/* Group 1404.117 downloaded from the LMFDB on 22 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -3, -3, 3, -13, 121, 31, 146, 15484, 13870, 376, 118, 23339]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.4, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "d3"]); GPerm := PermutationGroup< 22 | (11,12)(13,14)(15,16)(17,18)(19,20)(21,22), (2,4)(5,8)(7,9), (2,5,9)(4,7,8), (1,2,4)(3,5,8)(6,9,7), (10,11,13,15,17,19,21,22,20,18,16,14,12), (1,3,6)(2,5,9)(4,8,7) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1404_117 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 9, a*c*d^13>,< 2, 13, b^3>,< 2, 117, a*b*c^2*d^28>,< 3, 1, c^2>,< 3, 1, c>,< 3, 6, d^13>,< 3, 6, b^2>,< 3, 6, b^2*d^13>,< 3, 6, b^2*d^26>,< 6, 9, a*d^13>,< 6, 9, a*c^2*d^13>,< 6, 13, b^3*c>,< 6, 13, b^3*c^2>,< 6, 78, b^3*d^38>,< 6, 78, b*c*d^4>,< 6, 78, b^5*d^10>,< 6, 78, b^5*d^3>,< 6, 117, a*b*c*d^28>,< 6, 117, a*b*d^28>,< 13, 2, d^3>,< 13, 2, d^6>,< 13, 2, d^9>,< 13, 2, d^12>,< 13, 2, d^15>,< 13, 2, d^18>,< 26, 18, a*c*d^16>,< 26, 18, a*c*d^22>,< 26, 18, a*c*d^28>,< 26, 18, a*c*d^34>,< 26, 18, a*c*d>,< 26, 18, a*c*d^7>,< 39, 2, c*d^15>,< 39, 2, c^2*d^24>,< 39, 2, c^2*d^30>,< 39, 2, c*d^9>,< 39, 2, c*d^21>,< 39, 2, c^2*d^18>,< 39, 2, c^2*d^36>,< 39, 2, c*d^3>,< 39, 2, c*d^27>,< 39, 2, c^2*d^12>,< 39, 2, c*d^33>,< 39, 2, c^2*d^6>,< 39, 12, d>,< 39, 12, d^2>,< 39, 12, d^4>,< 39, 12, d^5>,< 39, 12, d^7>,< 39, 12, d^10>,< 39, 12, b^2*d^3>,< 39, 12, b^2*d^6>,< 39, 12, b^2*d^12>,< 39, 12, b^2*d^15>,< 39, 12, b^2*d^18>,< 39, 12, b^2*d^9>,< 39, 12, b^2*d>,< 39, 12, b^4*d^2>,< 39, 12, b^2*d^4>,< 39, 12, b^4*d^5>,< 39, 12, b^2*d^7>,< 39, 12, b^2*d^10>,< 39, 12, b^2*d^2>,< 39, 12, b^4*d^4>,< 39, 12, b^2*d^5>,< 39, 12, b^4*d^10>,< 39, 12, b^4*d>,< 39, 12, b^4*d^7>,< 78, 18, a*d>,< 78, 18, a*c^2*d>,< 78, 18, a*d^5>,< 78, 18, a*c^2*d^18>,< 78, 18, a*d^7>,< 78, 18, a*c*d^6>,< 78, 18, a*d^2>,< 78, 18, a*c*d^2>,< 78, 18, a*c*d^9>,< 78, 18, a*d^4>,< 78, 18, a*c*d^3>,< 78, 18, a*c^2*d^3>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, 2, 0, 2, 2, -1, -1, -1, 2, 0, 0, 2, 2, -1, 2, -1, -1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, 2, 2, 2, 2, -1, -1, -1, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, 2, 0, 2, 2, -1, -1, 2, -1, 0, 0, 2, 2, -1, -1, 2, -1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, 2, -1, -1, -1, -1, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, 2, 0, 2, 2, -1, 2, -1, -1, 0, 0, 2, 2, -1, -1, -1, 2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, 2, 0, 2, 2, 2, -1, -1, -1, 0, 0, 2, 2, 2, -1, -1, -1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, -2, 0, 2, 2, -1, -1, -1, 2, 0, 0, -2, -2, 1, -2, 1, 1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, 2, 2, 2, 2, -1, -1, -1, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, -2, 0, 2, 2, -1, -1, 2, -1, 0, 0, -2, -2, 1, 1, -2, 1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, 2, -1, -1, -1, -1, 2, 2, -1, 2, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, -2, 0, 2, 2, -1, 2, -1, -1, 0, 0, -2, -2, 1, 1, 1, -2, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 2, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 0, -2, 0, 2, 2, 2, -1, -1, -1, 0, 0, -2, -2, -2, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,2,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^4+K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |2,-2,0,0,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,1,3,1,3*K.1^-1,3*K.1,0,0,0,0,K.1^-1,K.1,3*K.1,3*K.1^-1,0,0,0,0,K.1^-1,K.1,3,3,3,3,3,3,1,1,1,1,1,1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,1,3,1,3*K.1,3*K.1^-1,0,0,0,0,K.1,K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,K.1,K.1^-1,3,3,3,3,3,3,1,1,1,1,1,1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,3*K.1^-1,3*K.1,0,0,0,0,-1*K.1^-1,-1*K.1,3*K.1,3*K.1^-1,0,0,0,0,-1*K.1^-1,-1*K.1,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,3,-1,3*K.1,3*K.1^-1,0,0,0,0,-1*K.1,-1*K.1^-1,3*K.1^-1,3*K.1,0,0,0,0,-1*K.1,-1*K.1^-1,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,3*K.1^-1,3*K.1,0,0,0,0,-1*K.1^-1,-1*K.1,-3*K.1,-3*K.1^-1,0,0,0,0,K.1^-1,K.1,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,-1,-3,1,3*K.1,3*K.1^-1,0,0,0,0,-1*K.1,-1*K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,K.1,K.1^-1,3,3,3,3,3,3,-1,-1,-1,-1,-1,-