/* Group 139968000.a downloaded from the LMFDB on 23 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 18 | (1,7,15,5,12,14,4,9,18,6,10,17,3,8,13)(2,11,16), (1,7,17,2,12,16,5,10,18)(3,9,13,4,11,14,6,8,15) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_139968000_a := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 135, G!(13,16)(15,17)>,< 2, 6075, G!(9,11)(10,12)(13,16)(17,18)>,< 2, 91125, G!(1,5)(2,3)(7,11)(8,10)(13,17)(16,18)>,< 3, 120, G!(7,9,8)(10,11,12)>,< 3, 120, G!(15,16,18)>,< 3, 4800, G!(1,3,6)(2,5,4)(14,18,15)>,< 3, 4800, G!(7,10,12)(8,11,9)(16,17,18)>,< 3, 4800, G!(7,12,9)(8,10,11)(13,15,14)(16,17,18)>,< 3, 4800, G!(4,5,6)(7,10,12)>,< 3, 64000, G!(2,4,3)(7,9,12)(14,18,17)>,< 3, 64000, G!(1,5,6)(2,4,3)(7,9,12)(8,10,11)(13,18,15)(14,17,16)>,< 3, 129600, G!(1,17,8)(2,16,7)(3,18,11)(4,15,12)(5,13,10)(6,14,9)>,< 3, 129600, G!(1,8,17)(2,7,16)(3,11,18)(4,12,15)(5,10,13)(6,9,14)>,< 3, 192000, G!(1,4,3)(2,5,6)(8,12,11)(14,17,18)>,< 3, 192000, G!(1,5,2)(7,12,8)(9,10,11)(13,17,18)(14,16,15)>,< 4, 270, G!(1,6,3,4)(2,5)>,< 4, 12150, G!(1,5)(2,4)(13,17,16,15)(14,18)>,< 4, 12150, G!(7,11)(8,9)(13,15)(14,18,16,17)>,< 4, 24300, G!(1,4,3,6)(2,5)(7,10,8,9)(11,12)>,< 4, 546750, G!(1,6,3,2)(4,5)(7,9)(8,11)(13,15)(17,18)>,< 4, 729000, G!(1,2,5,3)(4,6)(7,10,11,8)(9,12)(13,18,17,16)(14,15)>,< 4, 1093500, G!(1,4)(3,6)(7,8)(9,10,11,12)(13,17,16,18)(14,15)>,< 5, 216, G!(8,11,12,10,9)>,< 5, 216, G!(8,12,9,11,10)>,< 5, 15552, G!(8,11,9,12,10)(13,15,18,14,16)>,< 5, 15552, G!(8,9,10,11,12)(13,18,16,15,14)>,< 5, 15552, G!(8,9,11,10,12)(13,18,16,17,15)>,< 5, 15552, G!(8,11,12,9,10)(13,16,15,18,17)>,< 5, 373248, G!(1,5,2,3,6)(8,10,12,9,11)(13,17,18,14,15)>,< 5, 373248, G!(1,2,6,5,3)(8,12,11,10,9)(13,18,15,17,14)>,< 5, 1119744, G!(1,4,2,6,3)(7,11,9,8,10)(13,14,16,17,18)>,< 5, 1119744, G!(1,2,3,4,6)(7,9,10,11,8)(13,16,18,14,17)>,< 6, 5400, G!(7,8,9)(10,12,11)(13,15)(14,16)>,< 6, 5400, G!(3,4,5)(8,9)(11,12)>,< 6, 5400, G!(1,5)(3,6)(8,9,12)>,< 6, 5400, G!(2,4)(3,5)(7,9,8)(10,11,12)>,< 6, 216000, G!(3,4,6)(7,8)(10,11)(13,17,14)(15,16,18)>,< 6, 216000, G!(1,6,5)(2,4,3)(7,8)(10,12)(13,17,16)(14,18,15)>,< 6, 216000, G!(4,6,5)(7,12,10)(13,14)(15,17)>,< 6, 216000, G!(1,3,2)(4,6,5)(7,12)(9,11)(13,17,16)>,< 6, 243000, G!(1,3)(4,6)(7,8)(9,10)(15,18,16)>,< 6, 243000, G!(1,2)(4,6)(7,10)(9,12)(13,18,15)(14,17,16)>,< 6, 5832000, G!(1,10,17,5,8,13)(2,11,16,3,7,18)(4,12,15)(6,9,14)>,< 6, 5832000, G!(1,13,8,5,17,10)(2,18,7,3,16,11)(4,15,12)(6,14,9)>,< 9, 5184000, G!(1,11,15)(2,7,18,4,9,17,3,12,14)(5,8,16)(6,10,13)>,< 9, 5184000, G!(1,15,11)(2,14,12,3,17,9,4,18,7)(5,16,8)(6,13,10)>,< 9, 5184000, G!(1,17,11,5,16,8,6,14,10)(2,13,12,4,18,7,3,15,9)>,< 9, 5184000, G!(1,10,14,6,8,16,5,11,17)(2,9,15,3,7,18,4,12,13)>,< 10, 9720, G!(8,10,11,9,12)(13,16)(15,17)>,< 10, 9720, G!(8,9,10,12,11)(13,16)(15,17)>,< 10, 9720, G!(1,2,4,6,3)(14,16)(17,18)>,< 10, 9720, G!(1,6,2,3,4)(14,16)(17,18)>,< 10, 437400, G!(1,6,3,4,2)(7,10)(9,11)(13,17)(16,18)>,< 10, 437400, G!(1,4,6,2,3)(7,10)(9,11)(13,17)(16,18)>,< 10, 699840, G!(1,3)(4,6)(8,12,11,10,9)(13,14,15,16,18)>,< 10, 699840, G!(1,3)(4,6)(8,10,12,9,11)(13,16,14,18,15)>,< 10, 699840, G!(1,3)(2,6)(8,10,9,12,11)(13,17,18,15,16)>,< 10, 699840, G!(1,3)(2,6)(8,12,10,11,9)(13,15,17,16,18)>,< 12, 10800, G!(7,9,8)(10,11,12)(13,14,15,16)(17,18)>,< 12, 10800, G!(3,5,4)(7,10)(8,11,9,12)>,< 12, 10800, G!(1,3,5,6)(2,4)(8,12,9)>,< 12, 10800, G!(1,6)(2,5,4,3)(7,8,9)(10,12,11)>,< 12, 432000, G!(3,6,4)(7,11,8,10)(9,12)(13,14,17)(15,18,16)>,< 12, 432000, G!(1,5,6)(2,3,4)(7,10,8,12)(9,11)(13,16,17)(14,15,18)>,< 12, 432000, G!(4,5,6)(7,10,12)(13,15,14,17)(16,18)>,< 12, 432000, G!(1,2,3)(4,5,6)(7,9,12,11)(8,10)(13,16,17)>,< 12, 486000, G!(2,5,4)(7,11)(9,12)(13,16)(14,18,15,17)>,< 12, 486000, G!(1,2,5,6)(3,4)(7,9,8)(10,11,12)(13,16)(15,18)>,< 12, 486000, G!(1,5)(4,6)(8,11,12)(13,14,18,16)(15,17)>,< 12, 486000, G!(1,3,2,5)(4,6)(7,8)(10,12)(13,17,16)(14,18,15)>,< 12, 972000, G!(1,6,3,4)(2,5)(7,9,8,10)(11,12)(15,16,18)>,< 12, 972000, G!(1,4,2,6)(3,5)(7,12,10,9)(8,11)(13,15,18)(14,16,17)>,< 12, 11664000, G!(1,18,10,2,17,11,5,16,8,3,13,7)(4,14,12,6,15,9)>,< 12, 11664000, G!(1,7,13,3,8,16,5,11,17,2,10,18)(4,9,15,6,12,14)>,< 15, 8640, G!(1,5,4,2,3)(7,8,9)(10,12,11)>,< 15, 8640, G!(1,4,3,5,2)(7,9,8)(10,11,12)>,< 15, 8640, G!(3,4,5)(13,18,14,16,15)>,< 15, 8640, G!(3,5,4)(13,14,15,18,16)>,< 15, 8640, G!(8,9,12)(13,16,17,18,14)>,< 15, 8640, G!(8,12,9)(13,17,14,16,18)>,< 15, 8640, G!(7,9,8)(10,11,12)(14,18,17,15,16)>,< 15, 8640, G!(7,8,9)(10,12,11)(14,17,16,18,15)>,< 15, 345600, G!(1,6,3)(2,4,5)(8,12,10,9,11)(14,15,18)>,< 15, 345600, G!(1,3,6)(2,5,4)(8,10,11,12,9)(14,18,15)>,< 15, 345600, G!(1,4,6,3,2)(7,12,10)(8,9,11)(16,18,17)>,< 15, 345600, G!(1,6,2,4,3)(7,10,12)(8,11,9)(16,17,18)>,< 15, 345600, G!(1,5,6,4,2)(7,9,12)(8,11,10)(13,14,15)(16,18,17)>,< 15, 345600, G!(1,6,2,5,4)(7,12,9)(8,10,11)(13,15,14)(16,17,18)>,< 15, 345600, G!(2,5,3)(7,10,8,12,11)(13,17,16)>,< 15, 345600, G!(2,3,5)(7,8,11,10,12)(13,16,17)>,< 15, 622080, G!(1,2,6,4,3)(7,10,12)(8,11,9)(13,18,14,16,15)>,< 15, 622080, G!(1,6,3,2,4)(7,12,10)(8,9,11)(13,14,15,18,16)>,< 15, 622080, G!(1,3,4,2,6)(7,10,9,12,11)(14,18,17)>,< 15, 622080, G!(1,4,6,3,2)(7,9,11,10,12)(14,17,18)>,< 15, 622080, G!(1,4,5,3,6)(7,9,12,11,8)(13,18,15)(14,16,17)>,< 15, 622080, G!(1,5,6,4,3)(7,12,8,9,11)(13,15,18)(14,17,16)>,< 15, 622080, G!(1,5,3)(7,11,10,8,12)(13,18,16,17,14)>,< 15, 622080, G!(1,3,5)(7,10,12,11,8)(13,16,14,18,17)>,< 15, 9331200, G!(1,12,18,5,9,14,2,11,15,3,8,13,6,10,17)(4,7,16)>,< 15, 9331200, G!(1,17,10,6,13,8,3,15,11,2,14,9,5,18,12)(4,16,7)>,< 15, 9331200, G!(1,18,9,2,15,8,6,17,12,5,14,11,3,13,10)(4,16,7)>,< 15, 9331200, G!(1,10,13,3,11,14,5,12,17,6,8,15,2,9,18)(4,7,16)>,< 20, 19440, G!(1,4,3,5,2)(13,16,15,14)(17,18)>,< 20, 19440, G!(1,5,4,2,3)(13,14,15,16)(17,18)>,< 20, 19440, G!(1,6,5,3)(2,4)(13,17,14,16,18)>,< 20, 19440, G!(1,3,5,6)(2,4)(13,16,17,18,14)>,< 20, 874800, G!(1,5)(2,4)(8,9,10,12,11)(13,17,16,15)(14,18)>,< 20, 874800, G!(1,5)(2,4)(8,12,9,11,10)(13,15,16,17)(14,18)>,< 20, 874800, G!(1,6,2,3,4)(7,11)(8,9)(13,15)(14,18,16,17)>,< 20, 874800, G!(1,3,6,4,2)(7,11)(8,9)(13,15)(14,17,16,18)>,< 20, 1399680, G!(1,6,3,4)(2,5)(8,10,12,9,11)(13,16,14,18,15)>,< 20, 1399680, G!(1,4,3,6)(2,5)(8,9,10,11,12)(13,18,16,15,14)>,< 20, 1399680, G!(1,6,3,2)(4,5)(8,12,10,11,9)(13,15,17,16,18)>,< 20, 1399680, G!(1,2,3,6)(4,5)(8,11,12,9,10)(13,16,15,18,17)>,< 20, 1749600, G!(1,4,6,2,3)(7,9,10,11)(8,12)(13,16,17,18)(14,15)>,< 20, 1749600, G!(1,2,4,3,6)(7,11,10,9)(8,12)(13,18,17,16)(14,15)>,< 30, 388800, G!(1,2,5,3,4)(7,9,8)(10,11,12)(13,15)(14,16)>,< 30, 388800, G!(1,5,4,2,3)(7,9,8)(10,11,12)(13,15)(14,16)>,< 30, 388800, G!(3,5,4)(8,9)(11,12)(13,16,18,15,14)>,< 30, 388800, G!(3,5,4)(8,9)(11,12)(13,18,14,16,15)>,< 30, 388800, G!(1,5)(3,6)(8,12,9)(13,18,16,14,17)>,< 30, 388800, G!(1,5)(3,6)(8,12,9)(13,16,17,18,14)>,< 30, 388800, G!(2,4)(3,5)(7,8,9)(10,12,11)(14,15,18,16,17)>,< 30, 388800, G!(2,4)(3,5)(7,8,9)(10,12,11)(14,18,17,15,16)>,< 60, 777600, G!(1,3,2,4,5)(7,8,9)(10,12,11)(13,14,15,16)(17,18)>,< 60, 777600, G!(1,2,5,3,4)(7,8,9)(10,12,11)(13,16,15,14)(17,18)>,< 60, 777600, G!(3,4,5)(7,10)(8,11,9,12)(13,15,16,14,18)>,< 60, 777600, G!(3,4,5)(7,10)(8,12,9,11)(13,16,18,15,14)>,< 60, 777600, G!(1,3,5,6)(2,4)(8,9,12)(13,14,18,17,16)>,< 60, 777600, G!(1,6,5,3)(2,4)(8,9,12)(13,18,16,14,17)>,< 60, 777600, G!(1,6)(2,5,4,3)(7,9,8)(10,11,12)(14,16,15,17,18)>,< 60, 777600, G!