Properties

Label 139968.ct
Order \( 2^{6} \cdot 3^{7} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3^{2} \)
$\card{Z(G)}$ \( 2 \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3^{4} \)
Perm deg. $28$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25), (1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28) >;
 
Copy content gap:G := Group( (1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25), (1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25)', '(1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(698371481729146808123892143331914951026538052259846808520558035776706977485484016460777801089592447687415006485965475245678686620820204607285662550502297445823435256159441066298464134004356253465555598829817960679974523162600082009570879465968321800337683843336801064168072197785728745991082,139968)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 

Group information

Description:$C_6^4.(C_3^2\times D_6)$
Order: \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_2\times C_6^3).C_3^5.C_6^2.C_2^4$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 247 3320 648 46328 20736 16848 51840 139968
Conjugacy classes   1 9 131 2 3821 10 52 18 4044
Divisions 1 9 68 2 1926 5 26 9 2046
Autjugacy classes 1 6 16 1 80 3 3 4 114

Minimal presentations

Permutation degree:$28$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid c^{9}=d^{6}=e^{6}=f^{6}=g^{2}=[d,e]=[d,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 26, 1418, 3027728, 782628, 106, 563475, 2928448, 510, 7356184, 3661337, 47220, 424363, 251, 3449634, 5159719, 1140080, 832968, 277699, 266, 404359, 269588, 146049, 67438, 22523, 5193404, 4188855, 120076, 780320, 260151, 346, 673929, 84262, 14075, 91308, 30481, 19274122, 9127427, 2285748, 1057963, 352700, 426, 7480523, 2476680, 1347877, 311738, 103959, 164280, 3531787, 2984240, 1574286, 524809]); a,b,c,d,e,f,g := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c3", "d", "d2", "e", "e2", "f", "f2", "g"]);
 
Copy content gap:G := PcGroupCode(698371481729146808123892143331914951026538052259846808520558035776706977485484016460777801089592447687415006485965475245678686620820204607285662550502297445823435256159441066298464134004356253465555598829817960679974523162600082009570879465968321800337683843336801064168072197785728745991082,139968); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(698371481729146808123892143331914951026538052259846808520558035776706977485484016460777801089592447687415006485965475245678686620820204607285662550502297445823435256159441066298464134004356253465555598829817960679974523162600082009570879465968321800337683843336801064168072197785728745991082,139968)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(698371481729146808123892143331914951026538052259846808520558035776706977485484016460777801089592447687415006485965475245678686620820204607285662550502297445823435256159441066298464134004356253465555598829817960679974523162600082009570879465968321800337683843336801064168072197785728745991082,139968)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 
Permutation group:Degree $28$ $\langle(1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25), (1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25), (1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28) >;
 
Copy content gap:G := Group( (1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25), (1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,3,6)(2,5,8,4,7,9)(10,12)(11,13,14,16,15,17)(18,20,23,21,24,26,19,22,25)', '(1,2,4)(3,5,7)(6,9,8)(10,11)(14,15)(18,19,21)(20,22,24)(23,26,25)(27,28)'])
 
Transitive group: 36T20901 more information
Direct product: $C_2$ $\, \times\, $ $(C_6^4.(S_3\times C_3^2))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^5$ . $(C_3\times S_3)$ (3) $(C_3\times C_6^5)$ . $C_6$ (4) $C_6^5$ . $(C_3\times C_6)$ (2) $C_3^6$ . $(C_2^4:A_4)$ all 116

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{6}^{2} \simeq C_{2}^{2} \times C_{3}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 148 normal subgroups (114 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_6$ $G/Z \simeq$ $C_6^4.(C_3\times C_6)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3\times C_6^4$ $G/G' \simeq$ $C_6^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^2\times C_6^2$ $G/\Phi \simeq$ $C_6\times S_3\times A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_6^5$ $G/\operatorname{Fit} \simeq$ $C_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_6^4.(C_3^2\times D_6)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6^2$ $G/\operatorname{soc} \simeq$ $(C_3^2\times C_6^2):C_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_6^4.(C_3^2\times D_6)$ $\rhd$ $C_3\times C_6^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_6^4.(C_3^2\times D_6)$ $\rhd$ $C_6^4.(S_3\times C_3^2)$ $\rhd$ $C_6^4.C_3^3$ $\rhd$ $(C_2\times C_6^3).C_3^3$ $\rhd$ $C_3\times C_6^4$ $\rhd$ $C_6^4$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_3\times C_6^2$ $\rhd$ $C_3^3$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_6^4.(C_3^2\times D_6)$ $\rhd$ $C_3\times C_6^4$ $\rhd$ $C_6^4$ $\rhd$ $C_2\times C_6^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_6$ $\lhd$ $C_3\times C_6$ $\lhd$ $C_3^2\times C_6$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 14 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4044 \times 4044$ character table is not available for this group.

Rational character table

The $2046 \times 2046$ rational character table is not available for this group.