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,1,-3,-1,3*K.1^-1,3*K.1,0,0,0,0,K.1^-1,K.1,-3*K.1,-3*K.1^-1,0,0,0,0,-1*K.1^-1,-1*K.1,3,3,3,3,3,3,1,1,1,1,1,1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |3,1,-3,-1,3*K.1,3*K.1^-1,0,0,0,0,K.1,K.1^-1,-3*K.1^-1,-3*K.1,0,0,0,0,-1*K.1,-1*K.1^-1,3,3,3,3,3,3,1,1,1,1,1,1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,3*K.1,3*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1^6+2*K.1^-6,-1*K.1^6-K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,2*K.1^5+2*K.1^-5,-1*K.1^5-K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,2*K.1^4+2*K.1^-4,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,2*K.1+2*K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,-2,4,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^3-K.1^-3,2*K.1^4+2*K.1^-4,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1^6-K.1^-6,2*K.1^6+2*K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,2*K.1^2+2*K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-1*K.1^5-K.1^-5,2*K.1^5+2*K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^2-K.1^-2,2*K.1^6+2*K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,-1*K.1^4-K.1^-4,2*K.1^4+2*K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^5-K.1^-5,2*K.1^2+2*K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1-K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^5+2*K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,-2,4,-2,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^6-K.1^-6,2*K.1^5+2*K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,2*K.1^4+2*K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-1*K.1^4-K.1^-4,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,-1*K.1-K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-1*K.1^6-K.1^-6,2*K.1^5+2*K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,-1*K.1^2-K.1^-2,2*K.1^6+2*K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,2*K.1^4+2*K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,-2,4,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,-1*K.1^5-K.1^-5,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,2*K.1^5+2*K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,2*K.1^4+2*K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,2*K.1^6+2*K.1^-6,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(13: Sparse := true); S := [ K |4,0,0,0,4,4,4,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^18+3*K.1^-18,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,K.1^18+K.1^-18,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^15+K.1^-15,K.1^12+K.1^-12,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7+K.1^19,K.1^10+K.1^16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^4+K.1^-17,-1*K.1^3-K.1^16+K.1^-16,K.1^5+K.1^8,-1*K.1^5-K.1^8-K.1^18-K.1^-18,-1*K.1^6-K.1^19+K.1^-19,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^2+K.1^11,-1*K.1^9+K.1^17-K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^18+3*K.1^-18,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,K.1^18+K.1^-18,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^15+K.1^-15,K.1^12+K.1^-12,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^10+3*K.1^16,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^19+K.1^-19,-1*K.1^3-K.1^16+K.1^-16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^9+K.1^17-K.1^-17,K.1^10+K.1^16,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^5+K.1^8,K.1^7+K.1^19,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^2+K.1^11,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^4+K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^15+3*K.1^-15,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,K.1^15+K.1^-15,K.1^9+K.1^-9,K.1^12+K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^3+K.1^-3,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^3-3*K.1^16+3*K.1^-16,-3*K.1^9+3*K.1^17-3*K.1^-17,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^4+K.1^-17,K.1^10+K.1^16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^9+K.1^17-K.1^-17,K.1^2+K.1^11,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^5+K.1^8,-1*K.1^3-K.1^16+K.1^-16,K.1^7+K.1^19,-1*K.1^6-K.1^19+K.1^-19,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^15+3*K.1^-15,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,K.1^15+K.1^-15,K.1^9+K.1^-9,K.1^12+K