(1,6)(2,3,4,5)(7,9,8)(10,11,12)(14,15,18,16,17)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[15, 11, 7, 3, 9, 12, 6, 3, 6, 9, 6, -3, 0, 0, 3, 0, 9, 5, 5, 3, 1, -3, -1, 10, 10, 5, 5, 5, 5, 0, 0, 0, 0, 5, 8, 8, 5, 2, 5, -1, 2, 4, 1, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 2, 2, 1, 1, 1, 1, 6, 3, 3, 6, 0, 3, -3, 0, 2, -1, 2, -1, 0, -3, 0, 0, 4, 4, 7, 7, 4, 4, 7, 7, 1, 1, -2, -2, 1, 1, 4, 4, 2, -1, -1, 2, 2, -1, -1, 2, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, -2, -2, 0, 0, 3, 3, 3, 3, 0, 0, 1, 1, -2, -2, 1, 1, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[15, 11, 7, 3, 12, 9, 6, 9, 6, 3, -3, 6, 0, 0, 0, 3, 9, 5, 5, 3, 1, -3, -1, 10, 10, 5, 5, 5, 5, 0, 0, 0, 0, 8, 5, 5, 8, 2, -1, 5, 2, 1, 4, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 2, 2, 1, 1, 1, 1, 3, 6, 6, 3, 0, -3, 3, 0, -1, 2, -1, 2, -3, 0, 0, 0, 7, 7, 4, 4, 7, 7, 4, 4, 1, 1, 4, 4, 1, 1, -2, -2, -1, 2, 2, -1, -1, 2, 2, -1, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, -2, -2, 3, 3, 0, 0, 0, 0, 3, 3, -2, -2, 1, 1, -2, -2, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |24,16,8,0,15,15,6,6,6,6,-3,-3,0,0,-3,-3,16,8,8,8,0,0,0,17+K.1^2+K.1^-2,16-K.1^2-K.1^-2,10+2*K.1^2+2*K.1^-2,8-2*K.1^2-2*K.1^-2,9,9,-3*K.1-3*K.1^-1,-3*K.1^2-3*K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,7,7,7,7,-2,-2,-2,-2,-1,-1,0,0,0,0,0,0,8-K.1^2-K.1^-2,9+K.1^2+K.1^-2,8-K.1^2-K.1^-2,9+K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1,1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,7,7,7,7,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,0,0,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,1+2*K.1^2+2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0,0,0,-1-2*K.1^2-2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0,0,0,8-K.1^2-K.1^-2,9+K.1^2+K.1^-2,9+K.1^2+K.1^-2,8-K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,1,1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |24,16,8,0,15,15,6,6,6,6,-3,-3,0,0,-3,-3,16,8,8,8,0,0,0,16-K.1^2-K.1^-2,17+K.1^2+K.1^-2,8-2*K.1^2-2*K.1^-2,10+2*K.1^2+2*K.1^-2,9,9,-3*K.1^2-3*K.1^-2,-3*K.1-3*K.1^-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,7,7,7,7,-2,-2,-2,-2,-1,-1,0,0,0,0,0,0,9+K.1^2+K.1^-2,8-K.1^2-K.1^-2,9+K.1^2+K.1^-2,8-K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1,1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,7,7,7,7,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,0,0,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,8+K.1^2+K.1^-2,7-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1-2*K.1^2-2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0,0,0,1+2*K.1^2+2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0,0,0,9+K.1^2+K.1^-2,8-K.1^2-K.1^-2,8-K.1^2-K.1^-2,9+K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,1,1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 19, 11, 3, 18, 18, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 19, 11, 11, 11, 3, 3, 3, 17, 17, 7, 7, 7, 7, -3, -3, -3, -3, 10, 10, 10, 10, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 1, 1, -1, -1, -1, -1, 10, 10, 10, 10, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 9, 9, 9, 9, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[30, 18, 6, -6, 21, 21, 12, 12, 12, 12, 3, 3, 0, 0, 3, 3, 20, 8, 8, 10, -4, 0, -2, 20, 20, 10, 10, 10, 10, 0, 0, 0, 0, 9, 9, 9, 9, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, -4, -4, -2, -2, -2, -2, 11, 11, 11, 11, 2, 2, 2, 2, -1, -1, -1, -1, 1, 1, 0, 0, 11, 11, 11, 11, 11, 11, 11, 11, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 10, 10, 10, 10, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[75, 35, 11, 3, 15, 45, 3, -9, 3, 24, 12, 3, 0, 0, 0, -3, 15, -1, -1, -9, -1, 3, -1, 25, 25, 0, 0, 0, 0, 0, 0, 0, 0, -1, 17, 17, -1, -1, 8, -1, -1, 5, -1, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 0, 0, 0, 0, 3, -9, -9, 3, -3, 0, 3, -3, -1, -1, -1, -1, -3, 3, 0, 0, -5, -5, 10, 10, -5, -5, 10, 10, -2, -2, 1, 1, -2, -2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, -1, -1, 2, 2, 2, 2, -1, -1, -2, -2, 1, 1, -2, -2, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[75, 35, 11, 3, 30, 30, -6, 3, 21, 3, -6, -6, 0, 0, 3, 3, 15, -1, -1, -9, -1, 3, -1, 25, 25, 0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 2, 14, 5, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 0, 0, 0, 0, 6, -12, 6, -12, -3, -3, -3, 6, -4, 2, 2, -4, 0, 0, 0, 0, 10, 10, -5, -5, -5, -5, 10, 10, 4, 4, -2, -2, 1, 1, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 2, 2, -1, -1, 2, 2, -1, -1, 1, 1, 1, 1, -2, -2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[75, 35, 11, 3, 30, 30, 21, 3, -6, 3, -6, -6, 0, 0, 3, 3, 15, -1, -1, -9, -1, 3, -1, 25, 25, 0, 0, 0, 0, 0, 0, 0, 0, 14, 2, 14, 2, 2, -1, -1, 5, 2, 2, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 0, 0, 0, 0, -12, 6, -12, 6, 6, -3, -3, -3, 2, -4, -4, 2, 0, 0, 0, 0, -5, -5, 10, 10, 10, 10, -5, -5, 1, 1, -2, -2, 4, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, -1, -1, 2, 2, -1, -1, 2, 2, -2, -2, -2, -2, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[75, 35, 11, 3, 45, 15, 3, 24, 3, -9, 3, 12, 0, 0, -3, 0, 15, -1, -1, -9, -1, 3, -1, 25, 25, 0, 0, 0, 0, 0, 0, 0, 0, 17, -1, -1, 17, -1, -1, 8, -1, -1, 5, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 0, 0, 0, 0, -9, 3, 3, -9, -3, 3, 0, -3, -1, -1, -1, -1, 3, -3, 0, 0, 10, 10, -5, -5, 10, 10, -5, -5, -2, -2, 4, 4, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 2, 2, -1, -1, -1, -1, 2, 2, 1, 1, -2, -2, 1, 1, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,27,51,-15,-12,12,9,-6,3,0,0,-3,0,32,-8,8,-8,0,0,0,45+5*K.1^2+5*K.1^-2,40-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,0,0,0,0,-9,15,3,3,0,-3,0,-3,-1,-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,17,-7,-13,-13,2,-1,2,-1,-1,-1,1,1,1,1,0,0,-5+K.1^2+K.1^-2,-6-K.1^2-K.1^-2,-5-2*K.1^2-2*K.1^-2,-3+2*K.1^2+2*K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,-3-K.1^2-K.1^-2,-2+K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,27,51,-15,-12,12,9,-6,3,0,0,-3,0,32,-8,8,-8,0,0,0,40-5*K.1^2-5*K.1^-2,45+5*K.1^2+5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,0,0,0,0,-9,15,3,3,0,-3,0,-3,-1,-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,17,-7,-13,-13,2,-1,2,-1,-1,-1,1,1,1,1,0,0,-6-K.1^2-K.1^-2,-5+K.1^2+K.1^-2,-3+2*K.1^2+2*K.1^-2,-5-2*K.1^2-2*K.1^-2,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,-2+K.1^2+K.1^-2,-3-K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,27,51,12,-12,-15,9,-6,3,0,0,-3,0,32,8,-8,-8,0,0,0,45+5*K.1^2+5*K.1^-2,40-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,0,0,0,0,3,3,15,-9,-3,-3,0,0,-1,-1,0,0,0,0,0,0,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-13,-13,-7,17,-1,-1,2,2,1,1,-1,-1,1,1,0,0,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,-5+K.1^2+K.1^-2,-6-K.1^2-K.1^-2,-5-2*K.1^2-2*K.1^-2,-3+2*K.1^2+2*K.1^-2,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-3-K.1^2-K.1^-2,-2+K.1^2+K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,27,51,12,-12,-15,9,-6,3,0,0,-3,0,32,8,-8,-8,0,0,0,40-5*K.1^2-5*K.1^-2,45+5*K.1^2+5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,0,0,0,0,3,3,15,-9,-3,-3,0,0,-1,-1,0,0,0,0,0,0,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-13,-13,-7,17,-1,-1,2,2,1,1,-1,-1,1,1,0,0,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,-6-K.1^2-K.1^-2,-5+K.1^2+K.1^-2,-3+2*K.1^2+2*K.1^-2,-5-2*K.1^2-2*K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2+K.1^2+K.1^-2,-3-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,51,27,-15,9,12,-12,3,-6,0,0,0,-3,32,8,-8,-8,0,0,0,45+5*K.1^2+5*K.1^-2,40-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,0,0,0,0,3,3,-9,15,0,0,-3,-3,-1,-1,0,0,0,0,0,0,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-13,-13,17,-7,2,2,-1,-1,1,1,-1,-1,1,1,0,0,16-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-5-2*K.1^2-2*K.1^-2,-3+2*K.1^2+2*K.1^-2,-5+K.1^2+K.1^-2,-6-K.1^2-K.1^-2,-3-K.1^2-K.1^-2,-2+K.1^2+K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,51,27,-15,9,12,-12,3,-6,0,0,0,-3,32,8,-8,-8,0,0,0,40-5*K.1^2-5*K.1^-2,45+5*K.1^2+5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,0,0,0,0,3,3,-9,15,0,0,-3,-3,-1,-1,0,0,0,0,0,0,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-13,-13,17,-7,2,2,-1,-1,1,1,-1,-1,1,1,0,0,21+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+2*K.1^2+2*K.1^-2,-5-2*K.1^2-2*K.1^-2,-6-K.1^2-K.1^-2,-5+K.1^2+K.1^-2,-2+K.1^2+K.1^-2,-3-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,51,27,12,9,-15,-12,3,-6,0,0,0,-3,32,-8,8,-8,0,0,0,45+5*K.1^2+5*K.1^-2,40-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,0,0,0,0,15,-9,3,3,-3,0,-3,0,-1,-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-7,17,-13,-13,-1,2,-1,2,-1,-1,1,1,1,1,0,0,-5-2*K.1^2-2*K.1^-2,-3+2*K.1^2+2*K.1^-2,-5+K.1^2+K.1^-2,-6-K.1^2-K.1^-2,16-5*K.1^2-5*K.1^-2,21+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-3-K.1^2-K.1^-2,-2+K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,0,0,0,0,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |120,48,8,0,51,27,12,9,-15,-12,3,-6,0,0,0,-3,32,-8,8,-8,0,0,0,40-5*K.1^2-5*K.1^-2,45+5*K.1^2+5*K.1^-2,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,0,0,0,0,15,-9,3,3,-3,0,-3,0,-1,-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-7,17,-13,-13,-1,2,-1,2,-1,-1,1,1,1,1,0,0,-3+2*K.1^2+2*K.1^-2,-5-2*K.1^2-2*K.1^-2,-6-K.1^2-K.1^-2,-5+K.1^2+K.1^-2,21+5*K.1^2+5*K.1^-2,16-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2+K.1^2+K.1^-2,-3-K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,K.1+K.1^-1,0,0,0,0,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[125, 