, 4, 2, 5, 9, 5, 4, 2, 7])>,< 10, 132, Matrix(4, [6, 8, 5, 8, 3, 3, 8, 5, 5, 8, 5, 3, 9, 5, 8, 2])>,< 10, 132, Matrix(4, [2, 10, 8, 0, 7, 7, 4, 8, 3, 4, 3, 1, 9, 3, 4, 8])>,< 10, 132, Matrix(4, [3, 10, 8, 0, 7, 8, 4, 8, 3, 4, 4, 1, 9, 3, 4, 9])>,< 10, 132, Matrix(4, [3, 9, 5, 0, 3, 2, 8, 5, 6, 8, 5, 2, 7, 6, 8, 4])>,< 10, 132, Matrix(4, [7, 9, 5, 0, 3, 6, 8, 5, 6, 8, 9, 2, 7, 6, 8, 8])>,< 11, 120, Matrix(4, [4, 3, 5, 1, 3, 6, 8, 5, 0, 4, 7, 8, 4, 0, 8, 9])>,< 12, 1, Matrix(4, [8, 5, 2, 8, 9, 5, 0, 2, 7, 4, 1, 6, 7, 7, 2, 9])>,< 12, 1, Matrix(4, [9, 6, 9, 3, 2, 1, 0, 9, 4, 7, 5, 5, 4, 4, 9, 8])>,< 12, 1, Matrix(4, [2, 5, 2, 8, 9, 10, 0, 2, 7, 4, 6, 6, 7, 7, 2, 3])>,< 12, 1, Matrix(4, [3, 6, 9, 3, 2, 6, 0, 9, 4, 7, 10, 5, 4, 4, 9, 2])>,< 12, 110, Matrix(4, [0, 0, 4, 8, 2, 7, 0, 0, 9, 4, 3, 1, 7, 5, 6, 1])>,< 12, 110, Matrix(4, [0, 0, 7, 3, 9, 4, 0, 0, 2, 7, 8, 10, 4, 6, 5, 10])>,< 12, 110, Matrix(4, [1, 7, 8, 2, 2, 4, 5, 1, 5, 2, 8, 3, 10, 9, 1, 9])>,< 12, 110, Matrix(4, [9, 3, 10, 9, 1, 8, 6, 3, 2, 9, 4, 7, 1, 6, 2, 1])>,< 12, 110, Matrix(4, [1, 2, 7, 6, 2, 5, 9, 7, 0, 0, 1, 9, 0, 0, 9, 5])>,< 12, 110, Matrix(4, [6, 2, 7, 6, 2, 10, 9, 7, 0, 0, 6, 9, 0, 0, 9, 10])>,< 12, 110, Matrix(4, [0, 1, 6, 0, 2, 7, 9, 6, 8, 0, 0, 8, 10, 1, 7, 10])>,< 12, 110, Matrix(4, [7, 10, 1, 0, 5, 0, 3, 2, 7, 0, 10, 3, 10, 8, 2, 0])>,< 12, 110, Matrix(4, [1, 3, 6, 0, 4, 0, 9, 6, 1, 0, 4, 10, 10, 8, 9, 0])>,< 12, 110, Matrix(4, [0, 8, 2, 0, 9, 1, 3, 1, 8, 0, 0, 1, 10, 7, 6, 4])>,< 12, 110, Matrix(4, [1, 6, 2, 3, 4, 3, 8, 3, 2, 1, 5, 0, 4, 4, 4, 8])>,< 12, 110, Matrix(4, [8, 0, 8, 8, 4, 5, 3, 9, 7, 10, 3, 6, 7, 9, 4, 1])>,< 12, 110, Matrix(4, [3, 0, 3, 3, 7, 6, 8, 2, 4, 1, 8, 5, 4, 2, 7, 10])>,< 12, 110, Matrix(4, [10, 5, 9, 8, 7, 8, 3, 8, 9, 10, 6, 0, 7, 7, 7, 3])>,< 12, 132, Matrix(4, [9, 2, 1, 10, 6, 9, 9, 2, 2, 9, 7, 9, 9, 9, 2, 8])>,< 12, 132, Matrix(4, [3, 2, 2, 10, 9, 4, 9, 1, 9, 9, 2, 9, 9, 2, 5, 2])>,< 15, 132, Matrix(4, [4, 4, 10, 3, 5, 6, 6, 10, 3, 2, 4, 6, 1, 3, 2, 1])>,< 15, 132, Matrix(4, [1, 6, 1, 8, 2, 4, 5, 1, 8, 9, 6, 4, 10, 8, 5, 4])>,< 15, 132, Matrix(4, [3, 3, 0, 5, 1, 10, 9, 0, 7, 6, 4, 4, 4, 7, 5, 2])>,< 15, 132, Matrix(4, [2, 4, 0, 6, 5, 4, 2, 0, 4, 5, 10, 3, 7, 4, 1, 3])>,< 20, 132, Matrix(4, [10, 9, 8, 2, 9, 0, 0, 4, 2, 1, 10, 1, 10, 7, 10, 2])>,< 20, 132, Matrix(4, [2, 1, 7, 9, 10, 10, 0, 3, 4, 10, 0, 9, 1, 9, 9, 10])>,< 20, 132, Matrix(4, [5, 2, 3, 10, 4, 1, 0, 2, 4, 5, 7, 6, 6, 8, 9, 9])>,< 20, 132, Matrix(4, [9, 6, 9, 1, 9, 7, 0, 8, 3, 6, 1, 2, 5, 7, 4, 5])>,< 20, 132, Matrix(4, [7, 9, 1, 10, 4, 10, 0, 4, 1, 5, 5, 2, 6, 0, 9, 0])>,< 20, 132, Matrix(4, [6, 5, 0, 8, 3, 1, 0, 4, 4, 4, 8, 6, 7, 10, 7, 7])>,< 20, 132, Matrix(4, [7, 6, 7, 3, 7, 8, 0, 0, 1, 7, 1, 5, 4, 7, 3, 6])>,< 20, 132, Matrix(4, [0, 2, 7, 1, 9, 5, 0, 10, 0, 6, 10, 9, 5, 10, 4, 7])>,< 22, 120, Matrix(4, [3, 4, 3, 5, 4, 2, 7, 3, 0, 9, 7, 7, 9, 0, 7, 6])>,< 24, 110, Matrix(4, [0, 0, 0, 3, 0, 10, 9, 6, 0, 0, 1, 4, 4, 6, 10, 8])>,< 24, 110, Matrix(4, [3, 7, 6, 3, 1, 10, 9, 0, 6, 0, 1, 0, 4, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 0, 0, 8, 0, 1, 2, 5, 0, 0, 10, 7, 7, 5, 1, 3])>,< 24, 110, Matrix(4, [8, 4, 5, 8, 10, 1, 2, 0, 5, 0, 10, 0, 7, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 1, 9, 3, 1, 2, 10, 9, 0, 0, 0, 10, 0, 0, 10, 2])>,< 24, 110, Matrix(4, [0, 10, 2, 8, 10, 9, 1, 2, 0, 0, 0, 1, 0, 0, 1, 9])>,< 24, 110, Matrix(4, [0, 0, 8, 10, 7, 5, 4, 8, 4, 6, 0, 0, 9, 4, 4, 5])>,< 24, 110, Matrix(4, [0, 0, 3, 1, 4, 6, 7, 3, 7, 5, 0, 0, 2, 7, 7, 6])>,< 24, 110, Matrix(4, [0, 0, 0, 3, 0, 6, 9, 8, 0, 4, 4, 10, 4, 2, 1, 8])>,< 24, 110, Matrix(4, [3, 1, 8, 3, 10, 7, 9, 0, 2, 4, 5, 0, 4, 0, 0, 0])>,< 24, 110, Matrix(4, [8, 10, 3, 8, 1, 4, 2, 0, 9, 7, 6, 0, 7, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 0, 0, 8, 0, 5, 2, 3, 0, 7, 7, 1, 7, 9, 10, 3])>,< 24, 110, Matrix(4, [0, 1, 0, 4, 0, 9, 0, 2, 10, 2, 7, 7, 9, 8, 2, 6])>,< 24, 110, Matrix(4, [0, 1, 0, 6, 0, 8, 0, 3, 10, 3, 5, 10, 8, 6, 3, 9])>,< 24, 110, Matrix(4, [0, 7, 8, 5, 4, 3, 0, 0, 0, 8, 6, 9, 3, 6, 1, 2])>,< 24, 110, Matrix(4, [0, 10, 0, 7, 0, 2, 0, 9, 1, 9, 4, 4, 2, 3, 9, 5])>,< 24, 110, Matrix(4, [0, 0, 0, 3, 0, 1, 2, 1, 0, 0, 10, 6, 4, 2, 8, 1])>,< 24, 110, Matrix(4, [10, 5, 1, 3, 3, 1, 2, 0, 2, 0, 10, 0, 4, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 1, 1, 0, 1, 7, 7, 4, 0, 0, 0, 10, 0, 4, 3, 7])>,< 24, 110, Matrix(4, [0, 0, 3, 1, 10, 4, 3, 8, 0, 0, 0, 1, 0, 4, 4, 4])>,< 24, 110, Matrix(4, [0, 0, 8, 10, 1, 7, 8, 3, 0, 0, 0, 10, 0, 7, 7, 7])>,< 24, 110, Matrix(4, [0, 10, 10, 0, 10, 4, 4, 7, 0, 0, 0, 1, 0, 7, 8, 4])>,< 24, 110, Matrix(4, [1, 6, 10, 8, 8, 10, 9, 0, 9, 0, 1, 0, 7, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 0, 0, 8, 0, 10, 9, 10, 0, 0, 1, 5, 7, 9, 3, 10])>,< 24, 110, Matrix(4, [0, 0, 0, 3, 0, 5, 2, 10, 0, 7, 7, 0, 4, 6, 6, 1])>,< 24, 110, Matrix(4, [10, 0, 10, 3, 5, 4, 2, 0, 6, 7, 6, 0, 4, 0, 0, 0])>,< 24, 110, Matrix(4, [4, 10, 1, 5, 9, 0, 9, 8, 5, 3, 5, 0, 0, 7, 0, 7])>,< 24, 110, Matrix(4, [4, 0, 8, 5, 0, 6, 9, 1, 7, 3, 0, 1, 0, 5, 2, 7])>,< 24, 110, Matrix(4, [7, 0, 3, 6, 0, 5, 2, 10, 4, 8, 0, 10, 0, 6, 9, 4])>,< 24, 110, Matrix(4, [7, 1, 10, 6, 2, 0, 2, 3, 6, 8, 6, 0, 0, 4, 0, 4])>,< 24, 110, Matrix(4, [1, 0, 1, 8, 6, 7, 9, 0, 5, 4, 5, 0, 7, 0, 0, 0])>,< 24, 110, Matrix(4, [0, 0, 0, 8, 0, 6, 9, 1, 0, 4, 4, 0, 7, 5, 5, 10])>,< 30, 132, Matrix(4, [4, 1, 9, 10, 10, 6, 4, 10, 7, 7, 4, 2, 7, 3, 10, 0])>,< 30, 132, Matrix(4, [0, 2, 1, 1, 10, 4, 7, 2, 8, 4, 6, 1, 4, 4, 10, 4])>,< 30, 132, Matrix(4, [9, 6, 4, 4, 9, 0, 1, 7, 1, 8, 7, 3, 1, 0, 7, 2])>,< 30, 132, Matrix(4, [2, 3, 4, 7, 7, 7, 10, 7, 0, 3, 0, 6, 10, 10, 9, 9])>,< 30, 132, Matrix(4, [9, 3, 1, 3, 1, 5, 7, 1, 1, 3, 2, 0, 6, 1, 0, 2])>,< 30, 132, Matrix(4, [9, 0, 1, 3, 0, 9, 7, 1, 1, 3, 6, 8, 6, 1, 10, 2])>,< 30, 132, Matrix(4, [6, 0, 1, 9, 0, 6, 9, 1, 5, 8, 9, 7, 2, 5, 6, 0])>,< 30, 132, Matrix(4, [0, 4, 1, 9, 5, 2, 9, 1, 5, 8, 5, 0, 2, 5, 0, 5])>,< 30, 132, Matrix(4, [6, 10, 5, 8, 7, 0, 7, 5, 4, 0, 0, 9, 9, 4, 3, 1])>,< 30, 132, Matrix(4, [10, 2, 5, 8, 8, 0, 7, 5, 4, 0, 0, 1, 9, 4, 4, 5])>,< 30, 132, Matrix(4, [9, 8, 2, 2, 10, 2, 9, 2, 3, 10, 3, 10, 0, 3, 7, 9])>,< 30, 132, Matrix(4, [2, 1, 2, 2, 4, 8, 9, 2, 3, 10, 9, 3, 0, 3, 1, 2])>,< 33, 120, Matrix(4, [10, 0, 4, 5, 1, 8, 6, 7, 9, 1, 8, 6, 5, 6, 0, 5])>,< 33, 120, Matrix(4, [5, 6, 4, 6, 0, 8, 5, 7, 5, 10, 8, 0, 6, 2, 1, 10])>,< 44, 120, Matrix(4, [3, 10, 8, 6, 0, 5, 0, 6, 7, 3, 2, 8, 8, 9, 3, 1])>,< 44, 120, Matrix(4, [1, 8, 5, 5, 3, 2, 0, 3, 2, 8, 5, 10, 3, 4, 0, 3])>,< 60, 132, Matrix(4, [8, 8, 9, 0, 5, 1, 5, 3, 6, 8, 2, 7, 4, 8, 7, 9])>,< 60, 132, Matrix(4, [9, 7, 8, 0, 7, 2, 6, 2, 3, 3, 1, 8, 7, 5, 5, 8])>,< 60, 132, Matrix(4, [7, 4, 5, 8, 7, 9, 9, 3, 9, 3, 9, 1, 1, 6, 8, 1])>,< 60, 132, Matrix(4, [1, 1, 8, 3, 8, 9, 2, 6, 5, 8, 9, 4, 10, 2, 7, 7])>,< 60, 132, Matrix(4, [9, 8, 0, 10, 1, 2, 9, 9, 8, 4, 1, 8, 0, 5, 3, 6])>,< 60, 132, Matrix(4, [6, 8, 2, 1, 3, 1, 2, 0, 6, 7, 2, 8, 0, 3, 1, 9])>,< 60, 132, Matrix(4, [7, 6, 6, 10, 8, 10, 5, 0, 1, 2, 6, 9, 10, 3, 4, 1])>,< 60, 132, Matrix(4, [1, 9, 0, 1, 4, 6, 6, 5, 8, 9, 10, 6, 1, 10, 8, 7])>,< 60, 132, Matrix(4, [10, 1, 5, 2, 6, 5, 7, 3, 5, 9, 10, 10, 5, 2, 0, 3])>,< 60, 132, Matrix(4, [8, 1, 3, 2, 0, 1, 7, 5, 2, 9, 6, 10, 5, 5, 5, 1])>,< 60, 132, Matrix(4, [4, 2, 7, 9, 4, 5, 8, 0, 0, 5, 5, 9, 0, 6, 6, 10])>,< 60, 132, Matrix(4, [1, 2, 0, 9, 5, 6, 8, 7, 6, 5, 6, 9, 0, 0, 7, 7])>,< 60, 132, Matrix(4, [6, 7, 1, 5, 2, 2, 7, 3, 6, 5, 0, 4, 9, 9, 3, 9])>,< 60, 132, Matrix(4, [2, 7, 3, 5, 8, 0, 7, 1, 9, 5, 9, 4, 9, 6, 9, 5])>,< 60, 132, Matrix(4, [4, 4, 3, 10, 2, 10, 8, 10, 0, 0, 4, 7, 5, 5, 10, 6])>,< 60, 132, Matrix(4, [5, 4, 10, 10, 1, 7, 8, 3, 5, 0, 1, 7, 5, 0, 9, 7])>,< 66, 120, Matrix(4, [5, 2, 6, 8, 7, 6, 8, 2, 0, 2, 9, 1, 6, 4, 10, 4])>,< 66, 120, Matrix(4, [4, 1, 9, 3, 10, 9, 3, 5, 7, 9, 6, 2, 5, 0, 7, 5])>,< 132, 120, Matrix(4, [0, 0, 4, 6, 3, 1, 2, 0, 2, 8, 8, 3, 5, 6, 3, 3])>,< 132, 120, Matrix(4, [0, 1, 0, 9, 8, 5, 6, 6, 7, 5, 8, 0, 5, 10, 2, 10])>,< 132, 120, Matrix(4, [0, 2, 8, 10, 6, 0, 8, 9, 3, 10, 0, 7, 8, 4, 7, 10])>,< 132, 120, Matrix(4, [0, 0, 7, 5, 8, 10, 9, 0, 9, 3, 3, 8, 6, 5, 8, 