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^3+K.1^-3,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^10+3*K.1^16,3*K.1^4+3*K.1^-17,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^8,-1*K.1^9+K.1^17-K.1^-17,-1*K.1^3-K.1^16+K.1^-16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^4+K.1^-17,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^2+K.1^11,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^10+K.1^16,-1*K.1^6-K.1^19+K.1^-19,K.1^7+K.1^19,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^12+3*K.1^-12,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,K.1^12+K.1^-12,K.1^15+K.1^-15,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^18+K.1^-18,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^5+3*K.1^8,3*K.1^2+3*K.1^11,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-17,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^7+K.1^19,K.1^2+K.1^11,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^9+K.1^17-K.1^-17,K.1^5+K.1^8,K.1^10+K.1^16,-1*K.1^3-K.1^16+K.1^-16,-1*K.1^6-K.1^19+K.1^-19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^12+3*K.1^-12,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,K.1^12+K.1^-12,K.1^15+K.1^-15,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^18+K.1^-18,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9+K.1^17-K.1^-17,K.1^2+K.1^11,K.1^5+K.1^8,-1*K.1^6-K.1^19+K.1^-19,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^4+K.1^-17,-1*K.1^5-K.1^8-K.1^18-K.1^-18,-1*K.1^3-K.1^16+K.1^-16,K.1^10+K.1^16,K.1^7+K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^9+3*K.1^-9,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,K.1^9+K.1^-9,K.1^18+K.1^-18,K.1^15+K.1^-15,K.1^3+K.1^-3,K.1^12+K.1^-12,K.1^6+K.1^-6,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^5+3*K.1^8,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10+K.1^16,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^7+K.1^19,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^5+K.1^8,-1*K.1^9+K.1^17-K.1^-17,K.1^4+K.1^-17,-1*K.1^3-K.1^16+K.1^-16,-1*K.1^6-K.1^19+K.1^-19,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^2+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^9+3*K.1^-9,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,K.1^9+K.1^-9,K.1^18+K.1^-18,K.1^15+K.1^-15,K.1^3+K.1^-3,K.1^12+K.1^-12,K.1^6+K.1^-6,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3*K.1^7+3*K.1^19,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^16+K.1^-16,K.1^5+K.1^8,-1*K.1^6-K.1^19+K.1^-19,K.1^2+K.1^11,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^4+K.1^-17,-1*K.1^9+K.1^17-K.1^-17,K.1^10+K.1^16,K.1^7+K.1^19,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^6+3*K.1^-6,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^3+K.1^-3,K.1^15+K.1^-15,K.1^18+K.1^-18,K.1^9+K.1^-9,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,-3*K.1^9+3*K.1^17-3*K.1^-17,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^4+K.1^-17,K.1^10+K.1^16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^6-K.1^19+K.1^-19,K.1^7+K.1^19,K.1^2+K.1^11,-1*K.1^9+K.1^17-K.1^-17,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^5+K.1^8,-1*K.1^3-K.1^16+K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^6+3*K.1^-6,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^3+K.1^-3,K.1^15+K.1^-15,K.1^18+K.1^-18,K.1^9+K.1^-9,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,3*K.1^4+3*K.1^-17,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^11,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^9+K.1^17-K.1^-17,-1*K.1^3-K.1^16+K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^7+K.1^19,-1*K.1^6-K.1^19+K.1^-19,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,K.1^4+K.1^-17,K.1^5+K.1^8,-1*K.1^5-K.1^8-K.1^18-K.1^-18,K.1^10+K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,2*K.1^-13,2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^3+3*K.1^-3,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^9+K.1^-9,K.1^15+K.1^-15,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,3*K.1^2+3*K.1^11,-3*K.1^6-3*K.1^19+3*K.1^-19,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^7+K.1^19,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,-1*K.1^5-K.1^8-K.1^18-K.1^-18,-1*K.1^6-K.1^19+K.1^-19,-1*K.1^3-K.1^16+K.1^-16,K.1^10+K.1^16,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^2