/* Group 1386.18 downloaded from the LMFDB on 03 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, -3, -3, -7, -11, 10, 8012, 3022, 57, 4323, 12068, 158]); a,b := Explode([GPC.1, GPC.3]); AssignNames(~GPC, ["a", "a2", "b", "b3", "b21"]); GPerm := PermutationGroup< 21 | (13,14)(16,17)(18,19)(20,21), (16,18,20)(17,19,21), (1,2,3,4,5,6,7,8,9,10,11), (12,13,14), (15,16,18,21,20,19,17) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1386_18 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 21, a^3>,< 3, 2, b^77>,< 3, 7, a^4>,< 3, 7, a^2>,< 3, 14, a^4*b^110>,< 3, 14, a^2*b^22>,< 6, 21, a^5>,< 6, 21, a>,< 7, 6, b^33>,< 11, 1, b^168>,< 11, 1, b^63>,< 11, 1, b^105>,< 11, 1, b^126>,< 11, 1, b^42>,< 11, 1, b^189>,< 11, 1, b^210>,< 11, 1, b^21>,< 11, 1, b^147>,< 11, 1, b^84>,< 21, 6, b^11>,< 21, 6, b^22>,< 22, 21, a^3*b^63>,< 22, 21, a^3*b^168>,< 22, 21, a^3*b^189>,< 22, 21, a^3*b^42>,< 22, 21, a^3*b^84>,< 22, 21, a^3*b^147>,< 22, 21, a^3*b^210>,< 22, 21, a^3*b^21>,< 22, 21, a^3*b^105>,< 22, 21, a^3*b^126>,< 33, 2, b^7>,< 33, 2, b^224>,< 33, 2, b^14>,< 33, 2, b^217>,< 33, 2, b^28>,< 33, 2, b^203>,< 33, 2, b^35>,< 33, 2, b^196>,< 33, 2, b^56>,< 33, 2, b^175>,< 33, 7, a^2*b^42>,< 33, 7, a^4*b^189>,< 33, 7, a^4*b^84>,< 33, 7, a^2*b^147>,< 33, 7, a^2*b^168>,< 33, 7, a^4*b^63>,< 33, 7, a^4*b^210>,< 33, 7, a^2*b^21>,< 33, 7, a^2*b^63>,< 33, 7, a^4*b^168>,< 33, 7, a^4*b^105>,< 33, 7, a^2*b^126>,< 33, 7, a^2*b^189>,< 33, 7, a^4*b^42>,< 33, 7, a^2*b^84>,< 33, 7, a^4*b^147>,< 33, 7, a^4*b^126>,< 33, 7, a^2*b^105>,< 33, 7, a^2*b^210>,< 33, 7, a^4*b^21>,< 33, 14, a^2*b>,< 33, 14, a^4*b^43>,< 33, 14, a^4*b^2>,< 33, 14, a^2*b^64>,< 33, 14, a^2*b^4>,< 33, 14, a^4*b^7>,< 33, 14, a^4*b^5>,< 33, 14, a^2*b^127>,< 33, 14, a^2*b^7>,< 33, 14, a^4*b^4>,< 33, 14, a^4*b^8>,< 33, 14, a^2*b^14>,< 33, 14, a^2*b^43>,< 33, 14, a^4*b>,< 33, 14, a^2*b^2>,< 33, 14, a^4*b^64>,< 33, 14, a^4*b^14>,< 33, 14, a^2*b^8>,< 33, 14, a^2*b^5>,< 33, 14, a^4*b^127>,< 66, 21, a*b^21>,< 66, 21, a^5*b>,< 66, 21, a^5*b^6>,< 66, 21, a*b^126>,< 66, 21, a*b^15>,< 66, 21, a^5*b^84>,< 66, 21, a*b^42>,< 66, 21, a^5*b^2>,< 66, 21, a^5*b^126>,< 66, 21, a*b^6>,< 66, 21, a*b^3>,< 66, 21, a^5*b^63>,< 66, 21, a^5*b^21>,< 66, 21, a*b>,< 66, 21, a*b^63>,< 66, 21, a^5*b^3>,< 66, 21, a^5*b^15>,< 66, 21, a*b^84>,< 66, 21, a*b^2>,< 66, 21, a^5*b^42>,< 77, 6, b^3>,< 77, 6, b^228>,< 77, 6, b^6>,< 77, 6, b^225>,< 77, 6, b^9>,< 77, 6, b^222>,< 77, 6, b^12>,< 77, 6, b^219>,< 77, 6, b^15>,< 77, 6, b^216>,< 231, 6, b>,< 231, 6, b^43>,< 231, 6, b^2>,< 231, 6, b^86>,< 231, 6, b^4>,< 231, 6, b^106>,< 231, 6, b^5>,< 231, 6, b^127>,< 231, 6, b^8>,< 231, 6, b^212>,< 231, 6, b^10>,< 231, 6, b^23>,< 231, 6, b^64>,< 231, 6, b^211>,< 231, 6, b^190>,< 231, 6, b^85>,< 231, 6, b^128>,< 231, 6, b^191>,< 231, 6, b^149>,< 231, 6, b^170>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^2,K.1^-2,K.1^-1,K.1^4,K.1,K.1^-4,K.1^3,K.1^5,K.1^-3,1,1,K.1^5,K.1^-5,K.1^4,K.1^2,K.1^-3,K.1^-4,K.1^-2,K.1^3,K.1^-1,K.1,K.1^-5,K.1^5,K.1,K.1^-4,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^2,K.1^4,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-5,K.1^-3,K.1^-2,K.1,K.1^5,K.1^-3,K.1^-4,K.1^-5,K.1^3,K.1^4,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-5,K.1^3,K.1^5,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-4,K.1^-4,K.1^-5,K.1^4,K.1^5,K.1^-4,K.1^4,K.1^-2,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^-5,K.1^4,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-4,K.1^2,K.1^3,K.1,K.1^-2,K.1^2,K.1^5,K.1^5,K.1^-3,K.1^-1,K.1,K.1^-4,K.1^2,K.1^3,K.1^4,K.1^-2,K.1^-5,K.1,K.1^-2,K.1^-2,K.1^3,K.1^5,K.1^4,K.1^-4,K.1^-3,K.1^4,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1^-5,K.1^-5,K.1^3,K.1^5,K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-2,K.1^2,K.1,K.1^-4,K.1^-1,K.1^4,K.1^-3,K.1^-5,K.1^3,1,1,K.1^-5,K.1^5,K.1^-4,K.1^-2,K.1^3,K.1^4,K.1^2,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-5,K.1^-1,K.1^4,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1,K.1^-3,K.1^-4,K.1^-2,K.1^-4,K.1^-1,K.1,K.1^-2,K.1^2,K.1^5,K.1^3,K.1^2,K.1^-1,K.1^-5,K.1^3,K.1^4,K.1^5,K.1^-3,K.1^-4,K.1^-1,K.1,K.1^3,K.1^2,K.1,K.1^-2,K.1^-2,K.1^5,K.1^-3,K.1^-5,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^4,K.1^4,K.1^5,K.1^-4,K.1^-5,K.1^4,K.1^-4,K.1^2,K.1^5,K.1^-5,K.1^3,K.1,K.1^5,K.1^-4,K.1^-1,K.1,K.1^-3,K.1^3,K.1^4,K.1^-2,K.1^-3,K.1^-1,K.1^2,K.1^-2,K.1^-5,K.1^-5,K.1^3,K.1,K.1^-1,K.1^4,K.1^-2,K.1^-3,K.1^-4,K.1^2,K.1^5,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1,K.1,K.1^3,K.1^5,K.1^5,K.1^-3,K.1^-5,K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-4,K.1^-5,K.1^5,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-2,K.1^4,K.1^2,1,1,K.1^4,K.1^-4,K.1,K.1^-5,K.1^2,K.1^-1,K.1^5,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^4,K.1^3,K.1^-1,K.1^-3,K.1^5,K.1^-5,K.1^-2,K.1^2,K.1,K.1^4,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-5,K.1,K.1^3,K.1^-3,K.1^-5,K.1^5,K.1^-4,K.1^2,K.1^5,K.1^3,K.1^4,K.1^2,K.1^-1,K.1^-4,K.1^-2,K.1,K.1^3,K.1^-3,K.1^2,K.1^5,K.1^-3,K.1^-5,K.1^-5,K.1^-4,K.1^-2,K.1^4,K.1^3,K.1^-2,K.1^2,K.1^5,K.1^-1,K.1^-1,K.1^-4,K.1,K.1^4,K.1^-1,K.1,K.1^5,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-4,K.1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^-5,K.1^-2,K.1^3,K.1^5,K.1^-5,K.1^4,K.1^4,K.1^2,K.1^-3,K.1^3,K.1^-1,K.1^-5,K.1^-2,K.1,K.1^5,K.1^-4,K.1^3,K.1^5,K.1^5,K.1^-2,K.1^4,K.1,K.1^-1,K.1^2,K.1,K.1^3,K.1^-5,K.1^-3,K.1^-3,K.1^2,K.1^-4,K.1^-4,K.1^-2,K.1^4,K.1^-5,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^4,K.1^5,K.1^-5,K.1^3,K.1^-1,K.1^-3,K.1,K.1^2,K.1^-4,K.1^-2,1,1,K.1^-4,K.1^4,K.1^-1,K.1^5,K.1^-2,K.1,K.1^-5,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^-4,K.1^-3,K.1,K.1^3,K.1^-5,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1,K.1^3,K.1^2,K.1^-1,K.1^5,K.1^-1,K.1^-3,K.1^3,K.1^5,K.1^-5,K.1^4,K.1^-2,K.1^-5,K.1^-3,K.1^-4,K.1^-2,K.1,K.1^4,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1^-5,K.1^3,K.1^5,K.1^5,K.1^4,K.1^2,K.1^-4,K.1^-3,K.1^2,K.1^-2,K.1^-5,K.1,K.1,K.1^4,K.1^-1,K.1^-4,K.1,K.1^-1,K.1^-5,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1^4,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^5,K.1^2,K.1^-3,K.1^-5,K.1^5,K.1^-4,K.1^-4,K.1^-2,K.1^3,K.1^-3,K.1,K.1^5,K.1^2,K.1^-1,K.1^-5,K.1^4,K.1^-3,K.1^-5,K.1^-5,K.1^2,K.1^-4,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^5,K.1^3,K.1^3,K.1^-2,K.1^4,K.1^4,K.1^2,K.1^-4,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-1,K.1,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-4,1,1,K.1^3,K.1^-3,K.1^-2,K.1^-1,K.1^-4,K.1^2,K.1,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^5,K.1^2,K.1^-5,K.1,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1^2,K.1^-5,K.1^4,K.1^-2,K.1^-1,K.1^-2,K.1^5,K.1^-5,K.1^-1,K.1,K.1^-3,K.1^-4,K.1,K.1^5,K.1^3,K.1^-4,K.1^2,K.1^-3,K.1^4,K.1^-2,K.1^5,K.1^-5,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-1,K.1^-3,K.1^4,K.1^3,K.1^5,K.1^4,K.1^-4,K.1,K.1^2,K.1^2,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^-3,K.1^-2,K.1^5,K.1^-5,K.1^4,K.1^-4,K.1^2,K.1^-1,K.1^4,K.1^5,K.1,K.1^-1,K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^5,K.1^2,K.1^-1,K.1^4,K.1^-2,K.1,K.1^-3,K.1^5,K.1,K.1,K.1^4,K.1^3,K.1^-2,K.1^2,K.1^-4,K.1^-2,K.1^5,K.1^-1,K.1^-5,K.1^-5,K.1^-4,K.1^-3,K.1^-3,K.1^4,K.1^3,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^3,K.1,K.1^-1,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^4,1,1,K.1^-3,K.1^3,K.1^2,K.1,K.1^4,K.1^-2,K.1^-1,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^-5,K.1^-2,K.1^5,K.1^-1,K.1,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-2,K.1^5,K.1^-4,K.1^2,K.1,K.1^2,K.1^-5,K.1^5,K.1,K.1^-1,K.1^3,K.1^4,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^-2,K.1^3,K.1^-4,K.1^2,K.1^-5,K.1^5,K.1^4,K.1^-1,K.1^5,K.1,K.1,K.1^3,K.1^-4,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^-1,K.1^-2,K.1^-2,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^3,K.1^2,K.1^-5,K.1^5,K.1^-4,K.1^4,K.1^-2,K.1,K.1^-4,K.1^-5,K.1^-1,K.1,K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-5,K.1^-2,K.1,K.1^-4,K.1^2,K.1^-1,K.1^3,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^-3,K.1^2,K.1^-2,K.1^4,K.1^2,K.1^-5,K.1,K.1^5,K.1^5,K.1^4,K.1^3,K.1^3,K.1^-4,K.1^-3,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^3,K.1^-3,K.1^4,K.1^-5,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1,1,1,K.1^2,K.1^-2,K.1^-5,K.1^3,K.1,K.1^5,K.1^-3,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^2,K.1^-4,K.1^5,K.1^4,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-5,K.1^2,K.1^5,K.1^4,K.1^-1,K.1^-5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-3,K.1^-4,K.1^2,K.1,K.1^5,K.1^-2,K.1^-1,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-3,K.1^4,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1^2,K.1^-4,K.1^-1,K.1,K.1^-3,K.1^5,K.1^5,K.1^-2,K.1^-5,K.1^2,K.1^5,K.1^-5,K.1^-3,K.1^-2,K.1^2,K.1,K.1^4,K.1^-2,K.1^-5,K.1^-4,K.1^4,K.1^-1,K.1,K.1^5,K.1^3,K.1^-1,K.1^-4,K.1^-3,K.1^3,K.1^2,K.1^2,K.1,K.1^4,K.1^-4,K.1^5,K.1^3,K.1^-1,K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1^-3,K.1^-3,K.1^-1,K.1^2,K.1^-5,K.1^5,K.1,K.1^-5,K.1^-4,K.1^3,K.1^4,K.1^4,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^3,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-3,K.1^3,K.1^-4,K.1^5,K.1^4,K.1^-5,K.1,K.1^-2,K.1^-1,1,1,K.1^-2,K.1^2,K.1^5,K.1^-3,K.1^-1,K.1^-5,K.1^3,K.1,K.1^-4,K.1^4,K.1^2,K.1^-2,K.1^4,K.1^-5,K.1^-4,K.1^3,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-2,K.1^-5,K.1^-4,K.1,K.1^5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^3,K.1^4,K.1^-2,K.1^-1,K.1^-5,K.1^2,K.1,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^3,K.1^-4,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-2,K.1^4,K.1,K.1^-1,K.1^3,K.1^-5,K.1^-5,K.1^2,K.1^5,K.1^-2,K.1^-5,K.1^5,K.1^3,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1^2,K.1^5,K.1^4,K.1^-4,K.1,K.1^-1,K.1^-5,K.1^-3,K.1,K.1^4,K.1^3,K.1^-3,K.1^-2,K.1^-2,K.1^-1,K.1^-4,K.1^4,K.1^-5,K.1^-3,K.1,K.1^5,K.1^3,K.1^2,K.1^4,K.1^3,K.1^3,K.1,K.1^-2,K.1^5,K.1^-5,K.1^-1,K.1^5,K.1^4,K.1^-3,K.1^-4,K.1^-4,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-3,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-4,K.1^4,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^5,K.1,K.