8])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,K.1^-1,1,K.1^-1,K.1^-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,K.1,1,K.1,K.1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,1,1,1,1,K.1,K.1^-1,K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,K.1,1,-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,1,1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1,K.1,-1,-1*K.1,-1,-1*K.1^-1,1,K.1^-1,K.1^-1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1,-1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,1,1,1,1,K.1^-1,K.1,K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,1,K.1^-1,1,-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,1,1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1,K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,1,K.1,K.1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1,-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,K.1^-1,K.1,1,K.1^-1,K.1,-1,-1,1,-1,1,1,K.1,K.1^-1,K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,1,-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1,1,-1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,K.1,1,-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1,1,K.1,1,K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,K.1,K.1^-1,1,K.1,K.1^-1,-1,-1,1,-1,1,1,K.1^-1,K.1,K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,1,-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1,1,-1,1,1,1,1,1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,1,K.1^-1,1,-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,1,-1*K.1^-1,1,K.1^-1,1,K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,K.1^-1,K.1,1,K.1^-1,K.1,1,1,1,-1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,K.1,K.1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,K.1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,K.1,K.1^-1,1,K.1,K.1^-1,1,1,1,-1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1,K.1,K.1^-1,K.1,1,1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, 10, -2, 0, 10, 10, 1, 1, 1, 10, 10, -2, 0, 0, 0, 10, 10, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, -2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 10, 10, 10, 10, 1, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, 2, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 2, 0, 10, 10, -2, -2, -2, 10, 10, 2, 0, 0, 0, 10, 10, -2, 2, 2, 2, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 10, 10, 10, 10, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, -2, 0, 10, 10, -2, -2, -2, -10, -10, 2, 0, 0, 0, 10, 10, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -10, -10, -10, -10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, -2, 0, 10, 10, 1, 1, 1, 10, 10, -2, 0, 0, 0, 10, 10, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, -2, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, 10, 10, 10, 10, 1, 1, 1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 1, -2, -2, 1, 1, 1, 1, 1, 1, 1, 1, -2, -2, 1, -2, 1, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 2, 0, 10, 10, 1, 1, 1, -10, -10, -2, 0, 0, 0, 10, 10, 1, -1, -1, -1, 2, -1, 1, 1, -1, -1, 2, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, -1, -10, -10, -10, -10, -1, 1, 1, -1, -1, -2, -1, 1, -1, 1, 1, 1, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 1, 2, -2, 1, 1, -1, -1, -1, 1, 1, -1, -2, -2, -1, -2, -1, 2, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, 10, 2, 0, 10, 10, 1, 1, 1, -10, -10, -2, 0, 0, 0, 10, 10, 1, -1, -1, -1, 2, -1, 1, 1, -1, -1, 2, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, -1, -10, -10, -10, -10, -1, 1, 1, -1, -1, -2, -1, 1, -1, 1, 1, 1, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, -1, -2, 2, -1, -1, 1, 1, 1, -1, -1, 1, 2, 2, 1, 2, 1, -2, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,10,10,1,1,1,10,10,2,0,0,0,10,10,1,-1,-1,-1,2,-1,1,1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,10,10,10,10,1,-1,-1,1,1,2,1,-1,1,-1,-1,-1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1-K.1^-1,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,10,10,1,1,1,10,10,2,0,0,0,10,10,1,-1,-1,-1,2,-1,1,1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,10,10,10,10,1,-1,-1,1,1,2,1,-1,1,-1,-1,-1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,10,10,1,1,1,-10,-10,2,0,0,0,10,10,1,1,1,1,-2,1,1,1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10,-10,-10,-10,-1,-1,-1,-1,-1,2,-1,-1,-1,-1,-1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1-K.1^-1,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,10,10,1,1,1,-10,-10,2,0,0,0,10,10,1,1,1,1,-2,1,1,1,1,1,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10,-10,-10,-10,-1,-1,-1,-1,-1,2,-1,-1,-1,-1,-1,-1,-1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1^-1,10*K.1,1,K.1^-1,K.1,10,10,-2,0,0,0,10*K.1,10*K.1^-1,K.1,K.1^-1,1,K.1^-1,-2*K.1^-1,K.1,K.1^-1,1,1,K.1,-2*K.1,0,0,2,2,2,2,0,0,0,0,0,0,-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,1,K.1,K.1^-1,K.1^-1,K.1,-2*K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2*K.1,-1*K.1^-1,2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,2*K.1^-1,2*K.1^-1,-1,2*K.1,-1,2*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1,10*K.1^-1,1,K.1,K.1^-1,10,10,-2,0,0,0,10*K.1^-1,10*K.1,K.1^-1,K.1,1,K.1,-2*K.1,K.1^-1,K.1,1,1,K.1^-1,-2*K.1^-1,0,0,2,2,2,2,0,0,0,0,0,0,-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,-2*K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2*K.1^-1,-1*K.1,2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,2*K.1,2*K.1,-1,2*K.1^-1,-1,2*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1^-1,10*K.1,-2,-2*K.1^-1,-2*K.1,10,10,2,0,0,0,10*K.1,10*K.1^-1,-2*K.1,2*K.1^-1,2,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2,2,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,-2,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,2,2*K.1,2,-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1,10*K.1^-1,-2,-2*K.1,-2*K.1^-1,10,10,2,0,0,0,10*K.1^-1,10*K.1,-2*K.1^-1,2*K.1,2,2*K.1,2*K.1,2*K.1^-1,-2*K.1,-2,2,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,-2,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,2,2*K.1^-1,2,-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1^-1,10*K.1,-2,-2*K.1^-1,-2*K.1,-10,-10,2,0,0,0,10*K.1,10*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2,-2,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1,-10*K.1^-1,-10*K.1^-1,-10*K.1,2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2,2*K.1,2,2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1,10*K.1^-1,-2,-2*K.1,-2*K.1^-1,-10,-10,2,0,0,0,10*K.1^-1,10*K.1,-2*K.1^-1,-2*K.1,-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2,-2,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1^-1,-10*K.1,-10*K.1,-10*K.1^-1,2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2,2*K.1^-1,2,2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1^-1,10*K.1,1,K.1^-1,K.1,10,10,-2,0,0,0,10*K.1,10*K.1^-1,K.1,K.1^-1,1,K.1^-1,-2*K.1^-1,K.1,K.1^-1,1,1,K.1,-2*K.1,0,0,-2,-2,-2,-2,0,0,0,0,0,0,-1,10*K.1,10*K.1^-1,10*K.1^-1,10*K.1,1,K.1,K.1^-1,K.1^-1,K.1,-2*K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1,1,1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2*K.1,K.1^-1,-2*K.1^-1,-2*K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,-2*K.1^-1,-2*K.1^-1,1,-2*K.1,1,-2*K.1,1,K.1^-1,1,K.1^-1,K.1^-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,-2*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,-2,0,10*K.1,10*K.1^-1,1,K.1,K.1^-1,10,10,-2,0,0,0,10*K.1^-1,10*K.1,K.1^-1,K.1,1,K.1,-2*K.1,K.1^-1,K.1,1,1,K.1^-1,-2*K.1^-1,0,0,-2,-2,-2,-2,0,0,0,0,0,0,-1,10*K.1^-1,10*K.1,10*K.1,10*K.1^-1,1,K.1^-1,K.1,K.1,K.1^-1,-2*K.1,K.1,K.1,K.1^-1,1,K.1^-1,1,1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2*K.1^-1,K.1,-2*K.1,-2*K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-2*K.1,-2*K.1,1,-2*K.1^-1,1,-2*K.1^-1,1,K.1,1,K.1,K.1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,-2*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1^-1,10*K.1,1,K.1^-1,K.1,-10,-10,-2,0,0,0,10*K.1,10*K.1^-1,K.1,-1*K.1^-1,-1,-1*K.1^-1,2*K.1^-1,-1*K.1,K.1^-1,1,-1,-1*K.1,2*K.1,0,0,-2,2,-2,2,0,0,0,0,0,0,-1,-10*K.1,-10*K.1^-1,-10*K.1^-1,-10*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-2*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,K.1,1,-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2*K.1,K.1^-1,2*K.1^-1,-2*K.1,K.1,K.1^-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-2*K.1^-1,-2*K.1^-1,-1,-2*K.1,-1,2*K.1,-1,-1*K.1^-1,1,K.1^-1,K.1^-1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1,10*K.1^-1,1,K.1,K.1^-1,-10,-10,-2,0,0,0,10*K.1^-1,10*K.1,K.1^-1,-1*K.1,-1,-1*K.1,2*K.1,-1*K.1^-1,K.1,1,-1,-1*K.1^-1,2*K.1^-1,0,0,-2,2,-2,2,0,0,0,0,0,0,-1,-10*K.1^-1,-10*K.1,-10*K.1,