+K.1^11,K.1^4+K.1^-17,-1*K.1^9+K.1^17-K.1^-17,K.1^5+K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,2*K.1^13,2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^3+3*K.1^-3,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^9+K.1^-9,K.1^15+K.1^-15,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^7+3*K.1^19,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^13+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^6-K.1^19+K.1^-19,K.1^2+K.1^11,K.1^5+K.1^8,K.1^7+K.1^19,K.1^10+K.1^16,-1*K.1^3-K.1^16+K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^12-K.1^13+K.1^14-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^4+K.1^6-K.1^7+K.1^9-K.1^10-K.1^11+K.1^12-K.1^14-K.1^17+K.1^18-K.1^-19+K.1^-18-K.1^-16,-1*K.1^9+K.1^17-K.1^-17,K.1^4+K.1^-17,-1*K.1^5-K.1^8-K.1^18-K.1^-18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^18+3*K.1^-18,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^15-K.1^-15,-1*K.1^12-K.1^-12,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^19,-1*K.1^10-K.1^16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^4-K.1^-17,K.1^3+K.1^16-K.1^-16,-1*K.1^5-K.1^8,K.1^5+K.1^8+K.1^18+K.1^-18,K.1^6+K.1^19-K.1^-19,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^2-K.1^11,K.1^9-K.1^17+K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^18+3*K.1^-18,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^15-K.1^-15,-1*K.1^12-K.1^-12,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^10+3*K.1^16,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^19-K.1^-19,K.1^3+K.1^16-K.1^-16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^9-K.1^17+K.1^-17,-1*K.1^10-K.1^16,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^5-K.1^8,-1*K.1^7-K.1^19,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^2-K.1^11,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^4-K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^15+3*K.1^-15,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^3-3*K.1^16+3*K.1^-16,-3*K.1^9+3*K.1^17-3*K.1^-17,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^4-K.1^-17,-1*K.1^10-K.1^16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^9-K.1^17+K.1^-17,-1*K.1^2-K.1^11,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^5-K.1^8,K.1^3+K.1^16-K.1^-16,-1*K.1^7-K.1^19,K.1^6+K.1^19-K.1^-19,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^15+3*K.1^-15,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^10+3*K.1^16,3*K.1^4+3*K.1^-17,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^8,K.1^9-K.1^17+K.1^-17,K.1^3+K.1^16-K.1^-16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^4-K.1^-17,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^2-K.1^11,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^10-K.1^16,K.1^6+K.1^19-K.1^-19,-1*K.1^7-K.1^19,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^12+3*K.1^-12,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^15-K.1^-15,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^18-K.1^-18,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^5+3*K.1^8,3*K.1^2+3*K.1^11,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-17,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^7-K.1^19,-1*K.1^2-K.1^11,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,K.1^9-K.1^17+K.1^-17,-1*K.1^5-K.1^8,-1*K.1^10-K.1^16,K.1^3+K.1^16-K.1^-16,K.1^6+K.1^19-K.1^-19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^12+3*K.1^-12,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^15-K.1^-15,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^18-K.1^-18,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9-K.1^17+K.1^-17,-1*K.1^2-K.1^11,-1*K.1^5-K.1^8,K.1^6+K.1^19-K.1^-19,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^4-K.1^-17,K.1^5+K.1^8+K.1^18+K.1^-18,K.1^3+K.1^16-K.1^-16,-1*K.1^10-K.1^16,-1*K.1^7-K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^9+3*K.1^-9,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^18-K.1^-18,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^5+3*K.1^8,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^7+3*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^16,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^7-K.1^19,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^5-K.1^8,K.1^9-K.1^17+K.1^-17,-1*K.1^4-K.1^-17,K.1^3+K.1^16-K.1^-16,K.1^6+K.1^19-K.1^-19,