1^-5,1,1,K.1,K.1^-1,K.1^3,K.1^-4,K.1^-5,K.1^-3,K.1^4,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1,K.1^-3,K.1^2,K.1^5,K.1^3,K.1^-4,K.1^3,K.1^-2,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^-5,K.1^4,K.1^-2,K.1,K.1^-5,K.1^-3,K.1^-1,K.1^5,K.1^3,K.1^-2,K.1^2,K.1^-5,K.1^4,K.1^2,K.1^-4,K.1^-4,K.1^-1,K.1^5,K.1,K.1^-2,K.1^5,K.1^-5,K.1^4,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1,K.1^-3,K.1^3,K.1^4,K.1^-1,K.1,K.1^-5,K.1^2,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^5,K.1^-5,K.1^-3,K.1^-4,K.1^5,K.1^-2,K.1^4,K.1^-4,K.1,K.1,K.1^-5,K.1^2,K.1^-2,K.1^-3,K.1^-4,K.1^5,K.1^3,K.1^4,K.1^-1,K.1^-2,K.1^4,K.1^4,K.1^5,K.1,K.1^3,K.1^-3,K.1^-5,K.1^3,K.1^-2,K.1^-4,K.1^2,K.1^2,K.1^-5,K.1^-1,K.1^-1,K.1^5,K.1,K.1^-4,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,K.1,K.1^4,K.1^-4,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-5,K.1^-1,K.1^5,1,1,K.1^-1,K.1,K.1^-3,K.1^4,K.1^5,K.1^3,K.1^-4,K.1^-5,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^3,K.1^-2,K.1^-5,K.1^-3,K.1^4,K.1^-3,K.1^2,K.1^-2,K.1^4,K.1^-4,K.1,K.1^5,K.1^-4,K.1^2,K.1^-1,K.1^5,K.1^3,K.1,K.1^-5,K.1^-3,K.1^2,K.1^-2,K.1^5,K.1^-4,K.1^-2,K.1^4,K.1^4,K.1,K.1^-5,K.1^-1,K.1^2,K.1^-5,K.1^5,K.1^-4,K.1^3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^3,K.1^-3,K.1^-4,K.1,K.1^-1,K.1^5,K.1^-2,K.1,K.1^-3,K.1^2,K.1^-2,K.1^-5,K.1^5,K.1^3,K.1^4,K.1^-5,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^-1,K.1^5,K.1^-2,K.1^2,K.1^3,K.1^4,K.1^-5,K.1^-3,K.1^-4,K.1,K.1^2,K.1^-4,K.1^-4,K.1^-5,K.1^-1,K.1^-3,K.1^3,K.1^5,K.1^-3,K.1^2,K.1^4,K.1^-2,K.1^-2,K.1^5,K.1,K.1,K.1^-5,K.1^-1,K.1^4,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^-5,K.1^2,K.1^-2,K.1^-1,K.1^4,K.1,K.1^-4,K.1^3,K.1^5,K.1^-3,1,1,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1,K.1^-5,K.1^5,K.1,K.1^-4,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^2,K.1^4,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-5,K.1^-3,K.1^-2,K.1,K.1^5,K.1^-3,K.1^-4,K.1^-5,K.1^3,K.1^4,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-5,K.1^3,K.1^5,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-4,K.1^-4,K.1^-5,K.1^4,K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^5,K.1^5,K.1^-3,K.1^-1,K.1,K.1^-4,K.1^2,K.1^3,K.1^4,K.1^-2,K.1^-5,K.1,K.1^-2,K.1^-2,K.1^3,K.1^5,K.1^4,K.1^-4,K.1^-3,K.1^4,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1^-5,K.1^-5,K.1^3,K.1^5,K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^5,K.1^-2,K.1^2,K.1,K.1^-4,K.1^-1,K.1^4,K.1^-3,K.1^-5,K.1^3,1,1,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-1,K.1^5,K.1^-5,K.1^-1,K.1^4,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1,K.1^-3,K.1^-4,K.1^-2,K.1^-4,K.1^-1,K.1,K.1^-2,K.1^2,K.1^5,K.1^3,K.1^2,K.1^-1,K.1^-5,K.1^3,K.1^4,K.1^5,K.1^-3,K.1^-4,K.1^-1,K.1,K.1^3,K.1^2,K.1,K.1^-2,K.1^-2,K.1^5,K.1^-3,K.1^-5,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^4,K.1^4,K.1^5,K.1^-4,K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,K.1^-5,K.1^3,K.1,K.1^-1,K.1^4,K.1^-2,K.1^-3,K.1^-4,K.1^2,K.1^5,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1,K.1,K.1^3,K.1^5,K.1^5,K.1^-3,K.1^-5,K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^-4,K.1^-5,K.1^5,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-2,K.1^4,K.1^2,1,1,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,K.1^-4,K.1^4,K.1^3,K.1^-1,K.1^-3,K.1^5,K.1^-5,K.1^-2,K.1^2,K.1,K.1^4,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-5,K.1,K.1^3,K.1^-3,K.1^-5,K.1^5,K.1^-4,K.1^2,K.1^5,K.1^3,K.1^4,K.1^2,K.1^-1,K.1^-4,K.1^-2,K.1,K.1^3,K.1^-3,K.1^2,K.1^5,K.1^-3,K.1^-5,K.1^-5,K.1^-4,K.1^-2,K.1^4,K.1^3,K.1^-2,K.1^2,K.1^5,K.1^-1,K.1^-1,K.1^-4,K.1,K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^3,-1*K.1^5,-1*K.1^-5,-1*K.1^4,K.1^4,K.1^2,K.1^-3,K.1^3,K.1^-1,K.1^-5,K.1^-2,K.1,K.1^5,K.1^-4,K.1^3,K.1^5,K.1^5,K.1^-2,K.1^4,K.1,K.1^-1,K.1^2,K.1,K.1^3,K.1^-5,K.1^-3,K.1^-3,K.1^2,K.1^-4,K.1^-4,K.1^-2,K.1^4,K.1^-5,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^4,K.1^5,K.1^-5,K.1^3,K.1^-1,K.1^-3,K.1,K.1^2,K.1^-4,K.1^-2,1,1,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^2,-1*K.1^3,-1*K.1^-3,K.1^4,K.1^-4,K.1^-3,K.1,K.1^3,K.1^-5,K.1^5,K.1^2,K.1^-2,K.1^-1,K.1^-4,K.1,K.1^3,K.1^2,K.1^-1,K.1^5,K.1^-1,K.1^-3,K.1^3,K.1^5,K.1^-5,K.1^4,K.1^-2,K.1^-5,K.1^-3,K.1^-4,K.1^-2,K.1,K.1^4,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1^-5,K.1^3,K.1^5,K.1^5,K.1^4,K.1^2,K.1^-4,K.1^-3,K.1^2,K.1^-2,K.1^-5,K.1,K.1,K.1^4,K.1^-1,K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-3,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,K.1^-4,K.1^-2,K.1^3,K.1^-3,K.1,K.1^5,K.1^2,K.1^-1,K.1^-5,K.1^4,K.1^-3,K.1^-5,K.1^-5,K.1^2,K.1^-4,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^5,K.1^3,K.1^3,K.1^-2,K.1^4,K.1^4,K.1^2,K.1^-4,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^-3,K.1^-1,K.1,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-4,1,1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^-5,-1*K.1^5,K.1^-3,K.1^3,K.1^5,K.1^2,K.1^-5,K.1,K.1^-1,K.1^4,K.1^-4,K.1^-2,K.1^3,K.1^2,K.1^-5,K.1^4,K.1^-2,K.1^-1,K.1^-2,K.1^5,K.1^-5,K.1^-1,K.1,K.1^-3,K.1^-4,K.1,K.1^5,K.1^3,K.1^-4,K.1^2,K.1^-3,K.1^4,K.1^-2,K.1^5,K.1^-5,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-1,K.1^-3,K.1^4,K.1^3,K.1^5,K.1^4,K.1^-4,K.1,K.1^2,K.1^2,K.1^-3,K.1^-2,K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^-1,-1*K.1^4,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^5,K.1^2,K.1^-1,K.1^4,K.1^-2,K.1,K.1^-3,K.1^5,K.1,K.1,K.1^4,K.1^3,K.1^-2,K.1^2,K.1^-4,K.1^-2,K.1^5,K.1^-1,K.1^-5,K.1^-5,K.1^-4,K.1^-3,K.1^-3,K.1^4,K.1^3,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^3,K.1,K.1^-1,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^4,1,1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^5,-1*K.1^-5,K.1^3,K.1^-3,K.1^-5,K.1^-2,K.1^5,K.1^-1,K.1,K.1^-4,K.1^4,K.1^2,K.1^-3,K.1^-2,K.1^5,K.1^-4,K.1^2,K.1,K.1^2,K.1^-5,K.1^5,K.1,K.1^-1,K.1^3,K.1^4,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^-2,K.1^3,K.1^-4,K.1^2,K.1^-5,K.1^5,K.1^4,K.1^-1,K.1^5,K.1,K.1,K.1^3,K.1^-4,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^-1,K.1^-2,K.1^-2,K.1^3,K.1^2,K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1,-1*K.1^-4,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-5,K.1^-2,K.1,K.1^-4,K.1^2,K.1^-1,K.1^3,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^-3,K.1^2,K.1^-2,K.1^4,K.1^2,K.1^-5,K.1,K.1^5,K.1^5,K.1^4,K.1^3,K.1^3,K.1^-4,K.1^-3,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^-2,K.1^3,K.1^-3,K.1^4,K.1^-5,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1,1,1,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^4,-1*K.1^-4,K.1^-2,K.1^2,K.1^-4,K.1^5,K.1^4,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-5,K.1^2,K.1^5,K.1^4,K.1^-1,K.1^-5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-3,K.1^-4,K.1^2,K.1,K.1^5,K.1^-2,K.1^-1,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-3,K.1^4,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1^2,K.1^-4,K.1^-1,K.1,K.1^-3,K.1^5,K.1^5,K.1^-2,K.1^-5,K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^3,-1*K.1^2,K.1^2,K.1,K.1^4,K.1^-4,K.1^5,K.1^3,K.1^-1,K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1^-3,K.1^-3,K.1^-1,K.1^2,K.1^-5,K.1^5,K.1,K.1^-5,K.1^-4,K.1^3,K.1^4,K.1^4,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^3,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^2,K.1^-3,K.1^3,K.1^-4,K.1^5,K.1^4,K.1^-5,K.1,K.1^-2,K.1^-1,1,1,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-4,-1*K.1^4,K.1^2,K.1^-2,K.1^4,K.1^-5,K.1^-4,K.1^3,K.1^-3,K.1,K.1^-1,K.1^5,K.1^-2,K.1^-5,K.1^-4,K.1,K.1^5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^3,K.1^4,K.1^-2,K.1^-1,K.1^-5,K.1^2,K.1,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^3,K.1^-4,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-2,K.1^4,K.1,K.1^-1,K.1^3,K.1^-5,K.1^-5,K.1^2,K.1^5,K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-4,K.1^4,K.1^-5,K.1^-3,K.1,K.1^5,K.1^3,K.1^2,K.1^4,K.1^3,K.1^3,K.1,K.1^-2,K.1^5,K.1^-5,K.1^-1,K.1^5,K.1^4,K.1^-3,K.1^-4,K.1^-4,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-3,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1^-1,K.1^-4,K.1^4,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^5,K.1,K.1^-5,1,1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^2,K.1^4,K.1^-4,K.1^5,K.1^-5,K.1^3,K.1,K.1^-3,K.1^2,K.1^5,K.1^3,K.1^-4,K.1^3,K.1^-2,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^-5,K.1^4,K.1^-2,K.1,K.1^-5,K.1^-3,K.1^-1,K.1^5,K.1^3,K.1^-2,K.1^2,K.1^-5,K.1^4,K.1^2,K.1^-4,K.1^-4,K.1^-1,K.1^5,K.1,K.1^-2,K.1^5,K.1^-5,K.1^4,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1,K.1,K.1^-5,K.1^2,K.1^-2,K.1^-3,K.1^-4,K.1^5,K.1^3,K.1^4,K.1^-1,K.1^-2,K.1^4,K.1^4,K.1^5,K.1,K.1^3,K.1^-3,K.1^-5,K.1^3,K.1^-2,K.1^-4,K.1^2,K.1^2,K.1^-5,K.1^-1,K.1^-1,K.1^5,K.1,K.1^-4,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,1,K.1,K.1^4,K.1^-4,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-5,K.1^-1,K.1^5,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-4,K.1^4,K.1^-5,K.1^5,K.1^-3,K.1^-1,K.1^3,K.1^-2,K.1^-5,K.1^-3,K.1^4,K.1^-3,K.1^2,K.1^-2,K.1^4,K.1^-4,K.1,K.1^5,K.1^-4,K.1^2,K.1^-1,K.1^5,K.1^3,K.1,K.1^-5,K.1^-3,K.1^2,K.1^-2,K.1^5,K.1^-4,K.1^-2,K.1^4,K.1^4,K.1,K.1^-5,K.1^-1,K.1^2,K.1^-5,K.1^5,K.1^-4,K.1^3,K.1^3,K.1,K.1^-3,K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,K.1^-1,K.1^5,K.1^-2,K.1^2,K.1^3,K.1^4,K.1^-5,K.1^-3,K.1^-4,K.1,K.1^2,K.1^-4,K.1^-4,K.1^-5,K.1^-1,K.1^-3,K.1^3,K.1^5,K.1^-3,K.1^2,K.1^4,K.1^-2,K.1^-2,K.1^5,K.1,K.1,K.1^-5,K.1^-1,K.1^4,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^-15,K.1^6,K.1^-6,K.1^-3,K.1^12,K.1^3,K.1^-12,K.1^9,K.1^15,K.1^-9,1,1,K.1^15,K.1^-15,K.1^12,K.1^6,K.1^-9,K.1^-12,K.1^-6,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^15,K.1^3,K.1^-12,K.1^-3,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^4,K.1^10,K.1^8,K.1^-13,K.1^-10,K.1^-5,K.1,K.1^-8,K.1^-14,K.1^-16,K.1^5,K.1^7,K.1^13,K.1^16,K.1^14,K.1^-7,K.1^2,K.1^-1,K.1^-4,K.1^-2,K.1^-10,K.1^-8,K.1^-14,K.1^13,K.1^5,K.1^8,K.1^-5,K.1^-16,K.1^-4,K.1^-2,K.1^4,K.1^14,K.1^-13,K.1^2,K.1^16,K.1^-1,K.1^10,K.1^7,K.1,K.1^-7,K.1^10,K.1^-10,K.1^16,K.1^-4,K.1^-7,K.1^13,K.1^-14,K.1^7,K.1,K.1^14,K.1^8,K.1^-13,K.1^2,K.1^-1,K.1^-5,K.1^-2,K.1^-8,K.1^5,K.1^-16,K.1^4,K.1^15,K.1^-9,K.1^-3