25, 5, 1, -25, 50, -10, 5, -10, 20, 8, -1, 5, 5, -4, 2, -25, -5, -5, 5, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 10, 10, -5, -2, 4, 1, -2, 2, -1, 1, 1, 2, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 5, 5, -10, 2, -4, -1, 2, -2, 1, -2, 1, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[125, 25, 5, 1, 50, -25, -10, 20, -10, 5, -1, 8, 5, 5, 2, -4, -25, -5, -5, 5, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, -5, -5, 10, -2, 1, 4, -2, -1, 2, 1, 1, -1, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, -10, -10, 5, 2, -1, -4, 2, 1, -2, 1, -2, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |125,25,5,1,-25,50,-10,5,-10,20,8,-1,5*K.1^-1,5*K.1,-4,2,-25,-5,-5,5,-1,-1,1,0,0,0,0,0,0,0,0,0,0,-5,10,10,-5,-2,4,1,-2,2,-1,K.1,K.1^-1,2*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,-10,5,5,-10,2,-4,-1,2,-2,1,-2,1,2,-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |125,25,5,1,-25,50,-10,5,-10,20,8,-1,5*K.1,5*K.1^-1,-4,2,-25,-5,-5,5,-1,-1,1,0,0,0,0,0,0,0,0,0,0,-5,10,10,-5,-2,4,1,-2,2,-1,K.1^-1,K.1,2*K.1,-1*K.1^-1,-1*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-10,5,5,-10,2,-4,-1,2,-2,1,-2,1,2,-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |125,25,5,1,50,-25,-10,20,-10,5,-1,8,5*K.1^-1,5*K.1,2,-4,-25,-5,-5,5,-1,-1,1,0,0,0,0,0,0,0,0,0,0,10,-5,-5,10,-2,1,4,-2,-1,2,K.1,K.1^-1,-1*K.1^-1,2*K.1,2*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,5,-10,-10,5,2,-1,-4,2,1,-2,1,-2,-1,2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |125,25,5,1,50,-25,-10,20,-10,5,-1,8,5*K.1,5*K.1^-1,2,-4,-25,-5,-5,5,-1,-1,1,0,0,0,0,0,0,0,0,0,0,10,-5,-5,10,-2,1,4,-2,-1,2,K.1^-1,K.1,-1*K.1,2*K.1^-1,2*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,5,-10,-10,5,2,-1,-4,2,1,-2,1,-2,-1,2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[135, 59, 15, 3, 36, 63, -9, -9, 18, 18, 0, 0, 0, 0, 0, 0, 41, -3, 13, -5, 1, -3, -1, 40, 40, -5, -5, -5, -5, 0, 0, 0, 0, -4, 23, 11, 8, 2, 2, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, -1, -1, -1, -1, 23, -4, -10, -7, 2, 2, -1, -1, 1, -2, 3, 0, 1, -2, 0, 0, 1, 1, -2, -2, -14, -14, 13, 13, 1, 1, 1, 1, -2, -2, -2, -2, -2, 1, 1, -2, -2, 1, 1, -2, 0, 0, 0, 0, -14, -14, 6, 6, 2, 2, -2, -2, 1, 1, 1, 1, 0, 0, 1, 1, -2, -2, 1, 1, -2, -2, -2, -2, 0, 0, 3, 3, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[135, 59, 15, 3, 36, 63, 18, -9, -9, 18, 0, 0, 0, 0, 0, 0, 41, 13, -3, -5, 1, -3, -1, 40, 40, -5, -5, -5, -5, 0, 0, 0, 0, 8, 11, 23, -4, -1, 2, -1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, -1, -1, -1, -1, -7, -10, -4, 23, -1, 2, -1, 2, 3, 0, 1, -2, 1, -2, 0, 0, -14, -14, 13, 13, 1, 1, -2, -2, -2, -2, 1, 1, 1, 1, -2, -2, -2, 1, 1, -2, -2, 1, 1, -2, 0, 0, 0, 0, 6, 6, -14, -14, -2, -2, 2, 2, 1, 1, 1, 1, 0, 0, -2, -2, 1, 1, -2, -2, 1, 1, 3, 3, 1, 1, -2, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[135, 59, 15, 3, 63, 36, -9, 18, 18, -9, 0, 0, 0, 0, 0, 0, 41, 13, -3, -5, 1, -3, -1, 40, 40, -5, -5, -5, -5, 0, 0, 0, 0, 11, 8, -4, 23, 2, -1, 2, -1, 0, 3, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, -1, -1, -1, -1, -10, -7, 23, -4, 2, -1, 2, -1, 0, 3, -2, 1, -2, 1, 0, 0, 13, 13, -14, -14, -2, -2, 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, 1, -2, -2, 1, 1, -2, -2, 1, 0, 0, 0, 0, 6, 6, -14, -14, -2, -2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, -2, -2, 1, 1, -2, -2, 0, 0, -2, -2, 1, 1, 3, 3]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[135, 59, 15, 3, 63, 36, 18, 18, -9, -9, 0, 0, 0, 0, 0, 0, 41, -3, 13, -5, 1, -3, -1, 40, 40, -5, -5, -5, -5, 0, 0, 0, 0, 23, -4, 8, 11, -1, -1, 2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, -1, -1, -1, -1, -4, 23, -7, -10, -1, -1, 2, 2, -2, 1, 0, 3, -2, 1, 0, 0, -2, -2, 1, 1, 13, 13, -14, -14, -2, -2, -2, -2, 1, 1, 1, 1, 1, -2, -2, 1, 1, -2, -2, 1, 0, 0, 0, 0, -14, -14, 6, 6, 2, 2, -2, -2, 1, 1, 1, 1, 0, 0, -2, -2, 1, 1, -2, -2, 1, 1, 1, 1, 3, 3, 0, 0, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[150, 50, -2, -6, 45, 75, -3, -6, 24, 27, 6, -3, 0, 0, 3, 0, 40, -20, 12, -10, 0, 0, 2, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, -19, 11, 11, 17, -4, -1, 2, 5, -5, 1, 0, 0, 0, 0, 0, 0, -10, -10, 10, 10, -2, -2, 0, 0, 0, 0, 19, -11, -5, -5, -2, 1, -2, 1, 3, 3, -5, 1, -1, -1, 0, 0, 5, 5, 5, 5, -10, -10, 20, 20, 2, 2, -1, -1, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -4, -4, 2, 2, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[150, 50, -2, -6, 45, 75, 24, -6, -3, 27, 6, -3, 0, 0, 3, 0, 40, 12, -20, -10, 0, 0, 2, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 17, 11, 11, -19, 5, -1, 2, -4, -5, 1, 0, 0, 0, 0, 0, 0, 10, 10, -10, -10, -2, -2, 0, 0, 0, 0, -5, -5, -11, 19, 1, 1, -2, -2, -5, 1, 3, 3, -1, -1, 0, 0, -10, -10, 20, 20, 5, 5, 5, 5, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -4, -4, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[150, 50, -2, -6, 75, 45, -3, 27, 24, -6, -3, 6, 0, 0, 0, 3, 40, 12, -20, -10, 0, 0, 2, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 11, 17, -19, 11, -4, 2, -1, 5, 1, -5, 0, 0, 0, 0, 0, 0, 10, 10, -10, -10, -2, -2, 0, 0, 0, 0, -5, -5, 19, -11, -2, -2, 1, 1, 1, -5, 3, 3, -1, -1, 0, 0, 20, 20, -10, -10, 5, 5, 5, 5, 2, 2, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 2, 2, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[150, 50, -2, -6, 75, 45, 24, 27, -3, -6, -3, 6, 0, 0, 0, 3, 40, -20, 12, -10, 0, 0, 2, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 11, -19, 17, 11, 5, 2, -1, -4, 1, -5, 0, 0, 0, 0, 0, 0, -10, -10, 10, 10, -2, -2, 0, 0, 0, 0, -11, 19, -5, -5, 1, -2, 1, -2, 3, 3, 1, -5, -1, -1, 0, 0, 5, 5, 5, 5, 20, 20, -10, -10, -1, -1, 2, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, -4, -4, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |192,64,0,0,48,48,-15,-15,-15,-15,3,3,0,0,3,3,64,0,0,0,0,0,0,72,72,7,7,17+15*K.1^2+15*K.1^-2,2-15*K.1^2-15*K.1^-2,-3,-3,2,2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,0,0,0,0,0,0,0,0,-2,-2,2+3*K.1^2+3*K.1^-2,2+3*K.1^2+3*K.1^-2,-1-3*K.1^2-3*K.1^-2,-1-3*K.1^2-3*K.1^-2,-2,-2,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |192,64,0,0,48,48,-15,-15,-15,-15,3,3,0,0,3,3,64,0,0,0,0,0,0,72,72,7,7,2-15*K.1^2-15*K.1^-2,17+15*K.1^2+15*K.1^-2,-3,-3,2,2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,0,0,0,0,0,0,0,0,-2,-2,-1-3*K.1^2-3*K.1^-2,-1-3*K.1^2-3*K.1^-2,2+3*K.1^2+3*K.1^-2,2+3*K.1^2+3*K.1^-2,-2,-2,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |192,64,0,0,48,48,-15,-15,-15,-15,3,3,0,0,3,3,64,0,0,0,0,0,0,80+16*K.1^2+16*K.1^-2,64-16*K.1^2-16*K.1^-2,18+17*K.1^2+17*K.1^-2,1-17*K.1^2-17*K.1^-2,7,7,6+3*K.1^2+3*K.1^-2,3-3*K.1^2-3*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |192,64,0,0,48,48,-15,-15,-15,-15,3,3,0,0,3,3,64,0,0,0,0,0,0,64-16*K.1^2-16*K.1^-2,80+16*K.1^2+16*K.1^-2,1-17*K.1^2-17*K.1^-2,18+17*K.1^2+17*K.1^-2,7,7,3-3*K.1^2-3*K.1^-2,6+3*K.1^2+3*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,-1+7*K.1^2+7*K.1^-2,-8-7*K.1^2-7*K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |216,80,8,0,63,63,-9,-9,-9,-9,0,0,0,0,0,0,80,8,8,8,0,0,0,73+9*K.1^2+9*K.1^-2,64-9*K.1^2-9*K.1^-2,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,-9-10*K.1^2-10*K.1^-2,1+10*K.1^2+10*K.1^-2,3*K.1+3*K.1^-1,3*K.1^2+3*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-8-K.1^2-K.1^-2,-7+K.1^2+K.1^-2,8-9*K.1^2-9*K.1^-2,17+