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^2-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^9+3*K.1^-9,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^6+3*K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^18-K.1^-18,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3*K.1^7+3*K.1^19,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,-3*K.1^6-3*K.1^19+3*K.1^-19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^16-K.1^-16,-1*K.1^5-K.1^8,K.1^6+K.1^19-K.1^-19,-1*K.1^2-K.1^11,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^4-K.1^-17,K.1^9-K.1^17+K.1^-17,-1*K.1^10-K.1^16,-1*K.1^7-K.1^19,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^6+3*K.1^-6,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,-1*K.1^18-K.1^-18,-1*K.1^9-K.1^-9,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,-3*K.1^9+3*K.1^17-3*K.1^-17,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^7+3*K.1^19,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^4-K.1^-17,-1*K.1^10-K.1^16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^6+K.1^19-K.1^-19,-1*K.1^7-K.1^19,-1*K.1^2-K.1^11,K.1^9-K.1^17+K.1^-17,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^5-K.1^8,K.1^3+K.1^16-K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^6+3*K.1^-6,3*K.1^18+3*K.1^-18,3*K.1^3+3*K.1^-3,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,3*K.1^9+3*K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,-1*K.1^18-K.1^-18,-1*K.1^9-K.1^-9,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3*K.1^5+3*K.1^8,3*K.1^4+3*K.1^-17,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^2+3*K.1^11,3*K.1^10+3*K.1^16,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^11,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^9-K.1^17+K.1^-17,K.1^3+K.1^16-K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^7-K.1^19,K.1^6+K.1^19-K.1^-19,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,-1*K.1^4-K.1^-17,-1*K.1^5-K.1^8,K.1^5+K.1^8+K.1^18+K.1^-18,-1*K.1^10-K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^-13,6*K.1^13,0,0,0,0,-2*K.1^-13,-2*K.1^13,0,0,0,0,0,0,0,0,3*K.1^3+3*K.1^-3,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,3*K.1^7+3*K.1^19,-3*K.1^9+3*K.1^17-3*K.1^-17,3*K.1^4+3*K.1^-17,3*K.1^2+3*K.1^11,-3*K.1^6-3*K.1^19+3*K.1^-19,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3*K.1^5+3*K.1^8,3*K.1^10+3*K.1^16,-3*K.1^3-3*K.1^16+3*K.1^-16,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1*K.1^7-K.1^19,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,K.1^5+K.1^8+K.1^18+K.1^-18,K.1^6+K.1^19-K.1^-19,K.1^3+K.1^16-K.1^-16,-1*K.1^10-K.1^16,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,-1*K.1^2-K.1^11,-1*K.1^4-K.1^-17,K.1^9-K.1^17+K.1^-17,-1*K.1^5-K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(39: Sparse := true); S := [ K |6,-2,0,0,6*K.1^13,6*K.1^-13,0,0,0,0,-2*K.1^13,-2*K.1^-13,0,0,0,0,0,0,0,0,3*K.1^3+3*K.1^-3,3*K.1^9+3*K.1^-9,3*K.1^18+3*K.1^-18,3*K.1^6+3*K.1^-6,3*K.1^12+3*K.1^-12,3*K.1^15+3*K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,-3*K.1^6-3*K.1^19+3*K.1^-19,3*K.1^4+3*K.1^-17,-3*K.1^9+3*K.1^17-3*K.1^-17,3-3*K.1-3*K.1^2+3*K.1^3-3*K.1^4+3*K.1^6-3*K.1^7+3*K.1^9-3*K.1^10-3*K.1^11+3*K.1^12-3*K.1^14-3*K.1^17+3*K.1^18-3*K.1^-19+3*K.1^-18-3*K.1^-16,3*K.1^7+3*K.1^19,3*K.1^5+3*K.1^8,-3+3*K.1+3*K.1^2-3*K.1^3+3*K.1^5-3*K.1^6+3*K.1^8-3*K.1^9+3*K.1^11-3*K.1^12-3*K.1^13+3*K.1^14-3*K.1^16+3*K.1^17-3*K.1^19+3*K.1^-19-3*K.1^-17+3*K.1^-16,3-3*K.1^2+3*K.1^3-3*K.1^5+3*K.1^6-3*K.1^8+3*K.1^9-3*K.1^11+3*K.1^13+3*K.1^16-3*K.1^17+3*K.1^19-3*K.1^-19+3*K.1^-17-3*K.1^-16,-3*K.1^5-3*K.1^8-3*K.1^18-3*K.1^-18,-3*K.1^3-3*K.1^16+3*K.1^-16,3*K.1^10+3*K.1^16,3*K.1^2+3*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2-K.1^3+K.1^5-K.1^6+K.1^8-K.1^9+K.1^11-K.1^13-K.1^16+K.1^17-K.1^19+K.1^-19-K.1^-17+K.1^-16,K.1^6+K.1^19-K.1^-19,-1*K.1^2-K.1^11,-1*K.1^5-K.1^8,-1*K.1^7-K.1^19,-1*K.1^10-K.1^16,K.1^3+K.1^16-K.1^-16,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6-K.1^8+K.1^9-K.1^11+K.1^12+K.1^13-K.1^14+K.1^16-K.1^17+K.1^19-K.1^-19+K.1^-17-K.1^-16,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^6+K.1^7-K.1^9+K.1^10+K.1^11-K.1^12+K.1^14+K.1^17-K.1^18+K.1^-19-K.1^-18+K.1^-16,K.1^9-K.1^17+K.1^-17,-1*K.1^4-K.1^-17,K.1^5+K.1^8+K.1^18+K.1^-18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1404_117:= KnownIrreducibles(CR);