,K.1^3,K.1^-12,K.1^6,K.1^9,K.1^12,K.1^-6,K.1^-15,K.1^3,K.1^-6,K.1^-6,K.1^9,K.1^15,K.1^12,K.1^-12,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-9,K.1^-15,K.1^-15,K.1^9,K.1^15,K.1^6,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^15,K.1^-6,K.1^6,K.1^3,K.1^-12,K.1^-3,K.1^12,K.1^-9,K.1^-15,K.1^9,1,1,K.1^-15,K.1^15,K.1^-12,K.1^-6,K.1^9,K.1^12,K.1^6,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^-15,K.1^-3,K.1^12,K.1^3,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^-4,K.1^-10,K.1^-8,K.1^13,K.1^10,K.1^5,K.1^-1,K.1^8,K.1^14,K.1^16,K.1^-5,K.1^-7,K.1^-13,K.1^-16,K.1^-14,K.1^7,K.1^-2,K.1,K.1^4,K.1^2,K.1^10,K.1^8,K.1^14,K.1^-13,K.1^-5,K.1^-8,K.1^5,K.1^16,K.1^4,K.1^2,K.1^-4,K.1^-14,K.1^13,K.1^-2,K.1^-16,K.1,K.1^-10,K.1^-7,K.1^-1,K.1^7,K.1^-10,K.1^10,K.1^-16,K.1^4,K.1^7,K.1^-13,K.1^14,K.1^-7,K.1^-1,K.1^-14,K.1^-8,K.1^13,K.1^-2,K.1,K.1^5,K.1^2,K.1^8,K.1^-5,K.1^16,K.1^-4,K.1^-15,K.1^9,K.1^3,K.1^-3,K.1^12,K.1^-6,K.1^-9,K.1^-12,K.1^6,K.1^15,K.1^-3,K.1^6,K.1^6,K.1^-9,K.1^-15,K.1^-12,K.1^12,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^9,K.1^15,K.1^15,K.1^-9,K.1^-15,K.1^-6,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^15,K.1^-6,K.1^6,K.1^3,K.1^-12,K.1^-3,K.1^12,K.1^-9,K.1^-15,K.1^9,1,1,K.1^-15,K.1^15,K.1^-12,K.1^-6,K.1^9,K.1^12,K.1^6,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^-15,K.1^-3,K.1^12,K.1^3,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^7,K.1,K.1^14,K.1^2,K.1^-1,K.1^16,K.1^10,K.1^-14,K.1^-8,K.1^5,K.1^-16,K.1^4,K.1^-2,K.1^-5,K.1^8,K.1^-4,K.1^-13,K.1^-10,K.1^-7,K.1^13,K.1^-1,K.1^-14,K.1^-8,K.1^-2,K.1^-16,K.1^14,K.1^16,K.1^5,K.1^-7,K.1^13,K.1^7,K.1^8,K.1^2,K.1^-13,K.1^-5,K.1^-10,K.1,K.1^4,K.1^10,K.1^-4,K.1,K.1^-1,K.1^-5,K.1^-7,K.1^-4,K.1^-2,K.1^-8,K.1^4,K.1^10,K.1^8,K.1^14,K.1^2,K.1^-13,K.1^-10,K.1^16,K.1^13,K.1^-14,K.1^-16,K.1^5,K.1^7,K.1^-15,K.1^9,K.1^3,K.1^-3,K.1^12,K.1^-6,K.1^-9,K.1^-12,K.1^6,K.1^15,K.1^-3,K.1^6,K.1^6,K.1^-9,K.1^-15,K.1^-12,K.1^12,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^9,K.1^15,K.1^15,K.1^-9,K.1^-15,K.1^-6,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^-15,K.1^6,K.1^-6,K.1^-3,K.1^12,K.1^3,K.1^-12,K.1^9,K.1^15,K.1^-9,1,1,K.1^15,K.1^-15,K.1^12,K.1^6,K.1^-9,K.1^-12,K.1^-6,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^15,K.1^3,K.1^-12,K.1^-3,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^-7,K.1^-1,K.1^-14,K.1^-2,K.1,K.1^-16,K.1^-10,K.1^14,K.1^8,K.1^-5,K.1^16,K.1^-4,K.1^2,K.1^5,K.1^-8,K.1^4,K.1^13,K.1^10,K.1^7,K.1^-13,K.1,K.1^14,K.1^8,K.1^2,K.1^16,K.1^-14,K.1^-16,K.1^-5,K.1^7,K.1^-13,K.1^-7,K.1^-8,K.1^-2,K.1^13,K.1^5,K.1^10,K.1^-1,K.1^-4,K.1^-10,K.1^4,K.1^-1,K.1,K.1^5,K.1^7,K.1^4,K.1^2,K.1^8,K.1^-4,K.1^-10,K.1^-8,K.1^-14,K.1^-2,K.1^13,K.1^10,K.1^-16,K.1^-13,K.1^14,K.1^16,K.1^-5,K.1^-7,K.1^15,K.1^-9,K.1^-3,K.1^3,K.1^-12,K.1^6,K.1^9,K.1^12,K.1^-6,K.1^-15,K.1^3,K.1^-6,K.1^-6,K.1^9,K.1^15,K.1^12,K.1^-12,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-9,K.1^-15,K.1^-15,K.1^9,K.1^15,K.1^6,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^-12,K.1^-15,K.1^15,K.1^-9,K.1^3,K.1^9,K.1^-3,K.1^-6,K.1^12,K.1^6,1,1,K.1^12,K.1^-12,K.1^3,K.1^-15,K.1^6,K.1^-3,K.1^15,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^12,K.1^9,K.1^-3,K.1^-9,K.1^15,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1,K.1^-14,K.1^2,K.1^5,K.1^14,K.1^7,K.1^-8,K.1^-2,K.1^13,K.1^-4,K.1^-7,K.1^10,K.1^-5,K.1^4,K.1^-13,K.1^-10,K.1^-16,K.1^8,K.1^-1,K.1^16,K.1^14,K.1^-2,K.1^13,K.1^-5,K.1^-7,K.1^2,K.1^7,K.1^-4,K.1^-1,K.1^16,K.1,K.1^-13,K.1^5,K.1^-16,K.1^4,K.1^8,K.1^-14,K.1^10,K.1^-8,K.1^-10,K.1^-14,K.1^14,K.1^4,K.1^-1,K.1^-10,K.1^-5,K.1^13,K.1^10,K.1^-8,K.1^-13,K.1^2,K.1^5,K.1^-16,K.1^8,K.1^7,K.1^16,K.1^-2,K.1^-7,K.1^-4,K.1,K.1^12,K.1^6,K.1^-9,K.1^9,K.1^-3,K.1^-15,K.1^-6,K.1^3,K.1^15,K.1^-12,K.1^9,K.1^15,K.1^15,K.1^-6,K.1^12,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^9,K.1^-15,K.1^-9,K.1^-9,K.1^6,K.1^-12,K.1^-12,K.1^-6,K.1^12,K.1^-15,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^12,K.1^15,K.1^-15,K.1^9,K.1^-3,K.1^-9,K.1^3,K.1^6,K.1^-12,K.1^-6,1,1,K.1^-12,K.1^12,K.1^-3,K.1^15,K.1^-6,K.1^3,K.1^-15,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^-12,K.1^-9,K.1^3,K.1^9,K.1^-15,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^-1,K.1^14,K.1^-2,K.1^-5,K.1^-14,K.1^-7,K.1^8,K.1^2,K.1^-13,K.1^4,K.1^7,K.1^-10,K.1^5,K.1^-4,K.1^13,K.1^10,K.1^16,K.1^-8,K.1,K.1^-16,K.1^-14,K.1^2,K.1^-13,K.1^5,K.1^7,K.1^-2,K.1^-7,K.1^4,K.1,K.1^-16,K.1^-1,K.1^13,K.1^-5,K.1^16,K.1^-4,K.1^-8,K.1^14,K.1^-10,K.1^8,K.1^10,K.1^14,K.1^-14,K.1^-4,K.1,K.1^10,K.1^5,K.1^-13,K.1^-10,K.1^8,K.1^13,K.1^-2,K.1^-5,K.1^16,K.1^-8,K.1^-7,K.1^-16,K.1^2,K.1^7,K.1^4,K.1^-1,K.1^-12,K.1^-6,K.1^9,K.1^-9,K.1^3,K.1^15,K.1^6,K.1^-3,K.1^-15,K.1^12,K.1^-9,K.1^-15,K.1^-15,K.1^6,K.1^-12,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-9,K.1^15,K.1^9,K.1^9,K.1^-6,K.1^12,K.1^12,K.1^6,K.1^-12,K.1^15,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^12,K.1^15,K.1^-15,K.1^9,K.1^-3,K.1^-9,K.1^3,K.1^6,K.1^-12,K.1^-6,1,1,K.1^-12,K.1^12,K.1^-3,K.1^15,K.1^-6,K.1^3,K.1^-15,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^-12,K.1^-9,K.1^3,K.1^9,K.1^-15,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^10,K.1^-8,K.1^-13,K.1^-16,K.1^8,K.1^4,K.1^-14,K.1^13,K.1^-2,K.1^-7,K.1^-4,K.1,K.1^16,K.1^7,K.1^2,K.1^-1,K.1^5,K.1^14,K.1^-10,K.1^-5,K.1^8,K.1^13,K.1^-2,K.1^16,K.1^-4,K.1^-13,K.1^4,K.1^-7,K.1^-10,K.1^-5,K.1^10,K.1^2,K.1^-16,K.1^5,K.1^7,K.1^14,K.1^-8,K.1,K.1^-14,K.1^-1,K.1^-8,K.1^8,K.1^7,K.1^-10,K.1^-1,K.1^16,K.1^-2,K.1,K.1^-14,K.1^2,K.1^-13,K.1^-16,K.1^5,K.1^14,K.1^4,K.1^-5,K.1^13,K.1^-4,K.1^-7,K.1^10,K.1^-12,K.1^-6,K.1^9,K.1^-9,K.1^3,K.1^15,K.1^6,K.1^-3,K.1^-15,K.1^12,K.1^-9,K.1^-15,K.1^-15,K.1^6,K.1^-12,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-9,K.1^15,K.1^9,K.1^9,K.1^-6,K.1^12,K.1^12,K.1^6,K.1^-12,K.1^15,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^-12,K.1^-15,K.1^15,K.1^-9,K.1^3,K.1^9,K.1^-3,K.1^-6,K.1^12,K.1^6,1,1,K.1^12,K.1^-12,K.1^3,K.1^-15,K.1^6,K.1^-3,K.1^15,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^12,K.1^9,K.1^-3,K.1^-9,K.1^15,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1^-10,K.1^8,K.1^13,K.1^16,K.1^-8,K.1^-4,K.1^14,K.1^-13,K.1^2,K.1^7,K.1^4,K.1^-1,K.1^-16,K.1^-7,K.1^-2,K.1,K.1^-5,K.1^-14,K.1^10,K.1^5,K.1^-8,K.1^-13,K.1^2,K.1^-16,K.1^4,K.1^13,K.1^-4,K.1^7,K.1^10,K.1^5,K.1^-10,K.1^-2,K.1^16,K.1^-5,K.1^-7,K.1^-14,K.1^8,K.1^-1,K.1^14,K.1,K.1^8,K.1^-8,K.1^-7,K.1^10,K.1,K.1^-16,K.1^2,K.1^-1,K.1^14,K.1^-2,K.1^13,K.1^16,K.1^-5,K.1^-14,K.1^-4,K.1^5,K.1^-13,K.1^4,K.1^7,K.1^-10,K.1^12,K.1^6,K.1^-9,K.1^9,K.1^-3,K.1^-15,K.1^-6,K.1^3,K.1^15,K.1^-12,K.1^9,K.1^15,K.1^15,K.1^-6,K.1^12,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^9,K.1^-15,K.1^-9,K.1^-9,K.1^6,K.1^-12,K.1^-12,K.1^-6,K.1^12,K.1^-15,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^-9,K.1^-3,K.1^3,K.1^-15,K.1^-6,K.1^15,K.1^6,K.1^12,K.1^9,K.1^-12,1,1,K.1^9,K.1^-9,K.1^-6,K.1^-3,K.1^-12,K.1^6,K.1^3,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^9,K.1^15,K.1^6,K.1^-15,K.1^3,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^-2,K.1^-5,K.1^-4,K.1^-10,K.1^5,K.1^-14,K.1^16,K.1^4,K.1^7,K.1^8,K.1^14,K.1^13,K.1^10,K.1^-8,K.1^-7,K.1^-13,K.1^-1,K.1^-16,K.1^2,K.1,K.1^5,K.1^4,K.1^7,K.1^10,K.1^14,K.1^-4,K.1^-14,K.1^8,K.1^2,K.1,K.1^-2,K.1^-7,K.1^-10,K.1^-1,K.1^-8,K.1^-16,K.1^-5,K.1^13,K.1^16,K.1^-13,K.1^-5,K.1^5,K.1^-8,K.1^2,K.1^-13,K.1^10,K.1^7,K.1^13,K.1^16,K.1^-7,K.1^-4,K.1^-10,K.1^-1,K.1^-16,K.1^-14,K.1,K.1^4,K.1^14,K.1^8,K.1^-2,K.1^9,K.1^-12,K.1^-15,K.1^15,K.1^6,K.1^-3,K.1^12,K.1^-6,K.1^3,K.1^-9,K.1^15,K.1^3,K.1^3,K.1^12,K.1^9,K.1^-6,K.1^6,K.1^-12,K.1^-6,K.1^15,K.1^-3,K.1^-15,K.1^-15,K.1^-12,K.1^-9,K.1^-9,K.1^12,K.1^9,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^9,K.1^3,K.1^-3,K.1^15,K.1^6,K.1^-15,K.1^-6,K.1^-12,K.1^-9,K.1^12,1,1,K.1^-9,K.1^9,K.1^6,K.1^3,K.1^12,K.1^-6,K.1^-3,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^-9,K.1^-15,K.1^-6,K.1^15,K.1^-3,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^2,K.1^5,K.1^4,K.1^10,K.1^-5,K.1^14,K.1^-16,K.1^-4,K.1^-7,K.1^-8,K.1^-14,K.1^-13,K.1^-10,K.1^8,K.1^7,K.1^13,K.1,K.1^16,K.1^-2,K.1^-1,K.1^-5,K.1^-4,K.1^-7,K.1^-10,K.1^-14,K.1^4,K.1^14,K.1^-8,K.1^-2,K.1^-1,K.1^2,K.1^7,K.1^10,K.1,K.1^8,K.1^16,K.1^5,K.1^-13,K.1^-16,K.1^13,K.1^5,K.1^-5,K.1^8,K.1^-2,K.1^13,K.1^-10,K.1^-7,K.1^-13,K.1^-16,K.1^7,K.1^4,K.1^10,K.1,K.1^16,K.1^14,K.1^-1,K.1^-4,K.1^-14,K.1^-8,K.1^2,K.1^-9,K.1^12,K.1^15,K.1^-15,K.1^-6,K.1^3,K.1^-12,K.1^6,K.1^-3,K.1^9,K.1^-15,K.1^-3,K.1^-3,K.1^-12,K.1^-9,K.1^6,K.1^-6,K.1^12,K.1^6,K.1^-15,K.1^3,K.1^15,K.1^15,K.1^12,K.1^9,K.1^9,K.1^-12,K.1^-9,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^9,K.1^3,K.1^-3,K.1^15,K.1^6,K.1^-15,K.1^-6,K.1^-12,K.1^-9,K.1^12,1,1,K.1^-9,K.1^9,K.1^6,K.1^3,K.1^12,K.1^-6,K.1^-3,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^-9,K.1^-15,K.1^-6,K.1^15,K.1^-3,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^13,K.1^16,K.1^-7,K.1^-1,K.1^-16,K.1^-8,K.1^-5,K.1^7,K.1^4,K.1^14,K.1^8,K.1^-2,K.1,K.1^-14,K.1^-4,K.1^2,K.1^-10,K.1^5,K.1^-13,K.1^10,K.1^-16,K.1^7,K.1^4,K.1,K.1^8,K.1^-7,K.1^-8,K.1^14,K.1^-13,K.1^10,K.1^13,K.1^-4,K.1^-1,K.1^-10,K.1^-14,K.1^5,K.1^16,K.1^-2,K.1^-5,K.1^2,K.1^16,K.1^-16,K.1^-14,K.1^-13,K.1^2,K.1,K.1^4,K.1^-2,K.1^-5,K.1^-4,K.1^-7,K.1^-1,K.1^-10,K.1^5,K.1^-8,K.1^10,K.1^7,K.1^8,K.1^14,K.1^13,K.1^-9,K.1^12,K.1^15,K.1^-15,K.1^-6,K.1^3,K.1^-12,K.1^6,K.1^-3,K.1^9,K.1^-15,K.1^-3,K.1^-3,K.1^-12,K.1^-9,K.1^6,K.1^-6,K.1^12,K.1^6,K.1^-15,K.1^3,K.1^15,K.1^15,K.1^12,K.1^9,K.1^9,K.1^-12,K.1^-9,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^-9,K.1^-3,K.1^3,K.1^-15,K.1^-6,K.1^15,K.1^6,K.1^12,K.1^9,K.1^-12,1,1,K.1^9,K.1^-9,K.1^-6,K.1^-3,K.1^-12,K.1^6,K.1^3,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^9,K.1^15,K.1^6,K.1^-15,K.1^3,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^-13,K.1^-16,K.1^7,K.1,K.1^16,K.1^8,K.1^5,K.1^-7,K.1^-4,K.1^-14,K.1^-8,K.1^2,K.1^-1,K.1^14,K.1^4,K.1^-2,K.1^10,K.1^-5,K.1^13,K.1^-10,K.1^16,K.1^-7,K.1^-4,K.1^-1,K.1^-8,K.1^7,K.1^8,K.1^-14,K.1^13,K.1^-10,K.1^-13,K.1^4,K.1,K.1^10,K.1^14,K.1^-5,K.1^-16,K.1^2,K.1^5,K.1^-2,K.1^-16,K.1^16,K.1^14,K.1^13,K.1^-2,K.1^-1,K.1^-4,K.1^2,K.1^5,K.1^4,K.1^7,K.1,K.1^10,K.1^-5,K.1^8,K.1^-10,K.1^-7,K.1^-8,K.1^-14,K.1^-13,K.1