9*K.1^2+9*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,-17,-17,-17,-17,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,1,1,1,1,1,1,1,1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,8-9*K.1^2-9*K.1^-2,17+9*K.1^2+9*K.1^-2,-7+K.1^2+K.1^-2,-8-K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1,-1,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |216,80,8,0,63,63,-9,-9,-9,-9,0,0,0,0,0,0,80,8,8,8,0,0,0,64-9*K.1^2-9*K.1^-2,73+9*K.1^2+9*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,1+10*K.1^2+10*K.1^-2,-9-10*K.1^2-10*K.1^-2,3*K.1^2+3*K.1^-2,3*K.1+3*K.1^-1,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,-7+K.1^2+K.1^-2,-8-K.1^2-K.1^-2,17+9*K.1^2+9*K.1^-2,8-9*K.1^2-9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,-17,-17,-17,-17,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,1,1,1,1,1,1,1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,17+9*K.1^2+9*K.1^-2,8-9*K.1^2-9*K.1^-2,-8-K.1^2-K.1^-2,-7+K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1,-1,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |216,80,8,0,63,63,-9,-9,-9,-9,0,0,0,0,0,0,80,8,8,8,0,0,0,73+9*K.1^2+9*K.1^-2,64-9*K.1^2-9*K.1^-2,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,1+10*K.1^2+10*K.1^-2,-9-10*K.1^2-10*K.1^-2,3*K.1+3*K.1^-1,3*K.1^2+3*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,8-9*K.1^2-9*K.1^-2,17+9*K.1^2+9*K.1^-2,-8-K.1^2-K.1^-2,-7+K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,-17,-17,-17,-17,1,1,1,1,1,1,1,1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,-8-K.1^2-K.1^-2,-7+K.1^2+K.1^-2,17+9*K.1^2+9*K.1^-2,8-9*K.1^2-9*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |216,80,8,0,63,63,-9,-9,-9,-9,0,0,0,0,0,0,80,8,8,8,0,0,0,64-9*K.1^2-9*K.1^-2,73+9*K.1^2+9*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,-9-10*K.1^2-10*K.1^-2,1+10*K.1^2+10*K.1^-2,3*K.1^2+3*K.1^-2,3*K.1+3*K.1^-1,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,17+9*K.1^2+9*K.1^-2,8-9*K.1^2-9*K.1^-2,-7+K.1^2+K.1^-2,-8-K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,10+9*K.1^2+9*K.1^-2,1-9*K.1^2-9*K.1^-2,-17,-17,-17,-17,1,1,1,1,1,1,1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,-7+K.1^2+K.1^-2,-8-K.1^2-K.1^-2,8-9*K.1^2-9*K.1^-2,17+9*K.1^2+9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |240,64,-16,0,78,78,-3,-3,-3,-3,-3,-3,0,0,-3,-3,80,-16,0,0,0,0,0,90+10*K.1^2+10*K.1^-2,80-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,0,0,0,0,-26,-26,10,10,1,1,1,1,2,2,0,0,0,0,0,0,-16-10*K.1^2-10*K.1^-2,-6+10*K.1^2+10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-10,-10,8,8,-1,-1,-1,-1,0,0,2,2,0,0,0,0,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |240,64,-16,0,78,78,-3,-3,-3,-3,-3,-3,0,0,-3,-3,80,-16,0,0,0,0,0,80-10*K.1^2-10*K.1^-2,90+10*K.1^2+10*K.1^-2,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,0,0,0,0,-26,-26,10,10,1,1,1,1,2,2,0,0,0,0,0,0,-6+10*K.1^2+10*K.1^-2,-16-10*K.1^2-10*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-10,-10,8,8,-1,-1,-1,-1,0,0,2,2,0,0,0,0,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |240,64,-16,0,78,78,-3,-3,-3,-3,-3,-3,0,0,-3,-3,80,0,-16,0,0,0,0,90+10*K.1^2+10*K.1^-2,80-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,0,0,0,0,10,10,-26,-26,1,1,1,1,2,2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-16-10*K.1^2-10*K.1^-2,-6+10*K.1^2+10*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,8,8,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |240,64,-16,0,78,78,-3,-3,-3,-3,-3,-3,0,0,-3,-3,80,0,-16,0,0,0,0,80-10*K.1^2-10*K.1^-2,90+10*K.1^2+10*K.1^-2,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,0,0,0,0,10,10,-26,-26,1,1,1,1,2,2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-6+10*K.1^2+10*K.1^-2,-16-10*K.1^2-10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,8,8,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,-9+K.1^2+K.1^-2,-10-K.1^2-K.1^-2,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,18+10*K.1^2+10*K.1^-2,8-10*K.1^2-10*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,2-K.1^2-K.1^-2,3+K.1^2+K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[243, 99, 19, 3, 81, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 19, 19, 19, 3, 3, 3, 63, 63, -17, -17, -17, -17, 3, 3, 3, 3, 9, 9, 9, 9, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9, 9, 9, 9, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, -9, -9, -9, -9, -9, -9, -9, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[270, 82, -10, -6, 99, 99, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 100, -8, 8, 10, -4, 0, -2, 80, 80, -10, -10, -10, -10, 0, 0, 0, 0, -17, -17, 19, 19, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, -28, -28, 12, 12, 0, 0, 2, 2, 2, 2, 1, 1, 19, 19, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 10, 10, -10, -10, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[270, 82, -10, -6, 99, 99, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 100, 8, -8, 10, -4, 0, -2, 80, 80, -10, -10, -10, -10, 0, 0, 0, 0, 19, 19, -17, -17, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 12, 12, -28, -28, 0, 0, 2, 2, 2, 2, 19, 19, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -10, -10, 10, 10, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[300, 60, -36, 12, 120, 120, 21, 21, 21, 21, 3, 3, 0, 0, 3, 3, 100, -20, -20, 0, 4, 0, 0, 100, 100, 0, 0, 0, 0, 0, 0, 0, 0, -12, -12, -12, -12, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, -20, -20, -20, -20, 4, 4, 0, 0, 0, 0, 10, 10, 10, 10, 1, 1, 1, 1, -2, -2, -2, -2, 0, 0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[375, 75, 15, 3, 0, 75, 15, -15, 15, 0, -12, 6, 0, 0, 12, -9, -75, -15, -15, 15, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 0, 3, 0, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, -15, -3, 0, 3, -3, -3, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[375, 75, 15, 3, 75, 0, 15, 0, 15, -15, 6, -12, 0, 0, -9, 12, -75, -15, -15, 15, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 15, 3, -3, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, -15, 0, -3, 3, 0, -3, 0, -3, 0, -3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8,8,-1,-1,0,0,0,0,0,0,0,-64*K.1-64*K.1^-1,-64*K.1^2-64*K.1^-2,16+8*K.1^2+8*K.1^-2,8-8*K.1^2-8*K.1^-2,-8,-8,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,1,1,1,1,-1+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8,8,-1,-1,0,0,0,0,0,0,0,-64*K.1^2-64*K.1^-2,-64*K.1-64*K.1^-1,8-8*K.1^2-8*K.1^-2,16+8*K.1^2+8*K.1^-2,-8,-8,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1+K.1^2+K.1^-2,1,1,1,1,-2-K.1^2-K.1^-2,-2-K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8*K.1^-5,8*K.1^5,-1,-1,0,0,0,0,0,0,0,-64*K.1^3-64*K.1^-3,-64*K.1^6-64*K.1^-6,8+8*K.1^2-8*K.1^3+8*K.1^7,16-8*K.1^2+8*K.1^3-8*K.1^7,-8,-8,1+2*K.1^2-2*K.1^3+2*K.1^7,3-2*K.1^2+2*K.1^3-2*K.1^7,K.1^3+K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1-K.1^2+K.1^3-K.1^7,-1-K.1^2+K.1^3-K.1^7,1,1,1,1,-2+K.1^2-K.1^3+K.1^7,-2+K.1^2-K.1^3+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8*K.1^5,8*K.1^-5,-1,-1,0,0,0,0,0,0,0,-64*K.1^3-64*K.1^-3,-64*K.1^6-64*K.1^-6,8+8*K.1^2-8*K.1^3+8*K.1^7,16-8*K.1^2+8*K.1^3-8*K.1^7,-8,-8,1+2*K.1^2-2*K.1^3+2*K.1^7,3-2*K.1^2+2*K.1^3-2*K.1^7,K.1^3+K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1-K.1^2+K.1^3-K.1^7,-1-K.1^2+K.1^3-K.1^7,1,1,1,1,-2+K.1^2-K.1^3+K.1^7,-2+K.1^2-K.1^3+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8*K.1^-5,8*K.1^5,-1,-1,0,0,0,0,0,0,0,-64*K.1^6-64*K.1^-6,-64*K.1^3-64*K.1^-3,16-8*K.1^2+8*K.1^3-8*K.1^7,8+8*K.1^2-8*K.1^3+8*K.1^7,-8,-8,3-2*K.1^2+2*K.1^3-2*K.1^7,1+2*K.1^2-2*K.1^3+2*K.1^7,K.1^6+K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2+K.1^2-K.1^3+K.1^7,-2+K.1^2-K.1^3+K.1^7,1,1,1,1,-1-K.1^2+K.1^3-K.1^7,-1-K.1^2+K.1^3-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |512,0,0,0,-64,-64,8,8,8,8,-1,-1,8*K.1^5,8*K.1^-5,-1,-1,0,0,0,0,0,0,0,-64*K.1^6-64*K.1^-6,-64*K.1^3-64*K.1^-3,16-8*K.1^2+8*K.1^3-8*K.1^7,8+8*K.1^2-8*K.1^3+8*K.1^7,-8,-8,3-2*K.1^2+2*K.1^3-2*K.1^7,1+2*K.1^2-2*K.1^3+2*K.1^7,K.1^6+K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,8*K.1^3+8*K.1^-3,8*K.1^6+8*K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