-10*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-2*K.1,-1*K.1,K.1,-1*K.1^-1,1,K.1^-1,1,-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,2*K.1^-1,K.1,2*K.1,-2*K.1^-1,K.1^-1,K.1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-2*K.1,-2*K.1,-1,-2*K.1^-1,-1,2*K.1^-1,-1,-1*K.1,1,K.1,K.1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1^-1,10*K.1,1,K.1^-1,K.1,-10,-10,-2,0,0,0,10*K.1,10*K.1^-1,K.1,-1*K.1^-1,-1,-1*K.1^-1,2*K.1^-1,-1*K.1,K.1^-1,1,-1,-1*K.1,2*K.1,0,0,2,-2,2,-2,0,0,0,0,0,0,-1,-10*K.1,-10*K.1^-1,-10*K.1^-1,-10*K.1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-2*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,1,K.1,1,-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2*K.1,-1*K.1^-1,-2*K.1^-1,2*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1,2*K.1^-1,2*K.1^-1,1,2*K.1,1,-2*K.1,1,K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,-2*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,2,0,10*K.1,10*K.1^-1,1,K.1,K.1^-1,-10,-10,-2,0,0,0,10*K.1^-1,10*K.1,K.1^-1,-1*K.1,-1,-1*K.1,2*K.1,-1*K.1^-1,K.1,1,-1,-1*K.1^-1,2*K.1^-1,0,0,2,-2,2,-2,0,0,0,0,0,0,-1,-10*K.1^-1,-10*K.1,-10*K.1,-10*K.1^-1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-2*K.1,-1*K.1,K.1,-1*K.1^-1,1,K.1^-1,1,-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-2*K.1^-1,-1*K.1,-2*K.1,2*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,2*K.1,2*K.1,1,2*K.1^-1,1,-2*K.1^-1,1,K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,-2*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,-10*K.1^2,10*K.1^4,1,-1*K.1^2,K.1^4,10,10,2,0,0,0,10*K.1^4,-10*K.1^2,K.1^4,K.1^2,-1,K.1^2,-2*K.1^2,-1*K.1^4,-1*K.1^2,1,-1,-1*K.1^4,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1^4,-10*K.1^2,-10*K.1^2,10*K.1^4,1,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-2*K.1^2,-1*K.1^2,K.1^2,K.1^4,-1,-1*K.1^4,-1,1,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1-K.1^3,0,0,-1*K.1+2*K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1+2*K.1^3,K.1-2*K.1^3,K.1-2*K.1^3,-1*K.1+2*K.1^3,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^3,K.1-2*K.1^3,K.1+K.1^3,K.1-2*K.1^3,0,-1*K.1+2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,10*K.1^4,-10*K.1^2,1,K.1^4,-1*K.1^2,10,10,2,0,0,0,-10*K.1^2,10*K.1^4,-1*K.1^2,-1*K.1^4,-1,-1*K.1^4,2*K.1^4,K.1^2,K.1^4,1,-1,K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^4,10*K.1^4,-10*K.1^2,1,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,2*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1,K.1^2,-1,1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1+2*K.1^3,0,0,-1*K.1-K.1^3,-1*K.1+2*K.1^3,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1-2*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1-2*K.1^3,K.1+K.1^3,K.1-2*K.1^3,K.1+K.1^3,0,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,-10*K.1^2,10*K.1^4,1,-1*K.1^2,K.1^4,10,10,2,0,0,0,10*K.1^4,-10*K.1^2,K.1^4,K.1^2,-1,K.1^2,-2*K.1^2,-1*K.1^4,-1*K.1^2,1,-1,-1*K.1^4,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1^4,-10*K.1^2,-10*K.1^2,10*K.1^4,1,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-2*K.1^2,-1*K.1^2,K.1^2,K.1^4,-1,-1*K.1^4,-1,1,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1+K.1^3,0,0,K.1-2*K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,K.1-2*K.1^3,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,K.1-2*K.1^3,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1+2*K.1^3,0,K.1-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,2,0,10*K.1^4,-10*K.1^2,1,K.1^4,-1*K.1^2,10,10,2,0,0,0,-10*K.1^2,10*K.1^4,-1*K.1^2,-1*K.1^4,-1,-1*K.1^4,2*K.1^4,K.1^2,K.1^4,1,-1,K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^4,10*K.1^4,-10*K.1^2,1,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,2*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1,K.1^2,-1,1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1-2*K.1^3,0,0,K.1+K.1^3,K.1-2*K.1^3,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1-K.1^3,0,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,-10*K.1^2,10*K.1^4,1,-1*K.1^2,K.1^4,-10,-10,2,0,0,0,10*K.1^4,-10*K.1^2,K.1^4,-1*K.1^2,1,-1*K.1^2,2*K.1^2,K.1^4,-1*K.1^2,1,1,K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1^4,10*K.1^2,10*K.1^2,-10*K.1^4,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-2*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1,-1*K.1^4,-1,-1,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1-K.1^3,0,0,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,K.1-2*K.1^3,K.1-2*K.1^3,K.1-2*K.1^3,K.1-2*K.1^3,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1+2*K.1^3,0,-1*K.1+2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,10*K.1^4,-10*K.1^2,1,K.1^4,-1*K.1^2,-10,-10,2,0,0,0,-10*K.1^2,10*K.1^4,-1*K.1^2,K.1^4,1,K.1^4,-2*K.1^4,-1*K.1^2,K.1^4,1,1,-1*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^4,-10*K.1^4,10*K.1^2,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,2*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1,K.1^2,-1,-1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1*K.1+2*K.1^3,0,0,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,0,0,K.1+K.1^-1,0,K.1+K.1^-1,0,-1*K.1-K.1^-1,K.1-2*K.1^3,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1-2*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1-K.1^3,0,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,-10*K.1^2,10*K.1^4,1,-1*K.1^2,K.1^4,-10,-10,2,0,0,0,10*K.1^4,-10*K.1^2,K.1^4,-1*K.1^2,1,-1*K.1^2,2*K.1^2,K.1^4,-1*K.1^2,1,1,K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,-1,-10*K.1^4,10*K.1^2,10*K.1^2,-10*K.1^4,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-2*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1,-1*K.1^4,-1,-1,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1+K.1^3,0,0,K.1-2*K.1^3,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,K.1-2*K.1^3,K.1+K.1^3,K.1-2*K.1^3,0,K.1-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |10,10,-2,0,10*K.1^4,-10*K.1^2,1,K.1^4,-1*K.1^2,-10,-10,2,0,0,0,-10*K.1^2,10*K.1^4,-1*K.1^2,K.1^4,1,K.1^4,-2*K.1^4,-1*K.1^2,K.1^4,1,1,-1*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^4,-10*K.1^4,10*K.1^2,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,2*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1,K.1^2,-1,-1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,K.1-2*K.1^3,0,0,K.1+K.1^3,K.1-2*K.1^3,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,0,0,-1*K.1-K.1^-1,0,-1*K.1-K.1^-1,0,K.1+K.1^-1,-1*K.1+2*K.1^3,K.1+K.1^-1,-1*K.1+2*K.1^3,-1*K.1+2*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1-2*K.1^3,K.1+K.1^3,K.1-2*K.1^3,K.1+K.1^3,0,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |10,-10,0,0,10,10,-2,-2,-2,-10*K.1^2,10*K.1^2,0,0,0,0,-10,-10,2,0,0,0,0,0,2,2,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,K.1+K.1^3,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^2,10*K.1^2,-10*K.1^2,-2*K.1^2,0,0,-2*K.1^2,2*K.1^2,0,2*K.1^2,0,-2*K.1^2,0,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |10,-10,0,0,10,10,-2,-2,-2,10*K.1^2,-10*K.1^2,0,0,0,0,-10,-10,2,0,0,0,0,0,2,2,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^2,-10*K.1^2,10*K.1^2,2*K.1^2,0,0,2*K.1^2,-2*K.1^2,0,-2*K.1^2,0,2*K.1^2,0,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1-K.1^3,K.1+K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |10,-10,0,0,10,10,-2,-2,-2,-10*K.1^2,10*K.1^2,0,0,0,0,-10,-10,2,0,0,0,0,0,2,2,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^3,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^2,10*K.1^2,-10*K.1^2,-2*K.1^2,0,0,-2*K.1^2,2*K.1^2,0,2*K.1^2,0,-2*K.1^2,0,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |10,-10,0,0,10,10,-2,-2,-2,10*K.1^2,-10*K.1^2,0,0,0,0,-10,-10,2,0,0,0,0,0,2,2,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^2,-10*K.1^2,10*K.1^2,2*K.1^2,0,0,2*K.1^2,-2*K.1^2,0,-2*K.1^2,0,2*K.1^2,0,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1+K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,-10*K.1^6,10*K.1^6,0,0,0,0,-10,-10,-1,1-2*K.1^4,-1+2*K.1^4,-1+2*K.1^4,0,1-2*K.1^4,-1,-1,1-2*K.1^4,-1+2*K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^6,-10*K.1^6,10*K.1^6,-10*K.1^6,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6,-1*K.1^6,0,-1*K.1^6,K.1^2+K.1^-2,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^3+K.1^5,K.1^5+K.1^-5,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,K.1+K.1^-1,-1*K.1-K.1^-1,K.1-K.1^3+K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^7,K.1-K.1^3-K.1^5,