^9,K.1^-12,K.1^-15,K.1^15,K.1^6,K.1^-3,K.1^12,K.1^-6,K.1^3,K.1^-9,K.1^15,K.1^3,K.1^3,K.1^12,K.1^9,K.1^-6,K.1^6,K.1^-12,K.1^-6,K.1^15,K.1^-3,K.1^-15,K.1^-15,K.1^-12,K.1^-9,K.1^-9,K.1^12,K.1^9,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^-6,K.1^9,K.1^-9,K.1^12,K.1^-15,K.1^-12,K.1^15,K.1^-3,K.1^6,K.1^3,1,1,K.1^6,K.1^-6,K.1^-15,K.1^9,K.1^3,K.1^15,K.1^-9,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^6,K.1^-12,K.1^15,K.1^12,K.1^-9,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^-5,K.1^4,K.1^-10,K.1^8,K.1^-4,K.1^-2,K.1^7,K.1^10,K.1,K.1^-13,K.1^2,K.1^16,K.1^-8,K.1^13,K.1^-1,K.1^-16,K.1^14,K.1^-7,K.1^5,K.1^-14,K.1^-4,K.1^10,K.1,K.1^-8,K.1^2,K.1^-10,K.1^-2,K.1^-13,K.1^5,K.1^-14,K.1^-5,K.1^-1,K.1^8,K.1^14,K.1^13,K.1^-7,K.1^4,K.1^16,K.1^7,K.1^-16,K.1^4,K.1^-4,K.1^13,K.1^5,K.1^-16,K.1^-8,K.1,K.1^16,K.1^7,K.1^-1,K.1^-10,K.1^8,K.1^14,K.1^-7,K.1^-2,K.1^-14,K.1^10,K.1^2,K.1^-13,K.1^-5,K.1^6,K.1^3,K.1^12,K.1^-12,K.1^15,K.1^9,K.1^-3,K.1^-15,K.1^-9,K.1^-6,K.1^-12,K.1^-9,K.1^-9,K.1^-3,K.1^6,K.1^-15,K.1^15,K.1^3,K.1^-15,K.1^-12,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^9,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^6,K.1^-9,K.1^9,K.1^-12,K.1^15,K.1^12,K.1^-15,K.1^3,K.1^-6,K.1^-3,1,1,K.1^-6,K.1^6,K.1^15,K.1^-9,K.1^-3,K.1^-15,K.1^9,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^-6,K.1^12,K.1^-15,K.1^-12,K.1^9,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^5,K.1^-4,K.1^10,K.1^-8,K.1^4,K.1^2,K.1^-7,K.1^-10,K.1^-1,K.1^13,K.1^-2,K.1^-16,K.1^8,K.1^-13,K.1,K.1^16,K.1^-14,K.1^7,K.1^-5,K.1^14,K.1^4,K.1^-10,K.1^-1,K.1^8,K.1^-2,K.1^10,K.1^2,K.1^13,K.1^-5,K.1^14,K.1^5,K.1,K.1^-8,K.1^-14,K.1^-13,K.1^7,K.1^-4,K.1^-16,K.1^-7,K.1^16,K.1^-4,K.1^4,K.1^-13,K.1^-5,K.1^16,K.1^8,K.1^-1,K.1^-16,K.1^-7,K.1,K.1^10,K.1^-8,K.1^-14,K.1^7,K.1^2,K.1^14,K.1^-10,K.1^-2,K.1^13,K.1^5,K.1^-6,K.1^-3,K.1^-12,K.1^12,K.1^-15,K.1^-9,K.1^3,K.1^15,K.1^9,K.1^6,K.1^12,K.1^9,K.1^9,K.1^3,K.1^-6,K.1^15,K.1^-15,K.1^-3,K.1^15,K.1^12,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^-9,K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^6,K.1^-9,K.1^9,K.1^-12,K.1^15,K.1^12,K.1^-15,K.1^3,K.1^-6,K.1^-3,1,1,K.1^-6,K.1^6,K.1^15,K.1^-9,K.1^-3,K.1^-15,K.1^9,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^-6,K.1^12,K.1^-15,K.1^-12,K.1^9,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^16,K.1^7,K.1^-1,K.1^14,K.1^-7,K.1^13,K.1^4,K.1,K.1^10,K.1^2,K.1^-13,K.1^-5,K.1^-14,K.1^-2,K.1^-10,K.1^5,K.1^8,K.1^-4,K.1^-16,K.1^-8,K.1^-7,K.1,K.1^10,K.1^-14,K.1^-13,K.1^-1,K.1^13,K.1^2,K.1^-16,K.1^-8,K.1^16,K.1^-10,K.1^14,K.1^8,K.1^-2,K.1^-4,K.1^7,K.1^-5,K.1^4,K.1^5,K.1^7,K.1^-7,K.1^-2,K.1^-16,K.1^5,K.1^-14,K.1^10,K.1^-5,K.1^4,K.1^-10,K.1^-1,K.1^14,K.1^8,K.1^-4,K.1^13,K.1^-8,K.1,K.1^-13,K.1^2,K.1^16,K.1^-6,K.1^-3,K.1^-12,K.1^12,K.1^-15,K.1^-9,K.1^3,K.1^15,K.1^9,K.1^6,K.1^12,K.1^9,K.1^9,K.1^3,K.1^-6,K.1^15,K.1^-15,K.1^-3,K.1^15,K.1^12,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^-9,K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^-6,K.1^9,K.1^-9,K.1^12,K.1^-15,K.1^-12,K.1^15,K.1^-3,K.1^6,K.1^3,1,1,K.1^6,K.1^-6,K.1^-15,K.1^9,K.1^3,K.1^15,K.1^-9,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^6,K.1^-12,K.1^15,K.1^12,K.1^-9,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^-16,K.1^-7,K.1,K.1^-14,K.1^7,K.1^-13,K.1^-4,K.1^-1,K.1^-10,K.1^-2,K.1^13,K.1^5,K.1^14,K.1^2,K.1^10,K.1^-5,K.1^-8,K.1^4,K.1^16,K.1^8,K.1^7,K.1^-1,K.1^-10,K.1^14,K.1^13,K.1,K.1^-13,K.1^-2,K.1^16,K.1^8,K.1^-16,K.1^10,K.1^-14,K.1^-8,K.1^2,K.1^4,K.1^-7,K.1^5,K.1^-4,K.1^-5,K.1^-7,K.1^7,K.1^2,K.1^16,K.1^-5,K.1^14,K.1^-10,K.1^5,K.1^-4,K.1^10,K.1,K.1^-14,K.1^-8,K.1^4,K.1^-13,K.1^8,K.1^-1,K.1^13,K.1^-2,K.1^-16,K.1^6,K.1^3,K.1^12,K.1^-12,K.1^15,K.1^9,K.1^-3,K.1^-15,K.1^-9,K.1^-6,K.1^-12,K.1^-9,K.1^-9,K.1^-3,K.1^6,K.1^-15,K.1^15,K.1^3,K.1^-15,K.1^-12,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^9,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^-3,K.1^-12,K.1^12,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^15,K.1^3,K.1^-15,1,1,K.1^3,K.1^-3,K.1^9,K.1^-12,K.1^-15,K.1^-9,K.1^12,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^12,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^-8,K.1^13,K.1^-16,K.1^-7,K.1^-13,K.1^10,K.1^-2,K.1^16,K.1^-5,K.1^-1,K.1^-10,K.1^-14,K.1^7,K.1,K.1^5,K.1^14,K.1^-4,K.1^2,K.1^8,K.1^4,K.1^-13,K.1^16,K.1^-5,K.1^7,K.1^-10,K.1^-16,K.1^10,K.1^-1,K.1^8,K.1^4,K.1^-8,K.1^5,K.1^-7,K.1^-4,K.1,K.1^2,K.1^13,K.1^-14,K.1^-2,K.1^14,K.1^13,K.1^-13,K.1,K.1^8,K.1^14,K.1^7,K.1^-5,K.1^-14,K.1^-2,K.1^5,K.1^-16,K.1^-7,K.1^-4,K.1^2,K.1^10,K.1^4,K.1^16,K.1^-10,K.1^-1,K.1^-8,K.1^3,K.1^-15,K.1^6,K.1^-6,K.1^-9,K.1^-12,K.1^15,K.1^9,K.1^12,K.1^-3,K.1^-6,K.1^12,K.1^12,K.1^15,K.1^3,K.1^9,K.1^-9,K.1^-15,K.1^9,K.1^-6,K.1^-12,K.1^6,K.1^6,K.1^-15,K.1^-3,K.1^-3,K.1^15,K.1^3,K.1^-12,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^3,K.1^12,K.1^-12,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^-15,K.1^-3,K.1^15,1,1,K.1^-3,K.1^3,K.1^-9,K.1^12,K.1^15,K.1^9,K.1^-12,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-12,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^8,K.1^-13,K.1^16,K.1^7,K.1^13,K.1^-10,K.1^2,K.1^-16,K.1^5,K.1,K.1^10,K.1^14,K.1^-7,K.1^-1,K.1^-5,K.1^-14,K.1^4,K.1^-2,K.1^-8,K.1^-4,K.1^13,K.1^-16,K.1^5,K.1^-7,K.1^10,K.1^16,K.1^-10,K.1,K.1^-8,K.1^-4,K.1^8,K.1^-5,K.1^7,K.1^4,K.1^-1,K.1^-2,K.1^-13,K.1^14,K.1^2,K.1^-14,K.1^-13,K.1^13,K.1^-1,K.1^-8,K.1^-14,K.1^-7,K.1^5,K.1^14,K.1^2,K.1^-5,K.1^16,K.1^7,K.1^4,K.1^-2,K.1^-10,K.1^-4,K.1^-16,K.1^10,K.1,K.1^8,K.1^-3,K.1^15,K.1^-6,K.1^6,K.1^9,K.1^12,K.1^-15,K.1^-9,K.1^-12,K.1^3,K.1^6,K.1^-12,K.1^-12,K.1^-15,K.1^-3,K.1^-9,K.1^9,K.1^15,K.1^-9,K.1^6,K.1^12,K.1^-6,K.1^-6,K.1^15,K.1^3,K.1^3,K.1^-15,K.1^-3,K.1^12,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,K.1^11,K.1^-11,1,K.1^3,K.1^12,K.1^-12,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^-15,K.1^-3,K.1^15,1,1,K.1^-3,K.1^3,K.1^-9,K.1^12,K.1^15,K.1^9,K.1^-12,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-12,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^-14,K.1^-2,K.1^5,K.1^-4,K.1^2,K.1,K.1^13,K.1^-5,K.1^16,K.1^-10,K.1^-1,K.1^-8,K.1^4,K.1^10,K.1^-16,K.1^8,K.1^-7,K.1^-13,K.1^14,K.1^7,K.1^2,K.1^-5,K.1^16,K.1^4,K.1^-1,K.1^5,K.1,K.1^-10,K.1^14,K.1^7,K.1^-14,K.1^-16,K.1^-4,K.1^-7,K.1^10,K.1^-13,K.1^-2,K.1^-8,K.1^13,K.1^8,K.1^-2,K.1^2,K.1^10,K.1^14,K.1^8,K.1^4,K.1^16,K.1^-8,K.1^13,K.1^-16,K.1^5,K.1^-4,K.1^-7,K.1^-13,K.1,K.1^7,K.1^-5,K.1^-1,K.1^-10,K.1^-14,K.1^-3,K.1^15,K.1^-6,K.1^6,K.1^9,K.1^12,K.1^-15,K.1^-9,K.1^-12,K.1^3,K.1^6,K.1^-12,K.1^-12,K.1^-15,K.1^-3,K.1^-9,K.1^9,K.1^15,K.1^-9,K.1^6,K.1^12,K.1^-6,K.1^-6,K.1^15,K.1^3,K.1^3,K.1^-15,K.1^-3,K.1^12,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,K.1^-11,K.1^11,1,K.1^-3,K.1^-12,K.1^12,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^15,K.1^3,K.1^-15,1,1,K.1^3,K.1^-3,K.1^9,K.1^-12,K.1^-15,K.1^-9,K.1^12,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^12,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^14,K.1^2,K.1^-5,K.1^4,K.1^-2,K.1^-1,K.1^-13,K.1^5,K.1^-16,K.1^10,K.1,K.1^8,K.1^-4,K.1^-10,K.1^16,K.1^-8,K.1^7,K.1^13,K.1^-14,K.1^-7,K.1^-2,K.1^5,K.1^-16,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^10,K.1^-14,K.1^-7,K.1^14,K.1^16,K.1^4,K.1^7,K.1^-10,K.1^13,K.1^2,K.1^8,K.1^-13,K.1^-8,K.1^2,K.1^-2,K.1^-10,K.1^-14,K.1^-8,K.1^-4,K.1^-16,K.1^8,K.1^-13,K.1^16,K.1^-5,K.1^4,K.1^7,K.1^13,K.1^-1,K.1^-7,K.1^5,K.1,K.1^10,K.1^14,K.1^3,K.1^-15,K.1^6,K.1^-6,K.1^-9,K.1^-12,K.1^15,K.1^9,K.1^12,K.1^-3,K.1^-6,K.1^12,K.1^12,K.1^15,K.1^3,K.1^9,K.1^-9,K.1^-15,K.1^9,K.1^-6,K.1^-12,K.1^6,K.1^6,K.1^-15,K.1^-3,K.1^-3,K.1^15,K.1^3,K.1^-12,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^-15,K.1^6,K.1^-6,K.1^-3,K.1^12,K.1^3,K.1^-12,K.1^9,K.1^15,K.1^-9,1,1,-1*K.1^15,-1*K.1^-15,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^-3,-1*K.1^3,K.1^-15,K.1^15,K.1^3,K.1^-12,K.1^-3,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^4,K.1^10,K.1^8,K.1^-13,K.1^-10,K.1^-5,K.1,K.1^-8,K.1^-14,K.1^-16,K.1^5,K.1^7,K.1^13,K.1^16,K.1^14,K.1^-7,K.1^2,K.1^-1,K.1^-4,K.1^-2,K.1^-10,K.1^-8,K.1^-14,K.1^13,K.1^5,K.1^8,K.1^-5,K.1^-16,K.1^-4,K.1^-2,K.1^4,K.1^14,K.1^-13,K.1^2,K.1^16,K.1^-1,K.1^10,K.1^7,K.1,K.1^-7,-1*K.1^10,-1*K.1^-10,-1*K.1^16,-1*K.1^-4,-1*K.1^-7,-1*K.1^13,-1*K.1^-14,-1*K.1^7,-1*K.1,-1*K.1^14,-1*K.1^8,-1*K.1^-13,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^-8,-1*K.1^5,-1*K.1^-16,-1*K.1^4,K.1^15,K.1^-9,K.1^-3,K.1^3,K.1^-12,K.1^6,K.1^9,K.1^12,K.1^-6,K.1^-15,K.1^3,K.1^-6,K.1^-6,K.1^9,K.1^15,K.1^12,K.1^-12,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-9,K.1^-15,K.1^-15,K.1^9,K.1^15,K.1^6,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^15,K.1^-6,K.1^6,K.1^3,K.1^-12,K.1^-3,K.1^12,K.1^-9,K.1^-15,K.1^9,1,1,-1*K.1^-15,-1*K.1^15,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,K.1^15,K.1^-15,K.1^-3,K.1^12,K.1^3,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^-4,K.1^-10,K.1^-8,K.1^13,K.1^10,K.1^5,K.1^-1,K.1^8,K.1^14,K.1^16,K.1^-5,K.1^-7,K.1^-13,K.1^-16,K.1^-14,K.1^7,K.1^-2,K.1,K.1^4,K.1^2,K.1^10,K.1^8,K.1^14,K.1^-13,K.1^-5,K.1^-8,K.1^5,K.1^16,K.1^4,K.1^2,K.1^-4,K.1^-14,K.1^13,K.1^-2,K.1^-16,K.1,K.1^-10,K.1^-7,K.1^-1,K.1^7,-1*K.1^-10,-1*K.1^10,-1*K.1^-16,-1*K.1^4,-1*K.1^7,-1*K.1^-13,-1*K.1^14,-1*K.1^-7,-1*K.1^-1,-1*K.1^-14,-1*K.1^-8,-1*K.1^13,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^8,-1*K.1^-5,-1*K.1^16,-1*K.1^-4,K.1^-15,K.1^9,K.1^3,K.1^-3,K.1^12,K.1^-6,K.1^-9,K.1^-12,K.1^6,K.1^15,K.1^-3,K.1^6,K.1^6,K.1^-9,K.1^-15,K.1^-12,K.1^12,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^9,K.1^15,K.1^15,K.1^-9,K.1^-15,K.1^-6,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^15,K.1^-6,K.1^6,K.1^3,K.1^-12,K.1^-3,K.1^12,K.1^-9,K.1^-15,K.1^9,1,1,-1*K.1^-15,-1*K.1^15,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,K.1^15,K.1^-15,K.1^-3,K.1^12,K.1^3,K.1^6,K.1^-6,K.1^-9,K.1^9,K.1^-12,K.1^7,K.1,K.1^14,K.1^2,K.1^-1,K.1^16,K.1^10,K.1^-14,K.1^-8,K.1^5,K.1^-16,K.1^4,K.1^-2,K.1^-5,K.1^8,K.1^-4,K.1^-13,K.1^-10,K.1^-7,K.1^13,K.1^-1,K.1^-14,K.1^-8,K.1^-2,K.1^-16,K.1^14,K.1^16,K.1^5,K.1^-7,K.1^13,K.1^7,K.1^8,K.1^2,K.1^-13,K.1^-5,K.1^-10,K.1,K.1^4,K.1^10,K.1^-4,-1*K.1,-1*K.1^-1,-1*K.1^-5,-1*K.1^-7,-1*K.1^-4,-1*K.1^-2,-1*K.1^-8,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