2+K.1^2-K.1^3+K.1^7,-2+K.1^2-K.1^3+K.1^7,1,1,1,1,-1-K.1^2+K.1^3-K.1^7,-1-K.1^2+K.1^3-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,-105,135,-21,18,-21,12,-12,-3,0,0,0,3,-80,-8,-8,8,0,0,0,-25*K.1-25*K.1^-1,-25*K.1^2-25*K.1^-2,0,0,0,0,0,0,0,0,-13,11,11,-13,-1,-4,2,-1,-1,-1,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,-11,13,13,-11,1,4,-2,1,1,1,1,1,-1,-1,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,-105,135,-21,18,-21,12,-12,-3,0,0,0,3,-80,-8,-8,8,0,0,0,-25*K.1^2-25*K.1^-2,-25*K.1-25*K.1^-1,0,0,0,0,0,0,0,0,-13,11,11,-13,-1,-4,2,-1,-1,-1,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,-11,13,13,-11,1,4,-2,1,1,1,1,1,-1,-1,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,15,15,-12,-21,42,-21,6,6,0,0,-3,-3,-80,-8,-8,8,0,0,0,-25*K.1-25*K.1^-1,-25*K.1^2-25*K.1^-2,0,0,0,0,0,0,0,0,-13,11,-13,11,2,-1,-1,-4,-1,-1,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,-11,13,-11,13,-2,1,1,4,1,1,1,1,-1,-1,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,15,15,-12,-21,42,-21,6,6,0,0,-3,-3,-80,-8,-8,8,0,0,0,-25*K.1^2-25*K.1^-2,-25*K.1-25*K.1^-1,0,0,0,0,0,0,0,0,-13,11,-13,11,2,-1,-1,-4,-1,-1,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,-11,13,-11,13,-2,1,1,4,1,1,1,1,-1,-1,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,15,15,42,-21,-12,-21,6,6,0,0,-3,-3,-80,-8,-8,8,0,0,0,-25*K.1-25*K.1^-1,-25*K.1^2-25*K.1^-2,0,0,0,0,0,0,0,0,11,-13,11,-13,-4,-1,-1,2,-1,-1,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,13,-11,13,-11,4,1,1,-2,1,1,1,1,-1,-1,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,15,15,42,-21,-12,-21,6,6,0,0,-3,-3,-80,-8,-8,8,0,0,0,-25*K.1^2-25*K.1^-2,-25*K.1-25*K.1^-1,0,0,0,0,0,0,0,0,11,-13,11,-13,-4,-1,-1,2,-1,-1,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,13,-11,13,-11,4,1,1,-2,1,1,1,1,-1,-1,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,135,-105,-21,12,-21,18,-3,-12,0,0,3,0,-80,-8,-8,8,0,0,0,-25*K.1-25*K.1^-1,-25*K.1^2-25*K.1^-2,0,0,0,0,0,0,0,0,11,-13,-13,11,-1,2,-4,-1,-1,-1,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,13,-11,-11,13,1,-2,4,1,1,1,1,1,-1,-1,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |600,80,8,0,135,-105,-21,12,-21,18,-3,-12,0,0,3,0,-80,-8,-8,8,0,0,0,-25*K.1^2-25*K.1^-2,-25*K.1-25*K.1^-1,0,0,0,0,0,0,0,0,11,-13,-13,11,-1,2,-4,-1,-1,-1,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,13,-11,-11,13,1,-2,4,1,1,1,1,1,-1,-1,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[675, 115, 19, 3, -90, 180, -18, 9, -18, 36, 0, 0, 0, 0, 0, 0, -65, -9, -9, -1, -1, 3, -1, -25, -25, 0, 0, 0, 0, 0, 0, 0, 0, -14, 28, 28, -14, -2, 4, 1, -2, 4, -2, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, 0, 0, 0, 0, -8, 4, 4, -8, -2, 4, 1, -2, 0, 0, 0, 0, -4, 2, 0, 0, 5, 5, -10, -10, 5, 5, -10, -10, 2, 2, -1, -1, 2, 2, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, 1, 1, -2, -2, -2, -2, 1, 1, 2, 2, -1, -1, 2, 2, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[675, 115, 19, 3, 45, 45, 9, -18, 36, -18, 0, 0, 0, 0, 0, 0, -65, -9, -9, -1, -1, 3, -1, -25, -25, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 1, 13, 4, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, 0, 0, 0, 0, -23, 19, -23, 19, 4, -2, -2, 1, 3, -3, -3, 3, -1, -1, 0, 0, 5, 5, -10, -10, -10, -10, 5, 5, -1, -1, 2, 2, -4, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, 1, 1, -2, -2, 1, 1, -2, -2, 2, 2, 2, 2, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[675, 115, 19, 3, 45, 45, 36, -18, 9, -18, 0, 0, 0, 0, 0, 0, -65, -9, -9, -1, -1, 3, -1, -25, -25, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 13, 1, 1, -2, -2, 4, 1, 1, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, 0, 0, 0, 0, 19, -23, 19, -23, 1, -2, -2, 4, -3, 3, 3, -3, -1, -1, 0, 0, -10, -10, 5, 5, 5, 5, -10, -10, -4, -4, 2, 2, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -2, -2, 1, 1, -2, -2, 1, 1, -1, -1, -1, -1, 2, 2, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[675, 115, 19, 3, 180, -90, -18, 36, -18, 9, 0, 0, 0, 0, 0, 0, -65, -9, -9, -1, -1, 3, -1, -25, -25, 0, 0, 0, 0, 0, 0, 0, 0, 28, -14, -14, 28, -2, 1, 4, -2, -2, 4, 0, 0, 0, 0, 0, 0, -5, -5, -5, -5, -1, -1, 0, 0, 0, 0, 4, -8, -8, 4, -2, 1, 4, -2, 0, 0, 0, 0, 2, -4, 0, 0, -10, -10, 5, 5, -10, -10, 5, 5, 2, 2, -4, -4, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -2, -2, 1, 1, 1, 1, -2, -2, -1, -1, 2, 2, -1, -1, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[729, 81, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 81, 9, 9, 9, 1, 1, 1, -81, -81, 9, 9, 9, 9, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -9, -9, -9, -9, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -9, -9, -9, -9, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |729,81,9,1,0,0,0,0,0,0,0,0,9*K.1^-1,9*K.1,0,0,81,9,9,9,1,1,1,-81,-81,9,9,9,9,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,-9,-9,-9,-9,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-9,-9,-9,-9,-1,-1,-1,-1,1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |729,81,9,1,0,0,0,0,0,0,0,0,9*K.1,9*K.1^-1,0,0,81,9,9,9,1,1,1,-81,-81,9,9,9,9,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,0,0,0,0,-9,-9,-9,-9,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-9,-9,-9,-9,-1,-1,-1,-1,1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[750, 50, -10, -6, -75, 225, -15, 0, -15, 60, 12, 3, 0, 0, 0, -3, -100, 0, 0, 10, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, -4, -4, 5, -7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -25, 5, 5, -25, -1, -4, 2, -1, 3, -3, 3, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[750, 50, -10, -6, 75, 75, 30, -15, 30, -15, -6, -6, 0, 0, 3, 3, -100, 0, 0, 10, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -25, 35, -25, 35, -10, 5, 5, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -25, 5, -25, 5, 2, -1, -1, -4, -3, 3, 3, -3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[750, 50, -10, -6, 75, 75, 30, -15, 30, -15, -6, -6, 0, 0, 3, 3, -100, 0, 0, 10, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, -25, 35, -25, 2, 5, 5, -10, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, -25, 5, -25, -4, -1, -1, 2, 3, -3, -3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[750, 50, -10, -6, 225, -75, -15, 60, -15, 0, 3, 12, 0, 0, -3, 0, -100, 0, 0, 10, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, -4, -4, 5, 5, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, -25, -25, 5, -1, 2, -4, -1, -3, 3, -3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,-144,48,-3,21,-3,-27,6,-3,0,0,3,0,-64,0,0,0,0,0,0,40,40,-5,-5,10+5*K.1^2+5*K.1^-2,5-5*K.1^2-5*K.1^-2,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-8-3*K.1^2-3*K.1^-2,-5+3*K.1^2+3*K.1^-2,16+21*K.1^2+21*K.1^-2,-5-21*K.1^2-21*K.1^-2,-5+3*K.1^2+3*K.1^-2,-8-3*K.1^2-3*K.1^-2,-5-21*K.1^2-21*K.1^-2,16+21*K.1^2+21*K.1^-2,-2-3*K.1^2-3*K.1^-2,1+3*K.1^2+3*K.1^-2,1,1,1+3*K.1^2+3*K.1^-2,-2-3*K.1^2-3*K.1^-2,-2,-2,-2,1,-1+K.1^2+K.1^-2,2-2*K.1^2-2*K.1^-2,4+2*K.1^2+2*K.1^-2,-2-K.1^2-K.1^-2,1,-2,0,0,0,0,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,0,0,0,0,1,1,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,-144,48,-3,21,-3,-27,6,-3,0,0,3,0,-64,0,0,0,0,0,0,40,40,-5,-5,5-5*K.1^2-5*K.1^-2,10+5*K.1^2+5*K.1^-2,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-5+3*K.1^2+3*K.1^-2,-8-3*K.1^2-3*K.1^-2,-5-21*K.1^2-21*K.1^-2,16+21*K.1^2+21*K.1^-2,-8-3*K.1^2-3*K.1^-2,-5+3*K.1^2+3*K.1^-2,16+21*K.1^2+21*K.1^-2,-5-21*K.1^2-21*K.1^-2,1+3*K.1^2+3*K.1^-2,-2-3*K.1^2-3*K.1^-2,1,1,-2-3*K.1^2-3*K.1^-2,1+3*K.1^2+3*K.1^-2,-2,-2,-2,1,-2-K.1^2-K.1^-2,4+2*K.1^2+2*K.1^-2,2-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,1,-2,0,0,0,0,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,0,0,0,0,1,1,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,-144,48,-3,21,-3,-27,6,-3,0,0,3,0,-64,0,0,0,0,0,0,-80*K.1-80*K.1^-1,-80*K.1^2-80*K.1^-2,10+5*K.1^2+5*K.1^-2,5-5*K.1^2-5*K.1^-2,-5,-5,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,13*K.1^2+13*K.1^-2,13*K.1+13*K.1^-1,-11*K.1^2-11*K.1^-2,-11*K.1-11*K.1^-1,13*K.1^2+13*K.1^-2,13*K.1+13*K.1^-1,-11*K.1^2-11*K.1^-2,-11*K.1-11*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