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,K.1^5+K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,10*K.1^6,-10*K.1^6,0,0,0,0,-10,-10,-1,-1+2*K.1^4,1-2*K.1^4,1-2*K.1^4,0,-1+2*K.1^4,-1,-1,-1+2*K.1^4,1-2*K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^6,10*K.1^6,-10*K.1^6,10*K.1^6,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6,K.1^6,0,K.1^6,K.1^2+K.1^-2,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^3-K.1^5,K.1^5+K.1^-5,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1+K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1-K.1^3-K.1^5,K.1^5+K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,-10*K.1^6,10*K.1^6,0,0,0,0,-10,-10,-1,1-2*K.1^4,-1+2*K.1^4,-1+2*K.1^4,0,1-2*K.1^4,-1,-1,1-2*K.1^4,-1+2*K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^6,-10*K.1^6,10*K.1^6,-10*K.1^6,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6,-1*K.1^6,0,-1*K.1^6,K.1^2+K.1^-2,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^3-K.1^5,-1*K.1^5-K.1^-5,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1+K.1^3-K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^7,K.1^3+K.1^-3,K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1-K.1^3-K.1^5,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,10*K.1^6,-10*K.1^6,0,0,0,0,-10,-10,-1,-1+2*K.1^4,1-2*K.1^4,1-2*K.1^4,0,-1+2*K.1^4,-1,-1,-1+2*K.1^4,1-2*K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^6,10*K.1^6,-10*K.1^6,10*K.1^6,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6,K.1^6,0,K.1^6,K.1^2+K.1^-2,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^3+K.1^5,-1*K.1^5-K.1^-5,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1-K.1^-1,K.1+K.1^-1,K.1-K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1^5-K.1^7,K.1-K.1^3-K.1^5,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,-10*K.1^6,10*K.1^6,0,0,0,0,-10,-10,-1,-1+2*K.1^4,1-2*K.1^4,1-2*K.1^4,0,-1+2*K.1^4,-1,-1,-1+2*K.1^4,1-2*K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^6,-10*K.1^6,10*K.1^6,-10*K.1^6,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6,-1*K.1^6,0,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^3+K.1^5,-1*K.1-K.1^-1,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^7,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1+K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1-K.1^3+K.1^7,K.1-K.1^3-K.1^5,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,10*K.1^6,-10*K.1^6,0,0,0,0,-10,-10,-1,1-2*K.1^4,-1+2*K.1^4,-1+2*K.1^4,0,1-2*K.1^4,-1,-1,1-2*K.1^4,-1+2*K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^6,10*K.1^6,-10*K.1^6,10*K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6,K.1^6,0,K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^3-K.1^5,-1*K.1-K.1^-1,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1-K.1^3+K.1^7,-1*K.1^3-K.1^-3,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3+K.1^5,K.1^5+K.1^7,K.1^5+K.1^7,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3-K.1^5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,-10*K.1^6,10*K.1^6,0,0,0,0,-10,-10,-1,-1+2*K.1^4,1-2*K.1^4,1-2*K.1^4,0,-1+2*K.1^4,-1,-1,-1+2*K.1^4,1-2*K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^6,-10*K.1^6,10*K.1^6,-10*K.1^6,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6,-1*K.1^6,0,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^3-K.1^5,K.1+K.1^-1,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1-K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3+K.1^5,K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,K.1-K.1^3-K.1^5,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10,10,1,1,1,10*K.1^6,-10*K.1^6,0,0,0,0,-10,-10,-1,1-2*K.1^4,-1+2*K.1^4,-1+2*K.1^4,0,1-2*K.1^4,-1,-1,1-2*K.1^4,-1+2*K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^6,10*K.1^6,-10*K.1^6,10*K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6,K.1^6,0,K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^3+K.1^5,K.1+K.1^-1,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^7,K.1^5+K.1^7,K.1^5+K.1^7,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1+K.1^3-K.1^7,K.1^3+K.1^-3,K.1-K.1^3+K.1^7,K.1-K.1^3-K.1^5,-1*K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1-K.1^3+K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1+K.1^3+K.1^5,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,-2,2*K.1^4,-2*K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,2*K.1^8,0,0,0,0,0,-2*K.1^4,2,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,-2*K.1^6,0,0,2*K.1^10,-2*K.1^2,0,-2*K.1^10,0,2*K.1^2,0,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,K.1-K.1^3-K.1^5,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,-1*K.1-K.1^7,K.1-K.1^3-K.1^5,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5,K.1-K.1^7,K.1^3+K.1^-3,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,-2,-2*K.1^8,2*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,-2*K.1^4,0,0,0,0,0,2*K.1^8,2,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,2*K.1^6,0,0,-2*K.1^2,2*K.1^10,0,2*K.1^2,0,-2*K.1^10,0,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,K.1+K.1^7,K.1-K.1^3-K.1^5,K.1-K.1^7,K.1-K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,-2,2*K.1^4,-2*K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,2*K.1^8,0,0,0,0,0,-2*K.1^4,2,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,-2*K.1^6,0,0,2*K.1^10,-2*K.1^2,0,-2*K.1^10,0,2*K.1^2,0,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,K.1+K.1^7,K.1-K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3+K.1^5,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,K.1+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^3-K.1^5,-1*K.1+K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,-2,-2*K.1^8,2*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,-2*K.1^4,0,0,0,0,0,2*K.1^8,2,0,0,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,2*K.1^6,0,0,-2*K.1^2,2*K.1^10,0,2*K.1^2,0,-2*K.1^10,0,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,K.1^3-K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^3-K.1^5,-1*K.1-K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,-2,2*K.1^4,-2*K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,2*K.1^8,0,0,0,0,0,-2*K.1^4,2,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,2*K.1^6,0,0,-2*K.1^10,2*K.1^2,0,2*K.1^10,0,-2*K.1^2,0,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,-1*K.1+K.1^3+K.1^5,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3+K.1^5,K.1^3-K.1^5-K.1^7,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^3-K.1^5,-1*K.1+K.1^7,K.1^3+K.1^-3,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,-2,-2*K.1^8,2*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,-2*K.1^4,0,0,0,0,0,2*K.1^8,2,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,-2*K.1^6,0,0,2*K.1^2,-2*K.1^10,0,-2*K.1^2,0,2*K.1^10,0,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,K.1+K.1^7,-1*K.1-K.1^7,K.1-K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3-K.1^5,K.1+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,-2,2*K.1^4,-2*K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,2*K.1^8,0,0,0,0,0,-2*K.1^4,2,0,0,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,2*K.1^6,0,0,-2*K.1^10,2*K.1^2,0,2*K.1^10,0,-2*K.1^2,0,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,K.1-K.1^3-K.1^5,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1-K.1^3-K.1^5,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5,K.1-K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,K.1^3-K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,-2,-2*K.1^8,2*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,-2*K.1^4,0,0,0,0,0,2*K.1^8,2,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,-2*K.1^6,0,0,2*K.1^2,-2*K.1^10,0,-2*K.1^2,0,2*K.1^10,0,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,-1*K.1-K.1^7,K.1+K.1^7,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5,-1*K.1-K.1^7,K.1-K.1^3-K.1^5,K.1-K.1^7,K.1-K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,K.1+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,-2+K.1^4,-1+2*K.1^4,2-K.1^4,0,1+K.1^4,K.1^4,-1,1-2*K.1^4,-1-K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,K.1^6,-1*K.1^2+2*K.1^6,K.1^2+K.1^6,-1*K.1^10,K.1^2,0,K.1^10,-1*K.1^2-K.1^6,-1*K.1^2,K.1^2+K.1^-2,K.1^2-2*K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3,-1*K.1+K.1^3+K.1^5-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,-1*K.1+K.1^5-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^3+K.1^7,K.1^3-K.1^5,-