^14,-1*K.1^2,-1*K.1^-13,-1*K.1^-10,-1*K.1^16,-1*K.1^13,-1*K.1^-14,-1*K.1^-16,-1*K.1^5,-1*K.1^7,K.1^-15,K.1^9,K.1^3,K.1^-3,K.1^12,K.1^-6,K.1^-9,K.1^-12,K.1^6,K.1^15,K.1^-3,K.1^6,K.1^6,K.1^-9,K.1^-15,K.1^-12,K.1^12,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^9,K.1^15,K.1^15,K.1^-9,K.1^-15,K.1^-6,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^-15,K.1^6,K.1^-6,K.1^-3,K.1^12,K.1^3,K.1^-12,K.1^9,K.1^15,K.1^-9,1,1,-1*K.1^15,-1*K.1^-15,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^-3,-1*K.1^3,K.1^-15,K.1^15,K.1^3,K.1^-12,K.1^-3,K.1^-6,K.1^6,K.1^9,K.1^-9,K.1^12,K.1^-7,K.1^-1,K.1^-14,K.1^-2,K.1,K.1^-16,K.1^-10,K.1^14,K.1^8,K.1^-5,K.1^16,K.1^-4,K.1^2,K.1^5,K.1^-8,K.1^4,K.1^13,K.1^10,K.1^7,K.1^-13,K.1,K.1^14,K.1^8,K.1^2,K.1^16,K.1^-14,K.1^-16,K.1^-5,K.1^7,K.1^-13,K.1^-7,K.1^-8,K.1^-2,K.1^13,K.1^5,K.1^10,K.1^-1,K.1^-4,K.1^-10,K.1^4,-1*K.1^-1,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^-4,-1*K.1^-10,-1*K.1^-8,-1*K.1^-14,-1*K.1^-2,-1*K.1^13,-1*K.1^10,-1*K.1^-16,-1*K.1^-13,-1*K.1^14,-1*K.1^16,-1*K.1^-5,-1*K.1^-7,K.1^15,K.1^-9,K.1^-3,K.1^3,K.1^-12,K.1^6,K.1^9,K.1^12,K.1^-6,K.1^-15,K.1^3,K.1^-6,K.1^-6,K.1^9,K.1^15,K.1^12,K.1^-12,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-9,K.1^-15,K.1^-15,K.1^9,K.1^15,K.1^6,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^-12,K.1^-15,K.1^15,K.1^-9,K.1^3,K.1^9,K.1^-3,K.1^-6,K.1^12,K.1^6,1,1,-1*K.1^12,-1*K.1^-12,-1*K.1^3,-1*K.1^-15,-1*K.1^6,-1*K.1^-3,-1*K.1^15,-1*K.1^-6,-1*K.1^-9,-1*K.1^9,K.1^-12,K.1^12,K.1^9,K.1^-3,K.1^-9,K.1^15,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1,K.1^-14,K.1^2,K.1^5,K.1^14,K.1^7,K.1^-8,K.1^-2,K.1^13,K.1^-4,K.1^-7,K.1^10,K.1^-5,K.1^4,K.1^-13,K.1^-10,K.1^-16,K.1^8,K.1^-1,K.1^16,K.1^14,K.1^-2,K.1^13,K.1^-5,K.1^-7,K.1^2,K.1^7,K.1^-4,K.1^-1,K.1^16,K.1,K.1^-13,K.1^5,K.1^-16,K.1^4,K.1^8,K.1^-14,K.1^10,K.1^-8,K.1^-10,-1*K.1^-14,-1*K.1^14,-1*K.1^4,-1*K.1^-1,-1*K.1^-10,-1*K.1^-5,-1*K.1^13,-1*K.1^10,-1*K.1^-8,-1*K.1^-13,-1*K.1^2,-1*K.1^5,-1*K.1^-16,-1*K.1^8,-1*K.1^7,-1*K.1^16,-1*K.1^-2,-1*K.1^-7,-1*K.1^-4,-1*K.1,K.1^12,K.1^6,K.1^-9,K.1^9,K.1^-3,K.1^-15,K.1^-6,K.1^3,K.1^15,K.1^-12,K.1^9,K.1^15,K.1^15,K.1^-6,K.1^12,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^9,K.1^-15,K.1^-9,K.1^-9,K.1^6,K.1^-12,K.1^-12,K.1^-6,K.1^12,K.1^-15,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^12,K.1^15,K.1^-15,K.1^9,K.1^-3,K.1^-9,K.1^3,K.1^6,K.1^-12,K.1^-6,1,1,-1*K.1^-12,-1*K.1^12,-1*K.1^-3,-1*K.1^15,-1*K.1^-6,-1*K.1^3,-1*K.1^-15,-1*K.1^6,-1*K.1^9,-1*K.1^-9,K.1^12,K.1^-12,K.1^-9,K.1^3,K.1^9,K.1^-15,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^-1,K.1^14,K.1^-2,K.1^-5,K.1^-14,K.1^-7,K.1^8,K.1^2,K.1^-13,K.1^4,K.1^7,K.1^-10,K.1^5,K.1^-4,K.1^13,K.1^10,K.1^16,K.1^-8,K.1,K.1^-16,K.1^-14,K.1^2,K.1^-13,K.1^5,K.1^7,K.1^-2,K.1^-7,K.1^4,K.1,K.1^-16,K.1^-1,K.1^13,K.1^-5,K.1^16,K.1^-4,K.1^-8,K.1^14,K.1^-10,K.1^8,K.1^10,-1*K.1^14,-1*K.1^-14,-1*K.1^-4,-1*K.1,-1*K.1^10,-1*K.1^5,-1*K.1^-13,-1*K.1^-10,-1*K.1^8,-1*K.1^13,-1*K.1^-2,-1*K.1^-5,-1*K.1^16,-1*K.1^-8,-1*K.1^-7,-1*K.1^-16,-1*K.1^2,-1*K.1^7,-1*K.1^4,-1*K.1^-1,K.1^-12,K.1^-6,K.1^9,K.1^-9,K.1^3,K.1^15,K.1^6,K.1^-3,K.1^-15,K.1^12,K.1^-9,K.1^-15,K.1^-15,K.1^6,K.1^-12,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-9,K.1^15,K.1^9,K.1^9,K.1^-6,K.1^12,K.1^12,K.1^6,K.1^-12,K.1^15,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^12,K.1^15,K.1^-15,K.1^9,K.1^-3,K.1^-9,K.1^3,K.1^6,K.1^-12,K.1^-6,1,1,-1*K.1^-12,-1*K.1^12,-1*K.1^-3,-1*K.1^15,-1*K.1^-6,-1*K.1^3,-1*K.1^-15,-1*K.1^6,-1*K.1^9,-1*K.1^-9,K.1^12,K.1^-12,K.1^-9,K.1^3,K.1^9,K.1^-15,K.1^15,K.1^6,K.1^-6,K.1^-3,K.1^10,K.1^-8,K.1^-13,K.1^-16,K.1^8,K.1^4,K.1^-14,K.1^13,K.1^-2,K.1^-7,K.1^-4,K.1,K.1^16,K.1^7,K.1^2,K.1^-1,K.1^5,K.1^14,K.1^-10,K.1^-5,K.1^8,K.1^13,K.1^-2,K.1^16,K.1^-4,K.1^-13,K.1^4,K.1^-7,K.1^-10,K.1^-5,K.1^10,K.1^2,K.1^-16,K.1^5,K.1^7,K.1^14,K.1^-8,K.1,K.1^-14,K.1^-1,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^-10,-1*K.1^-1,-1*K.1^16,-1*K.1^-2,-1*K.1,-1*K.1^-14,-1*K.1^2,-1*K.1^-13,-1*K.1^-16,-1*K.1^5,-1*K.1^14,-1*K.1^4,-1*K.1^-5,-1*K.1^13,-1*K.1^-4,-1*K.1^-7,-1*K.1^10,K.1^-12,K.1^-6,K.1^9,K.1^-9,K.1^3,K.1^15,K.1^6,K.1^-3,K.1^-15,K.1^12,K.1^-9,K.1^-15,K.1^-15,K.1^6,K.1^-12,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-9,K.1^15,K.1^9,K.1^9,K.1^-6,K.1^12,K.1^12,K.1^6,K.1^-12,K.1^15,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^-12,K.1^-15,K.1^15,K.1^-9,K.1^3,K.1^9,K.1^-3,K.1^-6,K.1^12,K.1^6,1,1,-1*K.1^12,-1*K.1^-12,-1*K.1^3,-1*K.1^-15,-1*K.1^6,-1*K.1^-3,-1*K.1^15,-1*K.1^-6,-1*K.1^-9,-1*K.1^9,K.1^-12,K.1^12,K.1^9,K.1^-3,K.1^-9,K.1^15,K.1^-15,K.1^-6,K.1^6,K.1^3,K.1^-10,K.1^8,K.1^13,K.1^16,K.1^-8,K.1^-4,K.1^14,K.1^-13,K.1^2,K.1^7,K.1^4,K.1^-1,K.1^-16,K.1^-7,K.1^-2,K.1,K.1^-5,K.1^-14,K.1^10,K.1^5,K.1^-8,K.1^-13,K.1^2,K.1^-16,K.1^4,K.1^13,K.1^-4,K.1^7,K.1^10,K.1^5,K.1^-10,K.1^-2,K.1^16,K.1^-5,K.1^-7,K.1^-14,K.1^8,K.1^-1,K.1^14,K.1,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^10,-1*K.1,-1*K.1^-16,-1*K.1^2,-1*K.1^-1,-1*K.1^14,-1*K.1^-2,-1*K.1^13,-1*K.1^16,-1*K.1^-5,-1*K.1^-14,-1*K.1^-4,-1*K.1^5,-1*K.1^-13,-1*K.1^4,-1*K.1^7,-1*K.1^-10,K.1^12,K.1^6,K.1^-9,K.1^9,K.1^-3,K.1^-15,K.1^-6,K.1^3,K.1^15,K.1^-12,K.1^9,K.1^15,K.1^15,K.1^-6,K.1^12,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^9,K.1^-15,K.1^-9,K.1^-9,K.1^6,K.1^-12,K.1^-12,K.1^-6,K.1^12,K.1^-15,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^-9,K.1^-3,K.1^3,K.1^-15,K.1^-6,K.1^15,K.1^6,K.1^12,K.1^9,K.1^-12,1,1,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^-15,-1*K.1^15,K.1^-9,K.1^9,K.1^15,K.1^6,K.1^-15,K.1^3,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^-2,K.1^-5,K.1^-4,K.1^-10,K.1^5,K.1^-14,K.1^16,K.1^4,K.1^7,K.1^8,K.1^14,K.1^13,K.1^10,K.1^-8,K.1^-7,K.1^-13,K.1^-1,K.1^-16,K.1^2,K.1,K.1^5,K.1^4,K.1^7,K.1^10,K.1^14,K.1^-4,K.1^-14,K.1^8,K.1^2,K.1,K.1^-2,K.1^-7,K.1^-10,K.1^-1,K.1^-8,K.1^-16,K.1^-5,K.1^13,K.1^16,K.1^-13,-1*K.1^-5,-1*K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^-13,-1*K.1^10,-1*K.1^7,-1*K.1^13,-1*K.1^16,-1*K.1^-7,-1*K.1^-4,-1*K.1^-10,-1*K.1^-1,-1*K.1^-16,-1*K.1^-14,-1*K.1,-1*K.1^4,-1*K.1^14,-1*K.1^8,-1*K.1^-2,K.1^9,K.1^-12,K.1^-15,K.1^15,K.1^6,K.1^-3,K.1^12,K.1^-6,K.1^3,K.1^-9,K.1^15,K.1^3,K.1^3,K.1^12,K.1^9,K.1^-6,K.1^6,K.1^-12,K.1^-6,K.1^15,K.1^-3,K.1^-15,K.1^-15,K.1^-12,K.1^-9,K.1^-9,K.1^12,K.1^9,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^9,K.1^3,K.1^-3,K.1^15,K.1^6,K.1^-15,K.1^-6,K.1^-12,K.1^-9,K.1^12,1,1,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^15,-1*K.1^-15,K.1^9,K.1^-9,K.1^-15,K.1^-6,K.1^15,K.1^-3,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^2,K.1^5,K.1^4,K.1^10,K.1^-5,K.1^14,K.1^-16,K.1^-4,K.1^-7,K.1^-8,K.1^-14,K.1^-13,K.1^-10,K.1^8,K.1^7,K.1^13,K.1,K.1^16,K.1^-2,K.1^-1,K.1^-5,K.1^-4,K.1^-7,K.1^-10,K.1^-14,K.1^4,K.1^14,K.1^-8,K.1^-2,K.1^-1,K.1^2,K.1^7,K.1^10,K.1,K.1^8,K.1^16,K.1^5,K.1^-13,K.1^-16,K.1^13,-1*K.1^5,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^13,-1*K.1^-10,-1*K.1^-7,-1*K.1^-13,-1*K.1^-16,-1*K.1^7,-1*K.1^4,-1*K.1^10,-1*K.1,-1*K.1^16,-1*K.1^14,-1*K.1^-1,-1*K.1^-4,-1*K.1^-14,-1*K.1^-8,-1*K.1^2,K.1^-9,K.1^12,K.1^15,K.1^-15,K.1^-6,K.1^3,K.1^-12,K.1^6,K.1^-3,K.1^9,K.1^-15,K.1^-3,K.1^-3,K.1^-12,K.1^-9,K.1^6,K.1^-6,K.1^12,K.1^6,K.1^-15,K.1^3,K.1^15,K.1^15,K.1^12,K.1^9,K.1^9,K.1^-12,K.1^-9,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^9,K.1^3,K.1^-3,K.1^15,K.1^6,K.1^-15,K.1^-6,K.1^-12,K.1^-9,K.1^12,1,1,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^15,-1*K.1^-15,K.1^9,K.1^-9,K.1^-15,K.1^-6,K.1^15,K.1^-3,K.1^3,K.1^-12,K.1^12,K.1^6,K.1^13,K.1^16,K.1^-7,K.1^-1,K.1^-16,K.1^-8,K.1^-5,K.1^7,K.1^4,K.1^14,K.1^8,K.1^-2,K.1,K.1^-14,K.1^-4,K.1^2,K.1^-10,K.1^5,K.1^-13,K.1^10,K.1^-16,K.1^7,K.1^4,K.1,K.1^8,K.1^-7,K.1^-8,K.1^14,K.1^-13,K.1^10,K.1^13,K.1^-4,K.1^-1,K.1^-10,K.1^-14,K.1^5,K.1^16,K.1^-2,K.1^-5,K.1^2,-1*K.1^16,-1*K.1^-16,-1*K.1^-14,-1*K.1^-13,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-10,-1*K.1^5,-1*K.1^-8,-1*K.1^10,-1*K.1^7,-1*K.1^8,-1*K.1^14,-1*K.1^13,K.1^-9,K.1^12,K.1^15,K.1^-15,K.1^-6,K.1^3,K.1^-12,K.1^6,K.1^-3,K.1^9,K.1^-15,K.1^-3,K.1^-3,K.1^-12,K.1^-9,K.1^6,K.1^-6,K.1^12,K.1^6,K.1^-15,K.1^3,K.1^15,K.1^15,K.1^12,K.1^9,K.1^9,K.1^-12,K.1^-9,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^-9,K.1^-3,K.1^3,K.1^-15,K.1^-6,K.1^15,K.1^6,K.1^12,K.1^9,K.1^-12,1,1,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^-15,-1*K.1^15,K.1^-9,K.1^9,K.1^15,K.1^6,K.1^-15,K.1^3,K.1^-3,K.1^12,K.1^-12,K.1^-6,K.1^-13,K.1^-16,K.1^7,K.1,K.1^16,K.1^8,K.1^5,K.1^-7,K.1^-4,K.1^-14,K.1^-8,K.1^2,K.1^-1,K.1^14,K.1^4,K.1^-2,K.1^10,K.1^-5,K.1^13,K.1^-10,K.1^16,K.1^-7,K.1^-4,K.1^-1,K.1^-8,K.1^7,K.1^8,K.1^-14,K.1^13,K.1^-10,K.1^-13,K.1^4,K.1,K.1^10,K.1^14,K.1^-5,K.1^-16,K.1^2,K.1^5,K.1^-2,-1*K.1^-16,-1*K.1^16,-1*K.1^14,-1*K.1^13,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^4,-1*K.1^7,-1*K.1,-1*K.1^10,-1*K.1^-5,-1*K.1^8,-1*K.1^-10,-1*K.1^-7,-1*K.1^-8,-1*K.1^-14,-1*K.1^-13,K.1^9,K.1^-12,K.1^-15,K.1^15,K.1^6,K.1^-3,K.1^12,K.1^-6,K.1^3,K.1^-9,K.1^15,K.1^3,K.1^3,K.1^12,K.1^9,K.1^-6,K.1^6,K.1^-12,K.1^-6,K.1^15,K.1^-3,K.1^-15,K.1^-15,K.1^-12,K.1^-9,K.1^-9,K.1^12,K.1^9,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^-6,K.1^9,K.1^-9,K.1^12,K.1^-15,K.1^-12,K.1^15,K.1^-3,K.1^6,K.1^3,1,1,-1*K.1^6,-1*K.1^-6,-1*K.1^-15,-1*K.1^9,-1*K.1^3,-1*K.1^15,-1*K.1^-9,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,K.1^-6,K.1^6,K.1^-12,K.1^15,K.1^12,K.1^-9,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^-5,K.1^4,K.1^-10,K.1^8,K.1^-4,K.1^-2,K.1^7,K.1^10,K.1,K.1^-13,K.1^2,K.1^16,K.1^-8,K.1^13,K.1^-1,K.1^-16,K.1^14,K.1^-7,K.1^5,K.1^-14,K.1^-4,K.1^10,K.1,K.1^-8,K.1^2,K.1^-10,K.1^-2,K.1^-13,K.1^5,K.1^-14,K.1^-5,K.1^-1,K.1^8,K.1^14,K.1^13,K.1^-7,K.1^4,K.1^16,K.1^7,K.1^-16,-1*K.1^4,-1*K.1^-4,-1*K.1^13,-1*K.1^5,-1*K.1^-16,-1*K.1^-8,-1*K.1,-1*K.1^16,-1*K.1^7,-1*K.1^-1,-1*K.1^-10,-1*K.1^8,-1*K.1^14,-1*K.1^-7,-1*K.1^-2,-1*K.1^-14,-1*K.1^10,-1*K.1^2,-1*K.1^-13,-1*K.1^-5,K.1^6,K.1^3,K.1^12,K.1^-12,K.1^15,K.1^9,K.1^-3,K.1^-15,K.1^-9,K.1^-6,K.1^-12,K.1^-9,K.1^-9,K.1^-3,K.1^6,K.1^-15,K.1^15,K.1^3,K.1^-15,K.1^-12,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^9,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^6,K.1^-9,K.1^9,K.1^-12,K.1^15,K.1^12,K.1^-