,4+2*K.1^2+2*K.1^-2,-2-K.1^2-K.1^-2,1,-2,-2,1,-1+K.1^2+K.1^-2,2-2*K.1^2-2*K.1^-2,0,0,0,0,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,1,1,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,-144,48,-3,21,-3,-27,6,-3,0,0,3,0,-64,0,0,0,0,0,0,-80*K.1^2-80*K.1^-2,-80*K.1-80*K.1^-1,5-5*K.1^2-5*K.1^-2,10+5*K.1^2+5*K.1^-2,-5,-5,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,13*K.1+13*K.1^-1,13*K.1^2+13*K.1^-2,-11*K.1-11*K.1^-1,-11*K.1^2-11*K.1^-2,13*K.1+13*K.1^-1,13*K.1^2+13*K.1^-2,-11*K.1-11*K.1^-1,-11*K.1^2-11*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,2-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,1,-2,-2,1,-2-K.1^2-K.1^-2,4+2*K.1^2+2*K.1^-2,0,0,0,0,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1,1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,48,-144,-3,-27,-3,21,-3,6,0,0,0,3,-64,0,0,0,0,0,0,40,40,-5,-5,10+5*K.1^2+5*K.1^-2,5-5*K.1^2-5*K.1^-2,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,16+21*K.1^2+21*K.1^-2,-5-21*K.1^2-21*K.1^-2,-8-3*K.1^2-3*K.1^-2,-5+3*K.1^2+3*K.1^-2,-5-21*K.1^2-21*K.1^-2,16+21*K.1^2+21*K.1^-2,-5+3*K.1^2+3*K.1^-2,-8-3*K.1^2-3*K.1^-2,1+3*K.1^2+3*K.1^-2,-2-3*K.1^2-3*K.1^-2,-2,-2,-2-3*K.1^2-3*K.1^-2,1+3*K.1^2+3*K.1^-2,1,1,1,-2,2-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,4+2*K.1^2+2*K.1^-2,-2,1,0,0,0,0,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,0,0,0,0,1,1,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,48,-144,-3,-27,-3,21,-3,6,0,0,0,3,-64,0,0,0,0,0,0,40,40,-5,-5,5-5*K.1^2-5*K.1^-2,10+5*K.1^2+5*K.1^-2,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-5-21*K.1^2-21*K.1^-2,16+21*K.1^2+21*K.1^-2,-5+3*K.1^2+3*K.1^-2,-8-3*K.1^2-3*K.1^-2,16+21*K.1^2+21*K.1^-2,-5-21*K.1^2-21*K.1^-2,-8-3*K.1^2-3*K.1^-2,-5+3*K.1^2+3*K.1^-2,-2-3*K.1^2-3*K.1^-2,1+3*K.1^2+3*K.1^-2,-2,-2,1+3*K.1^2+3*K.1^-2,-2-3*K.1^2-3*K.1^-2,1,1,1,-2,4+2*K.1^2+2*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,2-2*K.1^2-2*K.1^-2,-2,1,0,0,0,0,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,0,0,0,0,1,1,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,48,-144,-3,-27,-3,21,-3,6,0,0,0,3,-64,0,0,0,0,0,0,-80*K.1-80*K.1^-1,-80*K.1^2-80*K.1^-2,10+5*K.1^2+5*K.1^-2,5-5*K.1^2-5*K.1^-2,-5,-5,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-11*K.1^2-11*K.1^-2,-11*K.1-11*K.1^-1,13*K.1^2+13*K.1^-2,13*K.1+13*K.1^-1,-11*K.1^2-11*K.1^-2,-11*K.1-11*K.1^-1,13*K.1^2+13*K.1^-2,13*K.1+13*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2-K.1^2-K.1^-2,4+2*K.1^2+2*K.1^-2,-2,1,1,-2,2-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,0,0,0,0,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,1,1,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |960,64,0,0,48,-144,-3,-27,-3,21,-3,6,0,0,0,3,-64,0,0,0,0,0,0,-80*K.1^2-80*K.1^-2,-80*K.1-80*K.1^-1,5-5*K.1^2-5*K.1^-2,10+5*K.1^2+5*K.1^-2,-5,-5,0,0,0,0,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,8,8,8,8,-1,-1,-1,-1,0,0,0,0,0,0,0,0,-11*K.1-11*K.1^-1,-11*K.1^2-11*K.1^-2,13*K.1+13*K.1^-1,13*K.1^2+13*K.1^-2,-11*K.1-11*K.1^-1,-11*K.1^2-11*K.1^-2,13*K.1+13*K.1^-1,13*K.1^2+13*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,2-2*K.1^2-2*K.1^-2,-2,1,1,-2,4+2*K.1^2+2*K.1^-2,-2-K.1^2-K.1^-2,0,0,0,0,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1,1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1000, -200, 40, -8, 100, 100, 10, 10, 10, 10, 1, 1, 10, 10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -20, -20, -20, -2, -2, -2, -2, 4, 4, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1000,-200,40,-8,100,100,10,10,10,10,1,1,10*K.1^-1,10*K.1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-20,-20,-20,-20,-2,-2,-2,-2,4,4,-2*K.1,-2*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1000,-200,40,-8,100,100,10,10,10,10,1,1,10*K.1,10*K.1^-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-20,-20,-20,-20,-2,-2,-2,-2,4,4,-2*K.1^-1,-2*K.1,K.1,K.1^-1,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,-117,99,-18,9,9,-18,0,0,0,0,0,0,-32,-8,8,-8,0,0,0,5+45*K.1^2+45*K.1^-2,-40-45*K.1^2-45*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,0,0,0,0,-17,7,-5,-5,1,-2,1,-2,-1,-1,0,0,0,0,0,0,-9*K.1^2-9*K.1^-2,-9*K.1-9*K.1^-1,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,25,1,-5,-5,1,-2,1,-2,-1,-1,1,1,1,1,0,0,5+9*K.1^2+9*K.1^-2,-4-9*K.1^2-9*K.1^-2,5-18*K.1^2-18*K.1^-2,23+18*K.1^2+18*K.1^-2,8,8,-16,-16,2,2,-1,-1,-1,-1,2,2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,0,0,0,0,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,-117,99,-18,9,9,-18,0,0,0,0,0,0,-32,-8,8,-8,0,0,0,-40-45*K.1^2-45*K.1^-2,5+45*K.1^2+45*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,0,0,0,0,-17,7,-5,-5,1,-2,1,-2,-1,-1,0,0,0,0,0,0,-9*K.1-9*K.1^-1,-9*K.1^2-9*K.1^-2,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,25,1,-5,-5,1,-2,1,-2,-1,-1,1,1,1,1,0,0,-4-9*K.1^2-9*K.1^-2,5+9*K.1^2+9*K.1^-2,23+18*K.1^2+18*K.1^-2,5-18*K.1^2-18*K.1^-2,8,8,-16,-16,2,2,-1,-1,-1,-1,2,2,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,0,0,0,0,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,-117,99,9,9,-18,-18,0,0,0,0,0,0,-32,8,-8,-8,0,0,0,5+45*K.1^2+45*K.1^-2,-40-45*K.1^2-45*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,0,0,0,0,-5,-5,7,-17,-2,-2,1,1,-1,-1,0,0,0,0,0,0,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-9*K.1^2-9*K.1^-2,-9*K.1-9*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-5,-5,1,25,-2,-2,1,1,1,1,-1,-1,1,1,0,0,8,8,-16,-16,5+9*K.1^2+9*K.1^-2,-4-9*K.1^2-9*K.1^-2,5-18*K.1^2-18*K.1^-2,23+18*K.1^2+18*K.1^-2,-1,-1,-1,-1,2,2,2,2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,-117,99,9,9,-18,-18,0,0,0,0,0,0,-32,8,-8,-8,0,0,0,-40-45*K.1^2-45*K.1^-2,5+45*K.1^2+45*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,0,0,0,0,-5,-5,7,-17,-2,-2,1,1,-1,-1,0,0,0,0,0,0,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-9*K.1-9*K.1^-1,-9*K.1^2-9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-5,-5,1,25,-2,-2,1,1,1,1,-1,-1,1,1,0,0,8,8,-16,-16,-4-9*K.1^2-9*K.1^-2,5+9*K.1^2+9*K.1^-2,23+18*K.1^2+18*K.1^-2,5-18*K.1^2-18*K.1^-2,-1,-1,-1,-1,2,2,2,2,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,99,-117,-18,-18,9,9,0,0,0,0,0,0,-32,8,-8,-8,0,0,0,5+45*K.1^2+45*K.1^-2,-40-45*K.1^2-45*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,0,0,0,0,-5,-5,-17,7,1,1,-2,-2,-1,-1,0,0,0,0,0,0,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-9*K.1^2-9*K.1^-2,-9*K.1-9*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-5,-5,25,1,1,1,-2,-2,1,1,-1,-1,1,1,0,0,-16,-16,8,8,5-18*K.1^2-18*K.1^-2,23+18*K.1^2+18*K.1^-2,5+9*K.1^2+9*K.1^-2,-4-9*K.1^2-9*K.1^-2,2,2,2,2,-1,-1,-1,-1,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,0,0,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,99,-117,-18,-18,9,9,0,0,0,0,0,0,-32,8,-8,-8,0,0,0,-40-45*K.1^2-45*K.1^-2,5+45*K.1^2+45*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,0,0,0,0,-5,-5,-17,7,1,1,-2,-2,-1,-1,0,0,0,0,0,0,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-9*K.1-9*K.1^-1,-9*K.1^2-9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-5,-5,25,1,1,1,-2,-2,1,1,-1,-1,1,1,0,0,-16,-16,8,8,23+18*K.1^2+18*K.1^-2,5-18*K.1^2-18*K.1^-2,-4-9*K.1^2-9*K.1^-2,5+9*K.1^2+9*K.1^-2,2,2,2,2,-1,-1,-1,-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,0,0,0,0,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,0,0,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,99,-117,9,-18,-18,9,0,0,0,0,0,0,-32,-8,8,-8,0,0,0,5+45*K.1^2+45*K.1^-2,-40-45*K.1^2-45*K.1^-2,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,0,0,0,0,7,-17,-5,-5,-2,1,-2,1,-1,-1,0,0,0,0,0,0,-9*K.1^2-9*K.1^-2,-9*K.1-9*K.1^-1,-8-5*K.1^2-5*K.1^-2,-3+5*K.1^2+5*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,1,25,-5,-5,-2,1,-2,1,-1,-1,1,1,1,1,0,0,5-18*K.1^2-18*K.1^-2,23+18*K.1^2+18*K.1^-2,5+9*K.1^2+9*K.1^-2,-4-9*K.1^2-9*K.1^-2,-16,-16,8,8,-1,-1,2,2,2,2,-1,-1,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,8-5*K.1^2-5*K.1^-2,13+5*K.1^2+5*K.1^-2,9*K.1+9*K.1^-1,9*K.1^2+9*K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,3+2*K.1^2+2*K.1^-2,1-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0,0,0,-1-2*K.1^2-2*K.1^-2,1+2*K.1^2+2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