1*K.1-K.1^-1,-1*K.1^3-K.1^5,K.1^3+K.1^5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,K.1-K.1^7,-1*K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,-1-K.1^4,1-2*K.1^4,1+K.1^4,0,2-K.1^4,-1*K.1^8,-1,-1+2*K.1^4,-2+K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,-1*K.1^6,-1*K.1^2-K.1^6,K.1^2-2*K.1^6,K.1^2,-1*K.1^10,0,-1*K.1^2,-1*K.1^2+2*K.1^6,K.1^10,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,-1*K.1+K.1^3,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3,K.1-K.1^3+K.1^7,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,-1*K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1^3+K.1^5,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^5-K.1^7,K.1+K.1^7,K.1^5+K.1^7,K.1-K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^5+K.1^7,-1*K.1-K.1^-1,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,-2+K.1^4,-1+2*K.1^4,2-K.1^4,0,1+K.1^4,K.1^4,-1,1-2*K.1^4,-1-K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,K.1^6,-1*K.1^2+2*K.1^6,K.1^2+K.1^6,-1*K.1^10,K.1^2,0,K.1^10,-1*K.1^2-K.1^6,-1*K.1^2,K.1^2+K.1^-2,K.1^2-2*K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3,K.1-K.1^3-K.1^5+K.1^7,K.1-K.1^3+K.1^7,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,K.1-K.1^5+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,-1*K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3+K.1^5,K.1+K.1^-1,K.1^3+K.1^5,-1*K.1^3-K.1^5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,-1*K.1+K.1^7,K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,-1-K.1^4,1-2*K.1^4,1+K.1^4,0,2-K.1^4,-1*K.1^8,-1,-1+2*K.1^4,-2+K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,-1*K.1^6,-1*K.1^2-K.1^6,K.1^2-2*K.1^6,K.1^2,-1*K.1^10,0,-1*K.1^2,-1*K.1^2+2*K.1^6,K.1^10,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,K.1-K.1^3,K.1^3+K.1^5-K.1^7,K.1+K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3,-1*K.1+K.1^3-K.1^7,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1^3-K.1^5,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1^5-K.1^7,-1*K.1+K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^5-K.1^7,K.1+K.1^-1,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,-2+K.1^4,-1+2*K.1^4,2-K.1^4,0,1+K.1^4,K.1^4,-1,1-2*K.1^4,-1-K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,-1*K.1^6,K.1^2-2*K.1^6,-1*K.1^2-K.1^6,K.1^10,-1*K.1^2,0,-1*K.1^10,K.1^2+K.1^6,K.1^2,-1*K.1^2-K.1^-2,-1*K.1^2+2*K.1^6,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1^3-K.1^5,-1*K.1^5-K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,K.1-K.1^3,-1*K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^7,-1*K.1-K.1^7,K.1-K.1^3+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^5+K.1^7,K.1+K.1^3-K.1^5-K.1^7,K.1^5+K.1^-5,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,-1*K.1+K.1^7,K.1-K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,-1-K.1^4,1-2*K.1^4,1+K.1^4,0,2-K.1^4,-1*K.1^8,-1,-1+2*K.1^4,-2+K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,K.1^6,K.1^2+K.1^6,-1*K.1^2+2*K.1^6,-1*K.1^2,K.1^10,0,K.1^2,K.1^2-2*K.1^6,-1*K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,K.1-K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,-1*K.1+K.1^5+K.1^7,K.1^5+K.1^7,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3-K.1^7,K.1+K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^7,-1*K.1^5-K.1^7,K.1+K.1^3,K.1^5+K.1^-5,K.1-K.1^3,-1*K.1+K.1^3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,-2+K.1^4,-1+2*K.1^4,2-K.1^4,0,1+K.1^4,K.1^4,-1,1-2*K.1^4,-1-K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,-1*K.1^6,K.1^2-2*K.1^6,-1*K.1^2-K.1^6,K.1^10,-1*K.1^2,0,-1*K.1^10,K.1^2+K.1^6,K.1^2,-1*K.1^2-K.1^-2,-1*K.1^2+2*K.1^6,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^5-K.1^7,K.1^3+K.1^5,K.1^5+K.1^7,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,-1*K.1+K.1^3,K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^7,K.1+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,-1*K.1^5-K.1^-5,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,K.1-K.1^7,-1*K.1+K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,-1-K.1^4,1-2*K.1^4,1+K.1^4,0,2-K.1^4,-1*K.1^8,-1,-1+2*K.1^4,-2+K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,K.1^6,K.1^2+K.1^6,-1*K.1^2+2*K.1^6,-1*K.1^2,K.1^10,0,K.1^2,K.1^2-2*K.1^6,-1*K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,K.1^3+K.1^5,K.1-K.1^5-K.1^7,-1*K.1^5-K.1^7,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1+K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^3+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^7,K.1^5+K.1^7,-1*K.1-K.1^3,-1*K.1^5-K.1^-5,-1*K.1+K.1^3,K.1-K.1^3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,2-K.1^4,1-2*K.1^4,-2+K.1^4,0,-1-K.1^4,K.1^4,-1,-1+2*K.1^4,1+K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,K.1^6,K.1^2-2*K.1^6,-1*K.1^2-K.1^6,-1*K.1^10,K.1^2,0,K.1^10,K.1^2+K.1^6,-1*K.1^2,-1*K.1^2-K.1^-2,-1*K.1^2+2*K.1^6,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1^3-K.1^5,K.1^5+K.1^7,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,K.1-K.1^3,-1*K.1+K.1^3,K.1+K.1^3,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3-K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^3+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,K.1^5+K.1^-5,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,K.1-K.1^7,K.1-K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,1+K.1^4,-1+2*K.1^4,-1-K.1^4,0,-2+K.1^4,-1*K.1^8,-1,1-2*K.1^4,2-K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,-1*K.1^6,K.1^2+K.1^6,-1*K.1^2+2*K.1^6,K.1^2,-1*K.1^10,0,-1*K.1^2,K.1^2-2*K.1^6,K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,K.1-K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,-1*K.1+K.1^5+K.1^7,-1*K.1^5-K.1^7,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,K.1+K.1^3-K.1^5-K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3+K.1^7,K.1+K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^7,K.1^5+K.1^7,-1*K.1-K.1^3,K.1^5+K.1^-5,K.1-K.1^3,-1*K.1+K.1^3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,-10*K.1^6,10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,2-K.1^4,1-2*K.1^4,-2+K.1^4,0,-1-K.1^4,K.1^4,-1,-1+2*K.1^4,1+K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^2,10*K.1^10,-10*K.1^10,10*K.1^2,K.1^6,K.1^2-2*K.1^6,-1*K.1^2-K.1^6,-1*K.1^10,K.1^2,0,K.1^10,K.1^2+K.1^6,-1*K.1^2,-1*K.1^2-K.1^-2,-1*K.1^2+2*K.1^6,K.1^2+K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5,K.1-K.1^7,K.1^3-K.1^5-K.1^7,K.1-K.1^5-K.1^7,K.1^3+K.1^5,-1*K.1^5-K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,-1*K.1+K.1^3,K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^7,K.1+K.1^7,K.1-K.1^3+K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^5+K.1^7,K.1+K.1^3-K.1^5-K.1^7,-1*K.1^5-K.1^-5,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1+K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,10*K.1^6,-10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,1+K.1^4,-1+2*K.1^4,-1-K.1^4,0,-2+K.1^4,-1*K.1^8,-1,1-2*K.1^4,2-K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^10,-10*K.1^2,10*K.1^2,-10*K.1^10,-1*K.1^6,K.1^2+K.1^6,-1*K.1^2+2*K.1^6,K.1^2,-1*K.1^10,0,-1*K.1^2,K.1^2-2*K.1^6,K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,-1*K.1+K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,K.1+K.1^7,K.1^3+K.1^5,K.1-K.1^5-K.1^7,K.1^5+K.1^7,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,-1*K.1-K.1^3+K.1^5+K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1-K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^7,-1*K.1^5-K.1^7,K.1+K.1^3,-1*K.1^5-K.1^-5,-1*K.1+K.1^3,K.1-K.1^3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,2-K.1^4,1-2*K.1^4,-2+K.1^4,0,-1-K.1^4,K.1^4,-1,-1+2*K.1^4,1+K.1^4,0,0,0,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,-1*K.1^6,-1*K.1^2+2*K.1^6,K.1^2+K.1^6,K.1^10,-1*K.1^2,0,-1*K.1^10,-1*K.1^2-K.1^6,K.1^2,K.1^2+K.1^-2,K.1^2-2*K.1^6,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3+K.1^5-K.1^7,K.1-K.1^3-K.1^5+K.1^7,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1-K.1^3,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3+K.1^7,K.1^3-K.1^5,-1*K.1+K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,K.1-K.1^5+K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^5-K.1^7,K.1^3-K.1^5-K.1^7,K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3+K.1^5,-1*K.1-K.1^-1,-1*K.1^3-K.1^5,K.1^3+K.1^5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,-1*K.1+K.1^7,-1*K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,1+K.1^4,-1+2*K.1^4,-1-