15,K.1^3,K.1^-6,K.1^-3,1,1,-1*K.1^-6,-1*K.1^6,-1*K.1^15,-1*K.1^-9,-1*K.1^-3,-1*K.1^-15,-1*K.1^9,-1*K.1^3,-1*K.1^-12,-1*K.1^12,K.1^6,K.1^-6,K.1^12,K.1^-15,K.1^-12,K.1^9,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^5,K.1^-4,K.1^10,K.1^-8,K.1^4,K.1^2,K.1^-7,K.1^-10,K.1^-1,K.1^13,K.1^-2,K.1^-16,K.1^8,K.1^-13,K.1,K.1^16,K.1^-14,K.1^7,K.1^-5,K.1^14,K.1^4,K.1^-10,K.1^-1,K.1^8,K.1^-2,K.1^10,K.1^2,K.1^13,K.1^-5,K.1^14,K.1^5,K.1,K.1^-8,K.1^-14,K.1^-13,K.1^7,K.1^-4,K.1^-16,K.1^-7,K.1^16,-1*K.1^-4,-1*K.1^4,-1*K.1^-13,-1*K.1^-5,-1*K.1^16,-1*K.1^8,-1*K.1^-1,-1*K.1^-16,-1*K.1^-7,-1*K.1,-1*K.1^10,-1*K.1^-8,-1*K.1^-14,-1*K.1^7,-1*K.1^2,-1*K.1^14,-1*K.1^-10,-1*K.1^-2,-1*K.1^13,-1*K.1^5,K.1^-6,K.1^-3,K.1^-12,K.1^12,K.1^-15,K.1^-9,K.1^3,K.1^15,K.1^9,K.1^6,K.1^12,K.1^9,K.1^9,K.1^3,K.1^-6,K.1^15,K.1^-15,K.1^-3,K.1^15,K.1^12,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^-9,K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^6,K.1^-9,K.1^9,K.1^-12,K.1^15,K.1^12,K.1^-15,K.1^3,K.1^-6,K.1^-3,1,1,-1*K.1^-6,-1*K.1^6,-1*K.1^15,-1*K.1^-9,-1*K.1^-3,-1*K.1^-15,-1*K.1^9,-1*K.1^3,-1*K.1^-12,-1*K.1^12,K.1^6,K.1^-6,K.1^12,K.1^-15,K.1^-12,K.1^9,K.1^-9,K.1^3,K.1^-3,K.1^15,K.1^16,K.1^7,K.1^-1,K.1^14,K.1^-7,K.1^13,K.1^4,K.1,K.1^10,K.1^2,K.1^-13,K.1^-5,K.1^-14,K.1^-2,K.1^-10,K.1^5,K.1^8,K.1^-4,K.1^-16,K.1^-8,K.1^-7,K.1,K.1^10,K.1^-14,K.1^-13,K.1^-1,K.1^13,K.1^2,K.1^-16,K.1^-8,K.1^16,K.1^-10,K.1^14,K.1^8,K.1^-2,K.1^-4,K.1^7,K.1^-5,K.1^4,K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^-2,-1*K.1^-16,-1*K.1^5,-1*K.1^-14,-1*K.1^10,-1*K.1^-5,-1*K.1^4,-1*K.1^-10,-1*K.1^-1,-1*K.1^14,-1*K.1^8,-1*K.1^-4,-1*K.1^13,-1*K.1^-8,-1*K.1,-1*K.1^-13,-1*K.1^2,-1*K.1^16,K.1^-6,K.1^-3,K.1^-12,K.1^12,K.1^-15,K.1^-9,K.1^3,K.1^15,K.1^9,K.1^6,K.1^12,K.1^9,K.1^9,K.1^3,K.1^-6,K.1^15,K.1^-15,K.1^-3,K.1^15,K.1^12,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^6,K.1^3,K.1^-6,K.1^-9,K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^-6,K.1^9,K.1^-9,K.1^12,K.1^-15,K.1^-12,K.1^15,K.1^-3,K.1^6,K.1^3,1,1,-1*K.1^6,-1*K.1^-6,-1*K.1^-15,-1*K.1^9,-1*K.1^3,-1*K.1^15,-1*K.1^-9,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,K.1^-6,K.1^6,K.1^-12,K.1^15,K.1^12,K.1^-9,K.1^9,K.1^-3,K.1^3,K.1^-15,K.1^-16,K.1^-7,K.1,K.1^-14,K.1^7,K.1^-13,K.1^-4,K.1^-1,K.1^-10,K.1^-2,K.1^13,K.1^5,K.1^14,K.1^2,K.1^10,K.1^-5,K.1^-8,K.1^4,K.1^16,K.1^8,K.1^7,K.1^-1,K.1^-10,K.1^14,K.1^13,K.1,K.1^-13,K.1^-2,K.1^16,K.1^8,K.1^-16,K.1^10,K.1^-14,K.1^-8,K.1^2,K.1^4,K.1^-7,K.1^5,K.1^-4,K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^2,-1*K.1^16,-1*K.1^-5,-1*K.1^14,-1*K.1^-10,-1*K.1^5,-1*K.1^-4,-1*K.1^10,-1*K.1,-1*K.1^-14,-1*K.1^-8,-1*K.1^4,-1*K.1^-13,-1*K.1^8,-1*K.1^-1,-1*K.1^13,-1*K.1^-2,-1*K.1^-16,K.1^6,K.1^3,K.1^12,K.1^-12,K.1^15,K.1^9,K.1^-3,K.1^-15,K.1^-9,K.1^-6,K.1^-12,K.1^-9,K.1^-9,K.1^-3,K.1^6,K.1^-15,K.1^15,K.1^3,K.1^-15,K.1^-12,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^-6,K.1^-3,K.1^6,K.1^9,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^-3,K.1^-12,K.1^12,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^15,K.1^3,K.1^-15,1,1,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-12,-1*K.1^-15,-1*K.1^-9,-1*K.1^12,-1*K.1^15,-1*K.1^6,-1*K.1^-6,K.1^-3,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^12,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^-8,K.1^13,K.1^-16,K.1^-7,K.1^-13,K.1^10,K.1^-2,K.1^16,K.1^-5,K.1^-1,K.1^-10,K.1^-14,K.1^7,K.1,K.1^5,K.1^14,K.1^-4,K.1^2,K.1^8,K.1^4,K.1^-13,K.1^16,K.1^-5,K.1^7,K.1^-10,K.1^-16,K.1^10,K.1^-1,K.1^8,K.1^4,K.1^-8,K.1^5,K.1^-7,K.1^-4,K.1,K.1^2,K.1^13,K.1^-14,K.1^-2,K.1^14,-1*K.1^13,-1*K.1^-13,-1*K.1,-1*K.1^8,-1*K.1^14,-1*K.1^7,-1*K.1^-5,-1*K.1^-14,-1*K.1^-2,-1*K.1^5,-1*K.1^-16,-1*K.1^-7,-1*K.1^-4,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^16,-1*K.1^-10,-1*K.1^-1,-1*K.1^-8,K.1^3,K.1^-15,K.1^6,K.1^-6,K.1^-9,K.1^-12,K.1^15,K.1^9,K.1^12,K.1^-3,K.1^-6,K.1^12,K.1^12,K.1^15,K.1^3,K.1^9,K.1^-9,K.1^-15,K.1^9,K.1^-6,K.1^-12,K.1^6,K.1^6,K.1^-15,K.1^-3,K.1^-3,K.1^15,K.1^3,K.1^-12,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^3,K.1^12,K.1^-12,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^-15,K.1^-3,K.1^15,1,1,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^12,-1*K.1^15,-1*K.1^9,-1*K.1^-12,-1*K.1^-15,-1*K.1^-6,-1*K.1^6,K.1^3,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-12,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^8,K.1^-13,K.1^16,K.1^7,K.1^13,K.1^-10,K.1^2,K.1^-16,K.1^5,K.1,K.1^10,K.1^14,K.1^-7,K.1^-1,K.1^-5,K.1^-14,K.1^4,K.1^-2,K.1^-8,K.1^-4,K.1^13,K.1^-16,K.1^5,K.1^-7,K.1^10,K.1^16,K.1^-10,K.1,K.1^-8,K.1^-4,K.1^8,K.1^-5,K.1^7,K.1^4,K.1^-1,K.1^-2,K.1^-13,K.1^14,K.1^2,K.1^-14,-1*K.1^-13,-1*K.1^13,-1*K.1^-1,-1*K.1^-8,-1*K.1^-14,-1*K.1^-7,-1*K.1^5,-1*K.1^14,-1*K.1^2,-1*K.1^-5,-1*K.1^16,-1*K.1^7,-1*K.1^4,-1*K.1^-2,-1*K.1^-10,-1*K.1^-4,-1*K.1^-16,-1*K.1^10,-1*K.1,-1*K.1^8,K.1^-3,K.1^15,K.1^-6,K.1^6,K.1^9,K.1^12,K.1^-15,K.1^-9,K.1^-12,K.1^3,K.1^6,K.1^-12,K.1^-12,K.1^-15,K.1^-3,K.1^-9,K.1^9,K.1^15,K.1^-9,K.1^6,K.1^12,K.1^-6,K.1^-6,K.1^15,K.1^3,K.1^3,K.1^-15,K.1^-3,K.1^12,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^-11,K.1^11,K.1^-11,K.1^11,-1*K.1^11,-1*K.1^-11,1,K.1^3,K.1^12,K.1^-12,K.1^-6,K.1^-9,K.1^6,K.1^9,K.1^-15,K.1^-3,K.1^15,1,1,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^12,-1*K.1^15,-1*K.1^9,-1*K.1^-12,-1*K.1^-15,-1*K.1^-6,-1*K.1^6,K.1^3,K.1^-3,K.1^6,K.1^9,K.1^-6,K.1^-12,K.1^12,K.1^-15,K.1^15,K.1^-9,K.1^-14,K.1^-2,K.1^5,K.1^-4,K.1^2,K.1,K.1^13,K.1^-5,K.1^16,K.1^-10,K.1^-1,K.1^-8,K.1^4,K.1^10,K.1^-16,K.1^8,K.1^-7,K.1^-13,K.1^14,K.1^7,K.1^2,K.1^-5,K.1^16,K.1^4,K.1^-1,K.1^5,K.1,K.1^-10,K.1^14,K.1^7,K.1^-14,K.1^-16,K.1^-4,K.1^-7,K.1^10,K.1^-13,K.1^-2,K.1^-8,K.1^13,K.1^8,-1*K.1^-2,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^8,-1*K.1^4,-1*K.1^16,-1*K.1^-8,-1*K.1^13,-1*K.1^-16,-1*K.1^5,-1*K.1^-4,-1*K.1^-7,-1*K.1^-13,-1*K.1,-1*K.1^7,-1*K.1^-5,-1*K.1^-1,-1*K.1^-10,-1*K.1^-14,K.1^-3,K.1^15,K.1^-6,K.1^6,K.1^9,K.1^12,K.1^-15,K.1^-9,K.1^-12,K.1^3,K.1^6,K.1^-12,K.1^-12,K.1^-15,K.1^-3,K.1^-9,K.1^9,K.1^15,K.1^-9,K.1^6,K.1^12,K.1^-6,K.1^-6,K.1^15,K.1^3,K.1^3,K.1^-15,K.1^-3,K.1^12,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |1,-1,1,K.1^11,K.1^-11,K.1^11,K.1^-11,-1*K.1^-11,-1*K.1^11,1,K.1^-3,K.1^-12,K.1^12,K.1^6,K.1^9,K.1^-6,K.1^-9,K.1^15,K.1^3,K.1^-15,1,1,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-12,-1*K.1^-15,-1*K.1^-9,-1*K.1^12,-1*K.1^15,-1*K.1^6,-1*K.1^-6,K.1^-3,K.1^3,K.1^-6,K.1^-9,K.1^6,K.1^12,K.1^-12,K.1^15,K.1^-15,K.1^9,K.1^14,K.1^2,K.1^-5,K.1^4,K.1^-2,K.1^-1,K.1^-13,K.1^5,K.1^-16,K.1^10,K.1,K.1^8,K.1^-4,K.1^-10,K.1^16,K.1^-8,K.1^7,K.1^13,K.1^-14,K.1^-7,K.1^-2,K.1^5,K.1^-16,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^10,K.1^-14,K.1^-7,K.1^14,K.1^16,K.1^4,K.1^7,K.1^-10,K.1^13,K.1^2,K.1^8,K.1^-13,K.1^-8,-1*K.1^2,-1*K.1^-2,-1*K.1^-10,-1*K.1^-14,-1*K.1^-8,-1*K.1^-4,-1*K.1^-16,-1*K.1^8,-1*K.1^-13,-1*K.1^16,-1*K.1^-5,-1*K.1^4,-1*K.1^7,-1*K.1^13,-1*K.1^-1,-1*K.1^-7,-1*K.1^5,-1*K.1,-1*K.1^10,-1*K.1^14,K.1^3,K.1^-15,K.1^6,K.1^-6,K.1^-9,K.1^-12,K.1^15,K.1^9,K.1^12,K.1^-3,K.1^-6,K.1^12,K.1^12,K.1^15,K.1^3,K.1^9,K.1^-9,K.1^-15,K.1^9,K.1^-6,K.1^-12,K.1^6,K.1^6,K.1^-15,K.1^-3,K.1^-3,K.1^15,K.1^3,K.1^-12,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 0, -1, 2, 2, -1, -1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,0,-1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1,0,0,2,2,2,2,2,2,2,2,2,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,0,-1,2*K.1,2*K.1^-1,-1*K.1,-1*K.1^-1,0,0,2,2,2,2,2,2,2,2,2,2,2,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^4,2*K.1,2*K.1^-4,2*K.1^3,2*K.1^5,2*K.1^-3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^5,-1*K.1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^4,2*K.1^5,2*K.1^-4,2*K.1^-1,2*K.1^3,2*K.1^4,2*K.1^2,2*K.1^4,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-5,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^5,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^3,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-5,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^-2,2*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^5,-1*K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-4,2*K.1^-1,2*K.1^4,2*K.1^-3,2*K.1^-5,2*K.1^3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^-5,-1*K.1^-1,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,2*K.1^-5,2*K.1^4,2*K.1,2*K.1^-3,2*K.1^-4,2*K.1^-2,2*K.1^-4,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^5,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^-3,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^5,-1*K.1^-3,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-5,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^2,2*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-5,-1*K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^-4,2*K.1^-5,2*K.1^5,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^2,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-4,-1*K.1^4,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1,2*K.1^4,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-5,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^-4,2*K.1^2,2*K.1^5,2*K.1^3,2*K.1^4,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^5,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^5,2*K.1^-4,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^-5,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^4,2*K.1^5,2*K.1^-5,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^-2,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1^-4,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-5,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,2*K.1^-4,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^5,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^5,2*K.1^-5,2*K.1^4,2*K.1^-2,2*K.1^-5,2*K.1^-3,2*K.1^-4,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-4,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^4,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^-5,2*K.1^-2,2*K.1^5,2*K.1^2,2*K.1^4,2*K.1^3,2*K.1^-4,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^3,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^-1,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