1080,112,8,0,99,-117,9,-18,-18,9,0,0,0,0,0,0,-32,-8,8,-8,0,0,0,-40-45*K.1^2-45*K.1^-2,5+45*K.1^2+45*K.1^-2,5*K.1^2+5*K.1^-2,5*K.1+5*K.1^-1,5*K.1+5*K.1^-1,5*K.1^2+5*K.1^-2,0,0,0,0,7,-17,-5,-5,-2,1,-2,1,-1,-1,0,0,0,0,0,0,-9*K.1-9*K.1^-1,-9*K.1^2-9*K.1^-2,-3+5*K.1^2+5*K.1^-2,-8-5*K.1^2-5*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,1,25,-5,-5,-2,1,-2,1,-1,-1,1,1,1,1,0,0,23+18*K.1^2+18*K.1^-2,5-18*K.1^2-18*K.1^-2,-4-9*K.1^2-9*K.1^-2,5+9*K.1^2+9*K.1^-2,-16,-16,8,8,-1,-1,2,2,2,2,-1,-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,0,0,0,0,13+5*K.1^2+5*K.1^-2,8-5*K.1^2-5*K.1^-2,9*K.1^2+9*K.1^-2,9*K.1+9*K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,1-2*K.1^2-2*K.1^-2,3+2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,0,0,1+2*K.1^2+2*K.1^-2,-1-2*K.1^2-2*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,-90,150,-33,-3,21,-9,-6,3,0,0,-3,0,-80,16,0,0,0,0,0,-50*K.1-50*K.1^-1,-50*K.1^2-50*K.1^-2,0,0,0,0,0,0,0,0,6,-42,18,18,-3,3,-3,3,2,2,0,0,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,10,10,-8,-8,1,1,1,1,0,0,-2,-2,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-20*K.1^2-20*K.1^-2,-20*K.1-20*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,-90,150,-33,-3,21,-9,-6,3,0,0,-3,0,-80,16,0,0,0,0,0,-50*K.1^2-50*K.1^-2,-50*K.1-50*K.1^-1,0,0,0,0,0,0,0,0,6,-42,18,18,-3,3,-3,3,2,2,0,0,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,10,10,-8,-8,1,1,1,1,0,0,-2,-2,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-20*K.1-20*K.1^-1,-20*K.1^2-20*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,-90,150,21,-3,-33,-9,-6,3,0,0,-3,0,-80,0,16,0,0,0,0,-50*K.1-50*K.1^-1,-50*K.1^2-50*K.1^-2,0,0,0,0,0,0,0,0,18,18,-42,6,3,3,-3,-3,2,2,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-8,-8,10,10,1,1,1,1,-2,-2,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-20*K.1^2-20*K.1^-2,-20*K.1-20*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,-90,150,21,-3,-33,-9,-6,3,0,0,-3,0,-80,0,16,0,0,0,0,-50*K.1^2-50*K.1^-2,-50*K.1-50*K.1^-1,0,0,0,0,0,0,0,0,18,18,-42,6,3,3,-3,-3,2,2,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,-8,-8,10,10,1,1,1,1,-2,-2,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-20*K.1-20*K.1^-1,-20*K.1^2-20*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,150,-90,-33,-9,21,-3,3,-6,0,0,0,-3,-80,0,16,0,0,0,0,-50*K.1-50*K.1^-1,-50*K.1^2-50*K.1^-2,0,0,0,0,0,0,0,0,18,18,6,-42,-3,-3,3,3,2,2,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-8,-8,10,10,1,1,1,1,-2,-2,0,0,0,0,0,0,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-20*K.1^2-20*K.1^-2,-20*K.1-20*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,150,-90,-33,-9,21,-3,3,-6,0,0,0,-3,-80,0,16,0,0,0,0,-50*K.1^2-50*K.1^-2,-50*K.1-50*K.1^-1,0,0,0,0,0,0,0,0,18,18,6,-42,-3,-3,3,3,2,2,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,-8,-8,10,10,1,1,1,1,-2,-2,0,0,0,0,0,0,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-20*K.1-20*K.1^-1,-20*K.1^2-20*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,150,-90,21,-9,-33,-3,3,-6,0,0,0,-3,-80,16,0,0,0,0,0,-50*K.1-50*K.1^-1,-50*K.1^2-50*K.1^-2,0,0,0,0,0,0,0,0,-42,6,18,18,3,-3,3,-3,2,2,0,0,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,10,10,-8,-8,1,1,1,1,0,0,-2,-2,0,0,0,0,-20*K.1^2-20*K.1^-2,-20*K.1-20*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1200,0,-16,0,150,-90,21,-9,-33,-3,3,-6,0,0,0,-3,-80,16,0,0,0,0,0,-50*K.1^2-50*K.1^-2,-50*K.1-50*K.1^-1,0,0,0,0,0,0,0,0,-42,6,18,18,3,-3,3,-3,2,2,0,0,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,10,10,-8,-8,1,1,1,1,0,0,-2,-2,0,0,0,0,-20*K.1-20*K.1^-1,-20*K.1^2-20*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-5*K.1-5*K.1^-1,-5*K.1^2-5*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1215, 171, 23, 3, -81, 162, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 5, -13, 1, -3, -1, -90, -90, 5, 5, 5, 5, 0, 0, 0, 0, -9, 18, 18, -9, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, -14, -14, -14, -14, -2, -2, 1, 1, 1, 1, 18, -9, -9, 18, 0, 0, 0, 0, 2, -1, 2, -1, 2, -1, 0, 0, 9, 9, -18, -18, 9, 9, -18, -18, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, -1, 2, 2, -1, -1, 2, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 1, 1, -2, -2, -2, -2, 1, 1, -2, -2, 1, 1, -2, -2, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1215, 171, 23, 3, 162, -81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 5, -13, 1, -3, -1, -90, -90, 5, 5, 5, 5, 0, 0, 0, 0, 18, -9, -9, 18, 0, 0, 0, 0, -1, 2, 0, 0, 0, 0, 0, 0, -14, -14, -14, -14, -2, -2, 1, 1, 1, 1, -9, 18, 18, -9, 0, 0, 0, 0, -1, 2, -1, 2, -1, 2, 0, 0, -18, -18, 9, 9, -18, -18, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, -1, -1, 2, 2, -1, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, -2, -2, 1, 1, 1, 1, -2, -2, 1, 1, -2, -2, 1, 1, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1350, 50, -18, -6, -45, 225, -9, -9, 18, 18, 0, 0, 0, 0, 0, 0, -40, 28, -20, -10, 0, 0, 2, -50, -50, 0, 0, 0, 0, 0, 0, 0, 0, 23, -31, 29, -1, 2, 2, -1, -1, -3, 3, 0, 0, 0, 0, 0, 0, -10, -10, 10, 10, 2, 2, 0, 0, 0, 0, 5, 5, -19, 11, 2, 2, -1, -1, -5, 1, 1, 1, -1, -1, 0, 0, 10, 10, -20, -20, -5, -5, -5, -5, 1, 1, 1, 1, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 4, 4, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1350, 50, -18, -6, -45, 225, 18, -9, -9, 18, 0, 0, 0, 0, 0, 0, -40, -20, 28, -10, 0, 0, 2, -50, -50, 0, 0, 0, 0, 0, 0, 0, 0, -1, 29, -31, 23, -1, 2, -1, 2, -3, 3, 0, 0, 0, 0, 0, 0, 10, 10, -10, -10, 2, 2, 0, 0, 0, 0, 11, -19, 5, 5, -1, 2, -1, 2, 1, 1, -5, 1, -1, -1, 0, 0, -5, -5, -5, -5, 10, 10, -20, -20, -2, -2, 1, 1, 1, 1, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 4, 4, -2, -2, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1350, 50, -18, -6, 225, -45, -9, 18, 18, -9, 0, 0, 0, 0, 0, 0, -40, -20, 28, -10, 0, 0, 2, -50, -50, 0, 0, 0, 0, 0, 0, 0, 0, 29, -1, 23, -31, 2, -1, 2, -1, 3, -3, 0, 0, 0, 0, 0, 0, 10, 10, -10, -10, 2, 2, 0, 0, 0, 0, -19, 11, 5, 5, 2, -1, 2, -1, 1, 1, 1, -5, -1, -1, 0, 0, -5, -5, -5, -5, -20, -20, 10, 10, 1, 1, -2, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -2, -2, 4, 4, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1350, 50, -18, -6, 225, -45, 18, 18, -9, -9, 0, 0, 0, 0, 0, 0, -40, 28, -20, -10, 0, 0, 2, -50, -50, 0, 0, 0, 0, 0, 0, 0, 0, -31, 23, -1, 29, -1, -1, 2, 2, 3, -3, 0, 0, 0, 0, 0, 0, -10, -10, 10, 10, 2, 2, 0, 0, 0, 0, 5, 5, 11, -19, -1, -1, 2, 2, 1, -5, 1, 1, -1, -1, 0, 0, -20, -20, 10, 10, -5, -5, -5, -5, -2, -2, -2, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -2, -2, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1500, -100, -20, 12, 0, 300, 15, -15, 15, 45, 6, -3, 0, 0, 3, 0, -100, 20, 20, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, -40, -40, 20, -1, -7, 5, -1, 4, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, -10, -10, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1500, -100, -20, 12, 300, 0, 15, 45, 15, -15, -3, 6, 0, 0, 0, 3, -100, 20, 20, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -40, 20, 20, -40, -1, 