K.1^4,0,-2+K.1^4,-1*K.1^8,-1,1-2*K.1^4,2-K.1^4,0,0,0,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,K.1^6,-1*K.1^2-K.1^6,K.1^2-2*K.1^6,-1*K.1^2,K.1^10,0,K.1^2,-1*K.1^2+2*K.1^6,-1*K.1^10,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1-K.1^7,-1*K.1+K.1^3,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,K.1-K.1^3,-1*K.1+K.1^3-K.1^7,K.1-K.1^5+K.1^7,-1*K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1^3+K.1^5,K.1^3-K.1^5,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^5+K.1^7,K.1+K.1^7,-1*K.1^5-K.1^7,-1*K.1+K.1^7,K.1-K.1^3+K.1^7,-1*K.1+K.1^5-K.1^7,-1*K.1-K.1^-1,-1*K.1+K.1^5+K.1^7,K.1-K.1^5-K.1^7,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^3-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,-10*K.1^4,10*K.1^8,1,-1*K.1^4,K.1^8,10*K.1^6,-10*K.1^6,0,0,0,0,-10*K.1^8,10*K.1^4,-1*K.1^8,2-K.1^4,1-2*K.1^4,-2+K.1^4,0,-1-K.1^4,K.1^4,-1,-1+2*K.1^4,1+K.1^4,0,0,0,K.1^3+K.1^-3,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,-1,10*K.1^2,-10*K.1^10,10*K.1^10,-10*K.1^2,-1*K.1^6,-1*K.1^2+2*K.1^6,K.1^2+K.1^6,K.1^10,-1*K.1^2,0,-1*K.1^10,-1*K.1^2-K.1^6,K.1^2,K.1^2+K.1^-2,K.1^2-2*K.1^6,-1*K.1^2-K.1^-2,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1+K.1^3,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^7,-1*K.1^3+K.1^5,K.1-K.1^5+K.1^7,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1+K.1^5-K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1^5+K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^3+K.1^7,K.1^3-K.1^5,K.1+K.1^-1,K.1^3+K.1^5,-1*K.1^3-K.1^5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^3+K.1^5+K.1^7,K.1+K.1^3,K.1+K.1^3-K.1^5-K.1^7,-1*K.1-K.1^3,K.1-K.1^7,K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |10,-10,0,0,10*K.1^8,-10*K.1^4,1,K.1^8,-1*K.1^4,-10*K.1^6,10*K.1^6,0,0,0,0,10*K.1^4,-10*K.1^8,K.1^4,1+K.1^4,-1+2*K.1^4,-1-K.1^4,0,-2+K.1^4,-1*K.1^8,-1,1-2*K.1^4,2-K.1^4,0,0,0,K.1^3+K.1^-3,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1-K.1^3-K.1^5,0,0,0,0,0,0,-1,-10*K.1^10,10*K.1^2,-10*K.1^2,10*K.1^10,K.1^6,-1*K.1^2-K.1^6,K.1^2-2*K.1^6,-1*K.1^2,K.1^10,0,K.1^2,-1*K.1^2+2*K.1^6,-1*K.1^10,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1+K.1^7,K.1-K.1^3,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,K.1-K.1^3-K.1^5+K.1^7,-1*K.1+K.1^3,K.1-K.1^3+K.1^7,-1*K.1+K.1^5-K.1^7,K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1^3-K.1^5,-1*K.1^3+K.1^5,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^5-K.1^7,-1*K.1-K.1^7,K.1^5+K.1^7,K.1-K.1^7,-1*K.1+K.1^3-K.1^7,K.1-K.1^5+K.1^7,K.1+K.1^-1,K.1-K.1^5-K.1^7,-1*K.1+K.1^5+K.1^7,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^3,K.1+K.1^3-K.1^5-K.1^7,K.1+K.1^3,-1*K.1-K.1^3+K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^2,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[11, 11, -1, 1, 11, 11, -1, -1, -1, 11, 11, -1, 1, 1, 1, 11, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 0, 11, 11, 11, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[11, 11, -1, -1, 11, 11, -1, -1, -1, 11, 11, -1, -1, 1, 1, 11, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 0, 11, 11, 11, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[11, 11, 1, -1, 11, 11, -1, -1, -1, -11, -11, -1, 1, 1, 1, 11, 11, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 0, -11, -11, -11, -11, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[11, 11, 1, 1, 11, 11, -1, -1, -1, -11, -11, -1, -1, 1, 1, 11, 11, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 0, -11, -11, -11, -11, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,-1,1,11*K.1^-1,11*K.1,-1,-1*K.1^-1,-1*K.1,11,11,-1,1,1,1,11*K.1,11*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,1,1,1,0,11*K.1,11*K.1^-1,11*K.1^-1,11*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,0,0,0,0,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,-1,1,11*K.1,11*K.1^-1,-1,-1*K.1,-1*K.1^-1,11,11,-1,1,1,1,11*K.1^-1,11*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,0,11*K.1^-1,11*K.1,11*K.1,11*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,0,0,0,0,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,-1,-1,11*K.1^-1,11*K.1,-1,-1*K.1^-1,-1*K.1,11,11,-1,-1,1,1,11*K.1,11*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,-1,-1,-1,-1,0,11*K.1,11*K.1^-1,11*K.1^-1,11*K.1,-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,-1,-1,-1,-1,0,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,1,K.1,1,K.1,1,K.1^-1,1,K.1^-1,K.1^-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,-1,-1,11*K.1,11*K.1^-1,-1,-1*K.1,-1*K.1^-1,11,11,-1,-1,1,1,11*K.1^-1,11*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,-1,-1,-1,-1,0,11*K.1^-1,11*K.1,11*K.1,11*K.1^-1,-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,-1,-1,-1,-1,0,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,1,K.1^-1,1,K.1^-1,1,K.1,1,K.1,K.1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,1,-1,11*K.1^-1,11*K.1,-1,-1*K.1^-1,-1*K.1,-11,-11,-1,1,1,1,11*K.1,11*K.1^-1,-1*K.1,K.1^-1,1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1,1,K.1,K.1,-1*K.1,-1*K.1^-1,-1,1,-1,1,1,1,-1,-1,-1,-1,0,-11*K.1,-11*K.1^-1,-11*K.1^-1,-11*K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1,-1*K.1,-1,1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,1,0,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,1,-1*K.1,1,K.1,1,K.1^-1,-1,-1*K.1^-1,-1*K.1^-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,1,-1,11*K.1,11*K.1^-1,-1,-1*K.1,-1*K.1^-1,-11,-11,-1,1,1,1,11*K.1^-1,11*K.1,-1*K.1^-1,K.1,1,K.1,K.1,K.1^-1,-1*K.1,-1,1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1,1,-1,1,1,1,-1,-1,-1,-1,0,-11*K.1^-1,-11*K.1,-11*K.1,-11*K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1,-1*K.1^-1,-1,1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,1,0,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,1,-1*K.1^-1,1,K.1^-1,1,K.1,-1,-1*K.1,-1*K.1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,1,1,11*K.1^-1,11*K.1,-1,-1*K.1^-1,-1*K.1,-11,-11,-1,-1,1,1,11*K.1,11*K.1^-1,-1*K.1,K.1^-1,1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1,1,K.1,K.1,K.1,K.1^-1,1,-1,1,-1,1,1,1,1,1,1,0,-11*K.1,-11*K.1^-1,-11*K.1^-1,-11*K.1,1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1,-1*K.1,-1,1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,0,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1,K.1,-1,-1*K.1,-1,-1*K.1^-1,1,K.1^-1,K.1^-1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,0,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |11,11,1,1,11*K.1,11*K.1^-1,-1,-1*K.1,-1*K.1^-1,-11,-11,-1,-1,1,1,11*K.1^-1,11*K.1,-1*K.1^-1,K.1,1,K.1,K.1,K.1^-1,-1*K.1,-1,1,K.1^-1,K.1^-1,K.1^-1,K.1,1,-1,1,-1,1,1,1,1,1,1,0,-11*K.1^-1,-11*K.1,-11*K.1,-11*K.1^-1,1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1,-1*K.1^-1,-1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,0,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1,K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,1,K.1,K.1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,0,0,0,0,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,-12*K.1,12*K.1,0,0,2,2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,12*K.1,-12*K.1,12*K.1,-12*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,-2,0,0,0,-2,0,0,0,1,1,K.1,-1*K.1,0,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,2*K.1,-1,-1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,12*K.1,-12*K.1,0,0,2,2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,-12*K.1,12*K.1,-12*K.1,12*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,-2,0,0,0,-2,0,0,0,1,1,-1*K.1,K.1,0,0,0,0,-2*K.1,0,0,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,-2*K.1,-1,-1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,2,12,12,0,0,0,12,12,0,2,K.1^2+K.1^-2,K.1+K.1^-1,12,12,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,1,12,12,12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,1,1,1,1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,2,12,12,0,0,0,12,12,0,2,K.1+K.1^-1,K.1^2+K.1^-2,12,12,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,1,12,12,12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,1,1,1,1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,-2,12,12,0,0,0,-12,-12,0,2,K.1^2+K.1^-2,K.1+K.1^-1,12,12,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,1,-12,-12,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,1,-1,-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,-2,12,12,0,0,0,-12,-12,0,2,K.1+K.1^-1,K.1^2+K.1^-2,12,12,