-5,2*K.1^4,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^5,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^-4,2*K.1,2*K.1^5,2*K.1^3,2*K.1^-4,2*K.1^2,2*K.1^-3,2*K.1^4,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-4,2*K.1^-5,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^4,2*K.1^-2,2*K.1,2*K.1^-3,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^5,2*K.1^2,2*K.1^-5,2*K.1^-2,2*K.1^-4,2*K.1^-3,2*K.1^4,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-3,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1,-1*K.1^-4,-1*K.1^4,-1*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^5,2*K.1^-4,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-5,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^4,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^4,2*K.1^-2,2*K.1^3,2*K.1^-4,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^4,2*K.1^5,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^-4,2*K.1^2,2*K.1^-1,2*K.1^3,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^4,2*K.1^-5,2*K.1^-4,2*K.1^5,2*K.1^-1,2*K.1^2,2*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-5,2*K.1^2,2*K.1^5,2*K.1^4,2*K.1^-1,2*K.1^-5,2*K.1^3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^-4,2*K.1^2,2*K.1,2*K.1^5,2*K.1^-2,2*K.1^-1,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1^5,-1*K.1^-2,-1*K.1^-5,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^-4,2*K.1^5,2*K.1^4,2*K.1^-5,2*K.1,2*K.1^-2,2*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^5,2*K.1^-2,2*K.1^-5,2*K.1^-4,2*K.1,2*K.1^5,2*K.1^-3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^4,2*K.1^-2,2*K.1^-1,2*K.1^-5,2*K.1^2,2*K.1,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^-1,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-5,-1*K.1^2,-1*K.1^5,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1,2*K.1^5,2*K.1^3,2*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^-1,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1^-1,2*K.1^-4,2*K.1^4,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1^5,2*K.1,2*K.1^-5,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^-5,-1*K.1^3,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^5,2*K.1^3,2*K.1^-4,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-4,2*K.1^4,2*K.1^-1,2*K.1^-5,2*K.1^4,2*K.1^-2,2*K.1,2*K.1^-5,2*K.1^-3,2*K.1^-1,2*K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-5,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^4,2*K.1^-1,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-5,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^-4,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |2,0,-1,2,2,-1,-1,0,0,2,2*K.1,2*K.1^4,2*K.1^-4,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-5,2*K.1^-1,2*K.1^5,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^-5,2*K.1^-3,2*K.1^4,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^4,2*K.1^-4,2*K.1,2*K.1^5,2*K.1^-4,2*K.1^2,2*K.1^-1,2*K.1^5,2*K.1^3,2*K.1,2*K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^5,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1^-4,2*K.1,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^5,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^4,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^-15,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^12,2*K.1^3,2*K.1^-12,2*K.1^9,2*K.1^15,2*K.1^-9,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-15,-1*K.1^15,-1*K.1^3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^-9,-1*K.1^12,2*K.1^4,2*K.1^10,2*K.1^8,2*K.1^-13,2*K.1^-10,2*K.1^-5,2*K.1,2*K.1^-8,2*K.1^-14,2*K.1^-16,2*K.1^5,2*K.1^7,2*K.1^13,2*K.1^16,2*K.1^14,2*K.1^-7,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-2,-1*K.1^-10,-1*K.1^-8,-1*K.1^-14,-1*K.1^13,-1*K.1^5,-1*K.1^8,-1*K.1^-5,-1*K.1^-16,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^14,-1*K.1^-13,-1*K.1^2,-1*K.1^16,-1*K.1^-1,-1*K.1^10,-1*K.1^7,-1*K.1,-1*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^15,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^-12,2*K.1^6,2*K.1^9,2*K.1^12,2*K.1^-6,2*K.1^-15,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^9,-1*K.1^15,-1*K.1^12,-1*K.1^-12,-1*K.1^-9,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-15,-1*K.1^-15,-1*K.1^9,-1*K.1^15,-1*K.1^6,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^15,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-12,2*K.1^-3,2*K.1^12,2*K.1^-9,2*K.1^-15,2*K.1^9,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^15,-1*K.1^-15,-1*K.1^-3,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^9,-1*K.1^-12,2*K.1^-4,2*K.1^-10,2*K.1^-8,2*K.1^13,2*K.1^10,2*K.1^5,2*K.1^-1,2*K.1^8,2*K.1^14,2*K.1^16,2*K.1^-5,2*K.1^-7,2*K.1^-13,2*K.1^-16,2*K.1^-14,2*K.1^7,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^2,-1*K.1^10,-1*K.1^8,-1*K.1^14,-1*K.1^-13,-1*K.1^-5,-1*K.1^-8,-1*K.1^5,-1*K.1^16,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^-14,-1*K.1^13,-1*K.1^-2,-1*K.1^-16,-1*K.1,-1*K.1^-10,-1*K.1^-7,-1*K.1^-1,-1*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-15,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^12,2*K.1^-6,2*K.1^-9,2*K.1^-12,2*K.1^6,2*K.1^15,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-9,-1*K.1^-15,-1*K.1^-12,-1*K.1^12,-1*K.1^9,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^-9,-1*K.1^-15,-1*K.1^-6,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^15,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-12,2*K.1^-3,2*K.1^12,2*K.1^-9,2*K.1^-15,2*K.1^9,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^15,-1*K.1^-15,-1*K.1^-3,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^9,-1*K.1^-12,2*K.1^7,2*K.1,2*K.1^14,2*K.1^2,2*K.1^-1,2*K.1^16,2*K.1^10,2*K.1^-14,2*K.1^-8,2*K.1^5,2*K.1^-16,2*K.1^4,2*K.1^-2,2*K.1^-5,2*K.1^8,2*K.1^-4,2*K.1^-13,2*K.1^-10,2*K.1^-7,2*K.1^13,-1*K.1^-1,-1*K.1^-14,-1*K.1^-8,-1*K.1^-2,-1*K.1^-16,-1*K.1^14,-1*K.1^16,-1*K.1^5,-1*K.1^-7,-1*K.1^13,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-13,-1*K.1^-5,-1*K.1^-10,-1*K.1,-1*K.1^4,-1*K.1^10,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-15,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^12,2*K.1^-6,2*K.1^-9,2*K.1^-12,2*K.1^6,2*K.1^15,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-9,-1*K.1^-15,-1*K.1^-12,-1*K.1^12,-1*K.1^9,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^-9,-1*K.1^-15,-1*K.1^-6,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^-15,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^12,2*K.1^3,2*K.1^-12,2*K.1^9,2*K.1^15,2*K.1^-9,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-15,-1*K.1^15,-1*K.1^3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^-9,-1*K.1^12,2*K.1^-7,2*K.1^-1,2*K.1^-14,2*K.1^-2,2*K.1,2*K.1^-16,2*K.1^-10,2*K.1^14,2*K.1^8,2*K.1^-5,2*K.1^16,2*K.1^-4,2*K.1^2,2*K.1^5,2*K.1^-8,2*K.1^4,2*K.1^13,2*K.1^10,2*K.1^7,2*K.1^-13,-1*K.1,-1*K.1^14,-1*K.1^8,-1*K.1^2,-1*K.1^16,-1*K.1^-14,-1*K.1^-16,-1*K.1^-5,-1*K.1^7,-1*K.1^-13,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^13,-1*K.1^5,-1*K.1^10,-1*K.1^-1,-1*K.1^-4,-1*K.1^-10,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^15,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^-12,2*K.1^6,2*K.1^9,2*K.1^12,2*K.1^-6,2*K.1^-15,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^9,-1*K.1^15,-1*K.1^12,-1*K.1^-12,-1*K.1^-9,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-15,-1*K.1^-15,-1*K.1^9,-1*K.1^15,-1*K.1^6,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^-12,2*K.1^-15,2*K.1^15,2*K.1^-9,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^-6,2*K.1^12,2*K.1^6,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-12,-1*K.1^12,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^15,-1*K.1^-15,-1*K.1^-6,-1*K.1^6,-1*K.1^3,2*K.1,2*K.1^-14,2*K.1^2,2*K.1^5,2*K.1^14,2*K.1^7,2*K.1^-8,2*K.1^-2,2*K.1^13,2*K.1^-4,2*K.1^-7,2*K.1^10,2*K.1^-5,2*K.1^4,2*K.1^-13,2*K.1^-10,2*K.1^-16,2*K.1^8,2*K.1^-1,2*K.1^16,-1*K.1^14,-1*K.1^-2,-1*K.1^13,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^7,-1*K.1^-4,-1*K.1^-1,-1*K.1^16,-1*K.1,-1*K.1^-13,-1*K.1^5,-1*K.1^-16,-1*K.1^4,-1*K.1^8,-1*K.1^-14,-1*K.1^10,-1*K.1^-8,-1*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^-15,2*K.1^-6,2*K.1^3,2*K.1^15,2*K.1^-12,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^-6,-1*K.1^12,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^9,-1*K.1^-15,-1*K.1^-9,-1*K.1^-9,-1*K.1^6,-1*K.1^-12,-1*K.1^-12,-1*K.1^-6,-1*K.1^12,-1*K.1^-15,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^12,2*K.1^15,2*K.1^-15,2*K.1^9,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^6,2*K.1^-12,2*K.1^-6,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^-12,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^-15,-1*K.1^15,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,2*K.1^-1,2*K.1^14,2*K.1^-2,2*K.1^-5,2*K.1^-14,2*K.1^-7,2*K.1^8,2*K.1^2,2*K.1^-13,2*K.1^4,2*K.1^7,2*K.1^-10,2*K.1^5,2*K.1^-4,2*K.1^13,2*K.1^10,2*K.1^16,2*K.1^-8,2*K.1,2*K.1^-16,-1*K.1^-14,-1*K.1^2,-1*K.1^-13,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^-7,-1*K.1^4,-1*K.1,-1*K.1^-16,-1*K.1^-1,-1*K.1^13,-1*K.1^-5,-1*K.1^16,-1*K.1^-4,-1*K.1^-8,-1*K.1^14,-1*K.1^-10,-1*K.1^8,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-12,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^15,2*K.1^6,2*K.1^-3,2*K.1^-15,2*K.1^12,-1*K.1^-9,-1*K.1^-15,-1*K.1^-15,-1*K.1^6,-1*K.1^-12,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-9,-1*K.1^15,-1*K.1^9,-1*K.1^9,-1*K.1^-6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^-12,-1*K.1^15,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^12,2*K.1^15,2*K.1^-15,2*K.1^9,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^6,2*K.1^-12,2*K.1^-6,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^-12,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^-15,-1*K.1^15,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,2*K.1^10,2*K.1^-8,2*K.1^-13,2*K.1^-16,2*K.1^8,2*K.1^4,2*K.1^-14,2*K.1^13,2*K.1^-2,2*K.1^-7,2*K.1^-4,2*K.1,2*K.1^16,2*K.1^7,2*K.1^2,2*K.1^-1,2*K.1^5,2*K.1^14,2*K.1^-10,2*K.1^-5,-1*K.1^8,-1*K.1^13,-1*K.1^-2,-1*K.1^16,-1*K.1^-4,-1*K.1^-13,-1*K.1^4,-1*K.1^-7,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^2,-1*K.1^-16,-1*K.1^5,-1*K.1^7,-1*K.1^14,-1*K.1^-8,-1