5, -7, -1, -8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, -10, -10, -1, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1536,0,0,0,-192,-192,24,24,24,24,-3,-3,0,0,-3,-3,0,0,0,0,0,0,0,128+64*K.1^2+64*K.1^-2,64-64*K.1^2-64*K.1^-2,8*K.1^2+8*K.1^-2,8*K.1+8*K.1^-1,16,16,3*K.1+3*K.1^-1,3*K.1^2+3*K.1^-2,3+4*K.1^2+4*K.1^-2,-1-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1536,0,0,0,-192,-192,24,24,24,24,-3,-3,0,0,-3,-3,0,0,0,0,0,0,0,64-64*K.1^2-64*K.1^-2,128+64*K.1^2+64*K.1^-2,8*K.1+8*K.1^-1,8*K.1^2+8*K.1^-2,16,16,3*K.1^2+3*K.1^-2,3*K.1+3*K.1^-1,-1-4*K.1^2-4*K.1^-2,3+4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,-16-8*K.1^2-8*K.1^-2,-8+8*K.1^2+8*K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1728,64,0,0,-144,-144,9,9,9,9,0,0,0,0,0,0,64,0,0,0,0,0,0,8,8,-17,-17,18+25*K.1^2+25*K.1^-2,-7-25*K.1^2-25*K.1^-2,3,3,-2,-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,1,1,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1728,64,0,0,-144,-144,9,9,9,9,0,0,0,0,0,0,64,0,0,0,0,0,0,8,8,-17,-17,-7-25*K.1^2-25*K.1^-2,18+25*K.1^2+25*K.1^-2,3,3,-2,-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,1,1,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1728,64,0,0,-144,-144,9,9,9,9,0,0,0,0,0,0,64,0,0,0,0,0,0,80+144*K.1^2+144*K.1^-2,-64-144*K.1^2-144*K.1^-2,2-7*K.1^2-7*K.1^-2,9+7*K.1^2+7*K.1^-2,-17,-17,-6-3*K.1^2-3*K.1^-2,-3+3*K.1^2+3*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,-1,-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,1,1,1,1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,0,0,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-1,-1,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1728,64,0,0,-144,-144,9,9,9,9,0,0,0,0,0,0,64,0,0,0,0,0,0,-64-144*K.1^2-144*K.1^-2,80+144*K.1^2+144*K.1^-2,9+7*K.1^2+7*K.1^-2,2-7*K.1^2-7*K.1^-2,-17,-17,-3+3*K.1^2+3*K.1^-2,-6-3*K.1^2-3*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,0,0,-1,-1,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-8,-8,-8,-8,1,1,1,1,0,0,0,0,0,0,0,0,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1-9*K.1^2-9*K.1^-2,8+9*K.1^2+9*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,1,1,1,1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,-8*K.1-8*K.1^-1,-8*K.1^2-8*K.1^-2,-8*K.1^2-8*K.1^-2,-8*K.1-8*K.1^-1,0,0,0,0,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1,-1,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1920,-128,0,0,-96,-96,-6,-6,-6,-6,3,3,0,0,3,3,0,0,0,0,0,0,0,80,80,-10,-10,20+10*K.1^2+10*K.1^-2,10-10*K.1^2-10*K.1^-2,0,0,0,0,16,16,16,16,-2,-2,-2,-2,0,0,0,0,0,0,0,0,16*K.1+16*K.1^-1,16*K.1^2+16*K.1^-2,16*K.1^2+16*K.1^-2,16*K.1+16*K.1^-1,0,0,-2+2*K.1^2+2*K.1^-2,-4-2*K.1^2-2*K.1^-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1920,-128,0,0,-96,-96,-6,-6,-6,-6,3,3,0,0,3,3,0,0,0,0,0,0,0,80,80,-10,-10,10-10*K.1^2-10*K.1^-2,20+10*K.1^2+10*K.1^-2,0,0,0,0,16,16,16,16,-2,-2,-2,-2,0,0,0,0,0,0,0,0,16*K.1^2+16*K.1^-2,16*K.1+16*K.1^-1,16*K.1+16*K.1^-1,16*K.1^2+16*K.1^-2,0,0,-4-2*K.1^2-2*K.1^-2,-2+2*K.1^2+2*K.1^-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1920,-128,0,0,-96,-96,-6,-6,-6,-6,3,3,0,0,3,3,0,0,0,0,0,0,0,-160*K.1-160*K.1^-1,-160*K.1^2-160*K.1^-2,20+10*K.1^2+10*K.1^-2,10-10*K.1^2-10*K.1^-2,-10,-10,0,0,0,0,16,16,16,16,-2,-2,-2,-2,0,0,0,0,0,0,0,0,16*K.1^2+16*K.1^-2,16*K.1+16*K.1^-1,16*K.1^2+16*K.1^-2,16*K.1+16*K.1^-1,0,0,2,2,-2+2*K.1^2+2*K.1^-2,-4-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,-1,-1,-1,-1,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1920,-128,0,0,-96,-96,-6,-6,-6,-6,3,3,0,0,3,3,0,0,0,0,0,0,0,-160*K.1^2-160*K.1^-2,-160*K.1-160*K.1^-1,10-10*K.1^2-10*K.1^-2,20+10*K.1^2+10*K.1^-2,-10,-10,0,0,0,0,16,16,16,16,-2,-2,-2,-2,0,0,0,0,0,0,0,0,16*K.1+16*K.1^-1,16*K.1^2+16*K.1^-2,16*K.1+16*K.1^-1,16*K.1^2+16*K.1^-2,0,0,2,2,-4-2*K.1^2-2*K.1^-2,-2+2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,1-K.1^2-K.1^-2,1-K.1^2-K.1^-2,-1,-1,-1,-1,2+K.1^2+K.1^-2,2+K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1944,144,8,0,-81,-81,0,0,0,0,0,0,0,0,0,0,144,8,8,8,0,0,0,-63+81*K.1^2+81*K.1^-2,-144-81*K.1^2-81*K.1^-2,-10-18*K.1^2-18*K.1^-2,8+18*K.1^2+18*K.1^-2,-1,-1,-3*K.1-3*K.1^-1,-3*K.1^2-3*K.1^-2,2+K.1^2+K.1^-2,1-K.1^2-K.1^-2,-9,-9,-9,-9,0,0,0,0,-1,-1,0,0,0,0,0,0,-8-9*K.1^2-9*K.1^-2,1+9*K.1^2+9*K.1^-2,-8-9*K.1^2-9*K.1^-2,1+9*K.1^2+9*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1,-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-9,-9,-9,-9,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,-8-9*K.1^2-9*K.1^-2,1+9*K.1^2+9*K.1^-2,1+9*K.1^2+9*K.1^-2,-8-9*K.1^2-9*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1,-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1944,144,8,0,-81,-81,0,0,0,0,0,0,0,0,0,0,144,8,8,8,0,0,0,-144-81*K.1^2-81*K.1^-2,-63+81*K.1^2+81*K.1^-2,8+18*K.1^2+18*K.1^-2,-10-18*K.1^2-18*K.1^-2,-1,-1,-3*K.1^2-3*K.1^-2,-3*K.1-3*K.1^-1,1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-9,-9,-9,-9,0,0,0,0,-1,-1,0,0,0,0,0,0,1+9*K.1^2+9*K.1^-2,-8-9*K.1^2-9*K.1^-2,1+9*K.1^2+9*K.1^-2,-8-9*K.1^2-9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1,-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-9,-9,-9,-9,0,0,0,0,-1,-1,-1,-1,-1,-1,0,0,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,1+9*K.1^2+9*K.1^-2,-8-9*K.1^2-9*K.1^-2,-8-9*K.1^2-9*K.1^-2,1+9*K.1^2+9*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1,-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2160,-64,-16,0,-18,-18,-9,-9,-9,-9,0,0,0,0,0,0,80,-16,0,0,0,0,0,10+90*K.1^2+90*K.1^-2,-80-90*K.1^2-90*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,0,0,0,0,-10,-10,26,26,-1,-1,-1,-1,2,2,0,0,0,0,0,0,16-10*K.1^2-10*K.1^-2,26+10*K.1^2+10*K.1^-2,18*K.1^2+18*K.1^-2,18*K.1+18*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-10,-10,8,8,-1,-1,-1,-1,0,0,2,2,0,0,0,0,-8,-8,-8,-8,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,1,1,1,1,1,1,1,1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,0,0,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2160,-64,-16,0,-18,-18,-9,-9,-9,-9,0,0,0,0,0,0,80,-16,0,0,0,0,0,-80-90*K.1^2-90*K.1^-2,10+90*K.1^2+90*K.1^-2,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,0,0,0,0,-10,-10,26,26,-1,-1,-1,-1,2,2,0,0,0,0,0,0,26+10*K.1^2+10*K.1^-2,16-10*K.1^2-10*K.1^-2,18*K.1+18*K.1^-1,18*K.1^2+18*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-10,-10,8,8,-1,-1,-1,-1,0,0,2,2,0,0,0,0,-8,-8,-8,-8,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,1,1,1,1,1,1,1,1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2160,-64,-16,0,-18,-18,-9,-9,-9,-9,0,0,0,0,0,0,80,0,-16,0,0,0,0,10+90*K.1^2+90*K.1^-2,-80-90*K.1^2-90*K.1^-2,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,0,0,0,0,26,26,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,18*K.1^2+18*K.1^-2,18*K.1+18*K.1^-1,16-10*K.1^2-10*K.1^-2,26+10*K.1^2+10*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,8,8,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,-8,-8,-8,-8,1,1,1,1,1,1,1,1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2160,-64,-16,0,-18,-18,-9,-9,-9,-9,0,0,0,0,0,0,80,0,-16,0,0,0,0,-80-90*K.1^2-90*K.1^-2,10+90*K.1^2+90*K.1^-2,10*K.1^2+10*K.1^-2,10*K.1+10*K.1^-1,10*K.1+10*K.1^-1,10*K.1^2+10*K.1^-2,0,0,0,0,26,26,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,18*K.1+18*K.1^-1,18*K.1^2+18*K.1^-2,26+10*K.1^2+10*K.1^-2,16-10*K.1^2-10*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,8,8,-10,-10,-1,-1,-1,-1,2,2,0,0,0,0,0,0,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,19+9*K.1^2+9*K.1^-2,10-9*K.1^2-9*K.1^-2,-8,-8,-8,-8,1,1,1,1,1,1,1,1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-1+K.1^2+K.1^-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2400,-320,32,0,60,60,-12,-12,-12,-12,-3,-3,0,0,-3,-3,0,0,0,0,0,0,0,-100*K.1-100*K.1^-1,-100*K.1^2-100*K.1^-2,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,-4,-4,0,0,0,0,0,0,20*K.1^2+20*K.1^-2,20*K.1+20*K.1^-1,20*K.1^2+20*K.1^-2,20*K.1+20*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2400,-320,32,0,60,60,-12,-12,-12,-12,-3,-3,0,0,-3,-3,0,0,0,0,0,0,0,-100*K.1^2-100*K.1^-2,-100*K.1-100*K.1^-1,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,-4,-4,0,0,0,0,0,0,20*K.1+20*K.1^-1,20*K.1^2+20*K.1^-2,20*K.1+20*K.1^-1,20*K.1^2+20*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-10*K.1-10*K.1^-1,-10*K.1^2-10*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2430, 18, -26, -6, 81, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 180, -8, -8, 10, -4, 0, -2, -180, -180, 10, 10, 10, 10, 0, 0, 0, 0, 9, 9, 9, 9, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 4, 4, -2, -2, -2, -2, 9, 9, 9, 9, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, -9, -9, -9, -9, -9, -9, -9, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -10, -10, -10, -10, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2700, -260, -4, 12, 180, 180, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 100, -20, -20, 0, 4, 0, 0, -100, -100, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, -8, -8, 1, 1, 1, 1, -4, -4, 0, 0, 0, 0, 0, 0, 20, 20, 20, 20, -4, -4, 0, 0, 0, 0, 10, 10, 10, 10, 1, 1, 1, 1, -2, -2, -2, -2, 0, 0, 0, 0, -10, -10, -10, -10, -10, -10, -10, -10, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_139968000_a:= KnownIrreducibles(CR);