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,-12,-12,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,1,1,-1,-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,-2,12,12,0,0,0,12,12,0,-2,K.1^2+K.1^-2,K.1+K.1^-1,12,12,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,1,12,12,12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,1,1,1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,-2,12,12,0,0,0,12,12,0,-2,K.1+K.1^-1,K.1^2+K.1^-2,12,12,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,12,12,12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,1,1,1,1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,2,12,12,0,0,0,-12,-12,0,-2,K.1^2+K.1^-2,K.1+K.1^-1,12,12,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,1,-12,-12,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,1,1,-1,-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |12,12,0,2,12,12,0,0,0,-12,-12,0,-2,K.1+K.1^-1,K.1^2+K.1^-2,12,12,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,1,-12,-12,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,1,1,-1,-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^2,12*K.1^4,0,0,0,-12*K.1^3,12*K.1^3,0,0,2,2,-12*K.1^4,12*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,-12*K.1,12*K.1^5,-12*K.1^5,12*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,0,-2*K.1^4,0,0,0,2*K.1^2,0,0,0,-1*K.1^2,K.1^4,K.1^3,-1*K.1^3,0,0,0,0,-2*K.1,0,0,2*K.1,2*K.1^5,2*K.1,-2*K.1,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,-1*K.1^4,K.1^2,-1*K.1,K.1^5,-1*K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |12,-12,0,0,12*K.1^4,-12*K.1^2,0,0,0,12*K.1^3,-12*K.1^3,0,0,2,2,12*K.1^2,-12*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,12*K.1^5,-12*K.1,12*K.1,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,0,2*K.1^2,0,0,0,-2*K.1^4,0,0,0,K.1^4,-1*K.1^2,-1*K.1^3,K.1^3,0,0,0,0,2*K.1^5,0,0,-2*K.1^5,-2*K.1,-2*K.1^5,2*K.1^5,2*K.1,-2*K.1,0,0,2*K.1,K.1^2,-1*K.1^4,K.1^5,-1*K.1,K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^2,12*K.1^4,0,0,0,12*K.1^3,-12*K.1^3,0,0,2,2,-12*K.1^4,12*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,12*K.1,-12*K.1^5,12*K.1^5,-12*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,0,-2*K.1^4,0,0,0,2*K.1^2,0,0,0,-1*K.1^2,K.1^4,-1*K.1^3,K.1^3,0,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1^5,-2*K.1,2*K.1,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,-1*K.1^4,K.1^2,K.1,-1*K.1^5,K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |12,-12,0,0,12*K.1^4,-12*K.1^2,0,0,0,-12*K.1^3,12*K.1^3,0,0,2,2,12*K.1^2,-12*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,1,-12*K.1^5,12*K.1,-12*K.1,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^4,-2*K.1^2,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,0,2*K.1^2,0,0,0,-2*K.1^4,0,0,0,K.1^4,-1*K.1^2,K.1^3,-1*K.1^3,0,0,0,0,-2*K.1^5,0,0,2*K.1^5,2*K.1,2*K.1^5,-2*K.1^5,-2*K.1,2*K.1,0,0,-2*K.1,K.1^2,-1*K.1^4,-1*K.1^5,K.1,-1*K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^-5,12*K.1^5,0,0,0,12,12,0,2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,1,12*K.1^5,12*K.1^-5,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^-5,K.1^5,1,1,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^5,12*K.1^-5,0,0,0,12,12,0,2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,1,12*K.1^-5,12*K.1^5,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^5,K.1^-5,1,1,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^-5,12*K.1^5,0,0,0,12,12,0,2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,1,12*K.1^5,12*K.1^-5,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^-5,K.1^5,1,1,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^5,12*K.1^-5,0,0,0,12,12,0,2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,1,12*K.1^-5,12*K.1^5,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^5,K.1^-5,1,1,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^-5,12*K.1^5,0,0,0,-12,-12,0,2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,1,-12*K.1^5,-12*K.1^-5,-12*K.1^-5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^-5,K.1^5,-1,-1,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^5,12*K.1^-5,0,0,0,-12,-12,0,2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,1,-12*K.1^-5,-12*K.1^5,-12*K.1^5,-12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1^5,K.1^-5,-1,-1,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^-5,12*K.1^5,0,0,0,-12,-12,0,2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,1,-12*K.1^5,-12*K.1^-5,-12*K.1^-5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1^-5,K.1^5,-1,-1,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^5,12*K.1^-5,0,0,0,-12,-12,0,2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,1,-12*K.1^-5,-12*K.1^5,-12*K.1^5,-12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1^5,K.1^-5,-1,-1,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^-5,12*K.1^5,0,0,0,12,12,0,-2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,1,12*K.1^5,12*K.1^-5,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^-5,K.1^5,1,1,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^5,12*K.1^-5,0,0,0,12,12,0,-2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,1,12*K.1^-5,12*K.1^5,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1^5,K.1^-5,1,1,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^-5,12*K.1^5,0,0,0,12,12,0,-2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,1,12*K.1^5,12*K.1^-5,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1^-5,K.1^5,1,1,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,-2,12*K.1^5,12*K.1^-5,0,0,0,12,12,0,-2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,1,12*K.1^-5,12*K.1^5,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1^5,K.1^-5,1,1,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^-5,12*K.1^5,0,0,0,-12,-12,0,-2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,1,-12*K.1^5,-12*K.1^-5,-12*K.1^-5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^-5,K.1^5,-1,-1,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^5,12*K.1^-5,0,0,0,-12,-12,0,-2,K.1^6+K.1^-6,K.1^3+K.1^-3,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,1,-12*K.1^-5,-12*K.1^5,-12*K.1^5,-12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^5,K.1^-5,-1,-1,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^-5,12*K.1^5,0,0,0,-12,-12,0,-2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^5,12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,1,-12*K.1^5,-12*K.1^-5,-12*K.1^-5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-5,-2*K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^-5,K.1^5,-1,-1,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |12,12,0,2,12*K.1^5,12*K.1^-5,0,0,0,-12,-12,0,-2,K.1^3+K.1^-3,K.1^6+K.1^-6,12*K.1^-5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^5,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,1,-12*K.1^-5,-12*K.1^5,-12*K.1^5,-12*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^-5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^5,K.1^-5,-1,-1,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,-12*K.1^5,12*K.1^5,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,1,12*K.1^5,-12*K.1^5,12*K.1^5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1,1,K.1^5,-1*K.1^5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,-1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,12*K.1^5,-12*K.1^5,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1,-12*K.1^5,12*K.1^5,-12*K.1^5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1,1,-1*K.1^5,K.1^5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,-12*K.1^5,12*K.1^5,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^6,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1,12*K.1^5,-12*K.1^5,12*K.1^5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1,1,K.1^5,-1*K.1^5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,12*K.1^5,-12*K.1^5,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^6,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,1,-12*K.1^5,12*K.1^5,-12*K.1^5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1,1,-1*K.1^5,K.1^5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,-12*K.1^5,12*K.1^5,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1,12*K.1^5,-12*K.1^5,12*K.1^5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1,1,K.1^5,-1*K.1^5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^7,-1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,12*K.1^5,-12*K.1^5,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1,-12*K.1^5,12*K.1^5,-12*K.1^5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,1,1,-1*K.1^5,K.1^5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^7,-1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,-12*K.1^5,12*K.1^5,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^6,1,12*K.1^5,-12*K.1^5,12*K.1^5,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6,K.1^2+K.1^-2,K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1*K.1^4-K.1^6,-1*K.1^4-K.1^-4,K.1^4+K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1-2*K.1^2+K.1^4-K.1^6,1,1,K.1^5,-1*K.1^5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^5+K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^7,-1,-1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |12,-12,0,0,12,12,0,0,0,12*K.1^5,-12*K.1^5,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-12,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,-1*K.1^4-K.1^6,K.1^4+K.1^6,1,-12*K.1^5,12*K.1^5,-12*K.1^5,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6,K.1^2+K.1^-2,-1*K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,K.1^4+K.1^6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^6,1-2*K.1^2+K.1^4-K.1^6,-1+2*K.1^2-K.1^4+K.1^6,1,1,-1*K.1^5,K.1^5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^5-K.1^7,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^7,-1,-1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,-12*K.1^15,12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1,-12*K.1^5,12*K.1^25,-12*K.1^25,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1*K.1^2-K.1^8,-1*K.1^10,K.1^20,K.1^15,-1*K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^20,K.1^10,-1*K.1^5,K.1^25,-1*K.1^25,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,12*K.1^15,-12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,1,12*K.1^25,-12*K.1^5,12*K.1^5,-12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2+K.1^8,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1*K.1^2-K.1^8,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^20,-1*K.1^10,-1*K.1^15,K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^10,-1*K.1^20,K.1^25,-1*K.1^5,K.1^5,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,-12*K.1^15,12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,1,-12*K.1^5,12*K.1^25,-12*K.1^25,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2+K.1^8,-1*K.1^10,K.1^20,K.1^15,-1*K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^20,K.1^10,-1*K.1^5,K.1^25,-1*K.1^25,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,12*K.1^15,-12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1,12*K.1^25,-12*K.1^5,12*K.1^5,-12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2-K.1^8,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,K.1^2+K.1^8,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^20,-1*K.1^10,-1*K.1^15,K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^10,-1*K.1^20,K.1^25,-1*K.1^5,K.1^5,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,-12*K.1^15,12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,1,-12*K.1^5,12*K.1^25,-12*K.1^25,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2+K.1^8,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1*K.1^10,K.1^20,K.1^15,-1*K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^20,K.1^10,-1*K.1^5,K.1^25,-1*K.1^25,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,12*K.1^15,-12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1,12*K.1^25,-12*K.1^5,12*K.1^5,-12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^2-K.1^8,-1*K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^20,-1*K.1^10,-1*K.1^15,K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^10,-1*K.1^20,K.1^25,-1*K.1^5,K.1^5,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,-12*K.1^15,12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1,-12*K.1^5,12*K.1^25,-12*K.1^25,12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1-K.1^2+K.1^8+K.1^10,-1*K.1^2-K.1^8,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1*K.1^10,K.1^20,K.1^15,-1*K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^20,K.1^10,-1*K.1^5,K.1^25,-1*K.1^25,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,12*K.1^15,-12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,1,12*K.1^25,-12*K.1^5,12*K.1^5,-12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2-K.1^8,K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^20,-1*K.1^10,-1*K.1^15,K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^10,-1*K.1^20,K.1^25,-1*K.1^5,K.1^5,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,12*K.1^15,-12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1,12*K.1^5,-12*K.1^25,12*K.1^25,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1*K.1^2-K.1^8,-1*K.1^10,K.1^20,-1*K.1^15,K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^20,K.1^10,K.1^5,-1*K.1^25,K.1^25,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,-12*K.1^15,12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,1,-12*K.1^25,12*K.1^5,-12*K.1^5,12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2+K.1^8,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1*K.1^2-K.1^8,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^20,-1*K.1^10,K.1^15,-1*K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^10,-1*K.1^20,-1*K.1^25,K.1^5,-1*K.1^5,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,12*K.1^15,-12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,1,12*K.1^5,-12*K.1^25,12*K.1^25,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2+K.1^8,-1*K.1^10,K.1^20,-1*K.1^15,K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^20,K.1^10,K.1^5,-1*K.1^25,K.1^25,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,-12*K.1^15,12*K.1^15,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1,-12*K.1^25,12*K.1^5,-12*K.1^5,12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2-K.1^8,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,K.1^2+K.1^8,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^20,-1*K.1^10,K.1^15,-1*K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^10,-1*K.1^20,-1*K.1^25,K.1^5,-1*K.1^5,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,12*K.1^15,-12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,1,12*K.1^5,-12*K.1^25,12*K.1^25,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2+K.1^8,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1*K.1^10,K.1^20,-1*K.1^15,K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^20,K.1^10,K.1^5,-1*K.1^25,K.1^25,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,-12*K.1^15,12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1,-12*K.1^25,12*K.1^5,-12*K.1^5,12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^2-K.1^8,-1*K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^20,-1*K.1^10,K.1^15,-1*K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^10,-1*K.1^20,-1*K.1^25,K.1^5,-1*K.1^5,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,-12*K.1^10,12*K.1^20,0,0,0,12*K.1^15,-12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-12*K.1^20,12*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^4+K.1^6+K.1^14,K.1^4-K.1^6-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1,12*K.1^5,-12*K.1^25,12*K.1^25,-12*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1-K.1^2+K.1^8+K.1^10,-1*K.1^2-K.1^8,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10+2*K.1^14,-1*K.1^10,K.1^20,-1*K.1^15,K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^20,K.1^10,K.1^5,-1*K.1^25,K.1^25,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |12,-12,0,0,12*K.1^20,-12*K.1^10,0,0,0,-12*K.1^15,12*K.1^15,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,12*K.1^10,-12*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^4-K.1^6-K.1^14,-1*K.1^4+K.1^6+K.1^14,-1+K.1^4+K.1^6-2*K.1^12-K.1^14,1-K.1^4-K.1^6+2*K.1^12+K.1^14,1,-12*K.1^25,12*K.1^5,-12*K.1^5,12*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2-K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1-K.1^2-K.1^4-K.1^6-K.1^8+2*K.1^12+K.1^14,-1-K.1^2+K.1^8+K.1^10-2*K.1^14,-1+K.1^2+K.1^4+K.1^6+K.1^8-2*K.1^12-K.1^14,K.1^2-K.1^8,K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10+2*K.1^14,1+K.1^2+K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^20,-1*K.1^10,K.1^15,-1*K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^10,-1*K.1^20,-1*K.1^25,K.1^5,-1*K.1^5,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_15840_e:= KnownIrreducibles(CR);