*K.1,-1*K.1^-14,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-12,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^15,2*K.1^6,2*K.1^-3,2*K.1^-15,2*K.1^12,-1*K.1^-9,-1*K.1^-15,-1*K.1^-15,-1*K.1^6,-1*K.1^-12,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-9,-1*K.1^15,-1*K.1^9,-1*K.1^9,-1*K.1^-6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^-12,-1*K.1^15,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^-12,2*K.1^-15,2*K.1^15,2*K.1^-9,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^-6,2*K.1^12,2*K.1^6,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-12,-1*K.1^12,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^15,-1*K.1^-15,-1*K.1^-6,-1*K.1^6,-1*K.1^3,2*K.1^-10,2*K.1^8,2*K.1^13,2*K.1^16,2*K.1^-8,2*K.1^-4,2*K.1^14,2*K.1^-13,2*K.1^2,2*K.1^7,2*K.1^4,2*K.1^-1,2*K.1^-16,2*K.1^-7,2*K.1^-2,2*K.1,2*K.1^-5,2*K.1^-14,2*K.1^10,2*K.1^5,-1*K.1^-8,-1*K.1^-13,-1*K.1^2,-1*K.1^-16,-1*K.1^4,-1*K.1^13,-1*K.1^-4,-1*K.1^7,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-2,-1*K.1^16,-1*K.1^-5,-1*K.1^-7,-1*K.1^-14,-1*K.1^8,-1*K.1^-1,-1*K.1^14,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^-15,2*K.1^-6,2*K.1^3,2*K.1^15,2*K.1^-12,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^-6,-1*K.1^12,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^9,-1*K.1^-15,-1*K.1^-9,-1*K.1^-9,-1*K.1^6,-1*K.1^-12,-1*K.1^-12,-1*K.1^-6,-1*K.1^12,-1*K.1^-15,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^-15,2*K.1^-6,2*K.1^15,2*K.1^6,2*K.1^12,2*K.1^9,2*K.1^-12,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,-1*K.1^9,-1*K.1^15,-1*K.1^6,-1*K.1^-15,-1*K.1^3,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,-1*K.1^-6,2*K.1^-2,2*K.1^-5,2*K.1^-4,2*K.1^-10,2*K.1^5,2*K.1^-14,2*K.1^16,2*K.1^4,2*K.1^7,2*K.1^8,2*K.1^14,2*K.1^13,2*K.1^10,2*K.1^-8,2*K.1^-7,2*K.1^-13,2*K.1^-1,2*K.1^-16,2*K.1^2,2*K.1,-1*K.1^5,-1*K.1^4,-1*K.1^7,-1*K.1^10,-1*K.1^14,-1*K.1^-4,-1*K.1^-14,-1*K.1^8,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-7,-1*K.1^-10,-1*K.1^-1,-1*K.1^-8,-1*K.1^-16,-1*K.1^-5,-1*K.1^13,-1*K.1^16,-1*K.1^-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^-12,2*K.1^-15,2*K.1^15,2*K.1^6,2*K.1^-3,2*K.1^12,2*K.1^-6,2*K.1^3,2*K.1^-9,-1*K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^12,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^-12,-1*K.1^-6,-1*K.1^15,-1*K.1^-3,-1*K.1^-15,-1*K.1^-15,-1*K.1^-12,-1*K.1^-9,-1*K.1^-9,-1*K.1^12,-1*K.1^9,-1*K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^15,2*K.1^6,2*K.1^-15,2*K.1^-6,2*K.1^-12,2*K.1^-9,2*K.1^12,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^-9,-1*K.1^-15,-1*K.1^-6,-1*K.1^15,-1*K.1^-3,-1*K.1^3,-1*K.1^-12,-1*K.1^12,-1*K.1^6,2*K.1^2,2*K.1^5,2*K.1^4,2*K.1^10,2*K.1^-5,2*K.1^14,2*K.1^-16,2*K.1^-4,2*K.1^-7,2*K.1^-8,2*K.1^-14,2*K.1^-13,2*K.1^-10,2*K.1^8,2*K.1^7,2*K.1^13,2*K.1,2*K.1^16,2*K.1^-2,2*K.1^-1,-1*K.1^-5,-1*K.1^-4,-1*K.1^-7,-1*K.1^-10,-1*K.1^-14,-1*K.1^4,-1*K.1^14,-1*K.1^-8,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^7,-1*K.1^10,-1*K.1,-1*K.1^8,-1*K.1^16,-1*K.1^5,-1*K.1^-13,-1*K.1^-16,-1*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-9,2*K.1^12,2*K.1^15,2*K.1^-15,2*K.1^-6,2*K.1^3,2*K.1^-12,2*K.1^6,2*K.1^-3,2*K.1^9,-1*K.1^-15,-1*K.1^-3,-1*K.1^-3,-1*K.1^-12,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^12,-1*K.1^6,-1*K.1^-15,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^12,-1*K.1^9,-1*K.1^9,-1*K.1^-12,-1*K.1^-9,-1*K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^15,2*K.1^6,2*K.1^-15,2*K.1^-6,2*K.1^-12,2*K.1^-9,2*K.1^12,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^-9,-1*K.1^-15,-1*K.1^-6,-1*K.1^15,-1*K.1^-3,-1*K.1^3,-1*K.1^-12,-1*K.1^12,-1*K.1^6,2*K.1^13,2*K.1^16,2*K.1^-7,2*K.1^-1,2*K.1^-16,2*K.1^-8,2*K.1^-5,2*K.1^7,2*K.1^4,2*K.1^14,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^-14,2*K.1^-4,2*K.1^2,2*K.1^-10,2*K.1^5,2*K.1^-13,2*K.1^10,-1*K.1^-16,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^14,-1*K.1^-13,-1*K.1^10,-1*K.1^13,-1*K.1^-4,-1*K.1^-1,-1*K.1^-10,-1*K.1^-14,-1*K.1^5,-1*K.1^16,-1*K.1^-2,-1*K.1^-5,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-9,2*K.1^12,2*K.1^15,2*K.1^-15,2*K.1^-6,2*K.1^3,2*K.1^-12,2*K.1^6,2*K.1^-3,2*K.1^9,-1*K.1^-15,-1*K.1^-3,-1*K.1^-3,-1*K.1^-12,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^12,-1*K.1^6,-1*K.1^-15,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^12,-1*K.1^9,-1*K.1^9,-1*K.1^-12,-1*K.1^-9,-1*K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^-15,2*K.1^-6,2*K.1^15,2*K.1^6,2*K.1^12,2*K.1^9,2*K.1^-12,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,-1*K.1^9,-1*K.1^15,-1*K.1^6,-1*K.1^-15,-1*K.1^3,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,-1*K.1^-6,2*K.1^-13,2*K.1^-16,2*K.1^7,2*K.1,2*K.1^16,2*K.1^8,2*K.1^5,2*K.1^-7,2*K.1^-4,2*K.1^-14,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^14,2*K.1^4,2*K.1^-2,2*K.1^10,2*K.1^-5,2*K.1^13,2*K.1^-10,-1*K.1^16,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-14,-1*K.1^13,-1*K.1^-10,-1*K.1^-13,-1*K.1^4,-1*K.1,-1*K.1^10,-1*K.1^14,-1*K.1^-5,-1*K.1^-16,-1*K.1^2,-1*K.1^5,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^-12,2*K.1^-15,2*K.1^15,2*K.1^6,2*K.1^-3,2*K.1^12,2*K.1^-6,2*K.1^3,2*K.1^-9,-1*K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^12,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^-12,-1*K.1^-6,-1*K.1^15,-1*K.1^-3,-1*K.1^-15,-1*K.1^-15,-1*K.1^-12,-1*K.1^-9,-1*K.1^-9,-1*K.1^12,-1*K.1^9,-1*K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^12,2*K.1^-15,2*K.1^-12,2*K.1^15,2*K.1^-3,2*K.1^6,2*K.1^3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^6,-1*K.1^-12,-1*K.1^15,-1*K.1^12,-1*K.1^-9,-1*K.1^9,-1*K.1^-3,-1*K.1^3,-1*K.1^-15,2*K.1^-5,2*K.1^4,2*K.1^-10,2*K.1^8,2*K.1^-4,2*K.1^-2,2*K.1^7,2*K.1^10,2*K.1,2*K.1^-13,2*K.1^2,2*K.1^16,2*K.1^-8,2*K.1^13,2*K.1^-1,2*K.1^-16,2*K.1^14,2*K.1^-7,2*K.1^5,2*K.1^-14,-1*K.1^-4,-1*K.1^10,-1*K.1,-1*K.1^-8,-1*K.1^2,-1*K.1^-10,-1*K.1^-2,-1*K.1^-13,-1*K.1^5,-1*K.1^-14,-1*K.1^-5,-1*K.1^-1,-1*K.1^8,-1*K.1^14,-1*K.1^13,-1*K.1^-7,-1*K.1^4,-1*K.1^16,-1*K.1^7,-1*K.1^-16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^3,2*K.1^12,2*K.1^-12,2*K.1^15,2*K.1^9,2*K.1^-3,2*K.1^-15,2*K.1^-9,2*K.1^-6,-1*K.1^-12,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-15,-1*K.1^15,-1*K.1^3,-1*K.1^-15,-1*K.1^-12,-1*K.1^9,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^-12,2*K.1^15,2*K.1^12,2*K.1^-15,2*K.1^3,2*K.1^-6,2*K.1^-3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^-6,-1*K.1^12,-1*K.1^-15,-1*K.1^-12,-1*K.1^9,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,-1*K.1^15,2*K.1^5,2*K.1^-4,2*K.1^10,2*K.1^-8,2*K.1^4,2*K.1^2,2*K.1^-7,2*K.1^-10,2*K.1^-1,2*K.1^13,2*K.1^-2,2*K.1^-16,2*K.1^8,2*K.1^-13,2*K.1,2*K.1^16,2*K.1^-14,2*K.1^7,2*K.1^-5,2*K.1^14,-1*K.1^4,-1*K.1^-10,-1*K.1^-1,-1*K.1^8,-1*K.1^-2,-1*K.1^10,-1*K.1^2,-1*K.1^13,-1*K.1^-5,-1*K.1^14,-1*K.1^5,-1*K.1,-1*K.1^-8,-1*K.1^-14,-1*K.1^-13,-1*K.1^7,-1*K.1^-4,-1*K.1^-16,-1*K.1^-7,-1*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^-3,2*K.1^-12,2*K.1^12,2*K.1^-15,2*K.1^-9,2*K.1^3,2*K.1^15,2*K.1^9,2*K.1^6,-1*K.1^12,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^15,-1*K.1^-15,-1*K.1^-3,-1*K.1^15,-1*K.1^12,-1*K.1^-9,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^-12,2*K.1^15,2*K.1^12,2*K.1^-15,2*K.1^3,2*K.1^-6,2*K.1^-3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^-6,-1*K.1^12,-1*K.1^-15,-1*K.1^-12,-1*K.1^9,-1*K.1^-9,-1*K.1^3,-1*K.1^-3,-1*K.1^15,2*K.1^16,2*K.1^7,2*K.1^-1,2*K.1^14,2*K.1^-7,2*K.1^13,2*K.1^4,2*K.1,2*K.1^10,2*K.1^2,2*K.1^-13,2*K.1^-5,2*K.1^-14,2*K.1^-2,2*K.1^-10,2*K.1^5,2*K.1^8,2*K.1^-4,2*K.1^-16,2*K.1^-8,-1*K.1^-7,-1*K.1,-1*K.1^10,-1*K.1^-14,-1*K.1^-13,-1*K.1^-1,-1*K.1^13,-1*K.1^2,-1*K.1^-16,-1*K.1^-8,-1*K.1^16,-1*K.1^-10,-1*K.1^14,-1*K.1^8,-1*K.1^-2,-1*K.1^-4,-1*K.1^7,-1*K.1^-5,-1*K.1^4,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^-3,2*K.1^-12,2*K.1^12,2*K.1^-15,2*K.1^-9,2*K.1^3,2*K.1^15,2*K.1^9,2*K.1^6,-1*K.1^12,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^15,-1*K.1^-15,-1*K.1^-3,-1*K.1^15,-1*K.1^12,-1*K.1^-9,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^12,2*K.1^-15,2*K.1^-12,2*K.1^15,2*K.1^-3,2*K.1^6,2*K.1^3,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^6,-1*K.1^-12,-1*K.1^15,-1*K.1^12,-1*K.1^-9,-1*K.1^9,-1*K.1^-3,-1*K.1^3,-1*K.1^-15,2*K.1^-16,2*K.1^-7,2*K.1,2*K.1^-14,2*K.1^7,2*K.1^-13,2*K.1^-4,2*K.1^-1,2*K.1^-10,2*K.1^-2,2*K.1^13,2*K.1^5,2*K.1^14,2*K.1^2,2*K.1^10,2*K.1^-5,2*K.1^-8,2*K.1^4,2*K.1^16,2*K.1^8,-1*K.1^7,-1*K.1^-1,-1*K.1^-10,-1*K.1^14,-1*K.1^13,-1*K.1,-1*K.1^-13,-1*K.1^-2,-1*K.1^16,-1*K.1^8,-1*K.1^-16,-1*K.1^10,-1*K.1^-14,-1*K.1^-8,-1*K.1^2,-1*K.1^4,-1*K.1^-7,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^3,2*K.1^12,2*K.1^-12,2*K.1^15,2*K.1^9,2*K.1^-3,2*K.1^-15,2*K.1^-9,2*K.1^-6,-1*K.1^-12,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-15,-1*K.1^15,-1*K.1^3,-1*K.1^-15,-1*K.1^-12,-1*K.1^9,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^-3,2*K.1^-12,2*K.1^12,2*K.1^6,2*K.1^9,2*K.1^-6,2*K.1^-9,2*K.1^15,2*K.1^3,2*K.1^-15,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^6,-1*K.1^12,-1*K.1^-12,-1*K.1^15,-1*K.1^-15,-1*K.1^9,2*K.1^-8,2*K.1^13,2*K.1^-16,2*K.1^-7,2*K.1^-13,2*K.1^10,2*K.1^-2,2*K.1^16,2*K.1^-5,2*K.1^-1,2*K.1^-10,2*K.1^-14,2*K.1^7,2*K.1,2*K.1^5,2*K.1^14,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^4,-1*K.1^-13,-1*K.1^16,-1*K.1^-5,-1*K.1^7,-1*K.1^-10,-1*K.1^-16,-1*K.1^10,-1*K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^-8,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^13,-1*K.1^-14,-1*K.1^-2,-1*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-15,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^-12,2*K.1^15,2*K.1^9,2*K.1^12,2*K.1^-3,-1*K.1^-6,-1*K.1^12,-1*K.1^12,-1*K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-15,-1*K.1^9,-1*K.1^-6,-1*K.1^-12,-1*K.1^6,-1*K.1^6,-1*K.1^-15,-1*K.1^-3,-1*K.1^-3,-1*K.1^15,-1*K.1^3,-1*K.1^-12,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^3,2*K.1^12,2*K.1^-12,2*K.1^-6,2*K.1^-9,2*K.1^6,2*K.1^9,2*K.1^-15,2*K.1^-3,2*K.1^15,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^-6,-1*K.1^-12,-1*K.1^12,-1*K.1^-15,-1*K.1^15,-1*K.1^-9,2*K.1^8,2*K.1^-13,2*K.1^16,2*K.1^7,2*K.1^13,2*K.1^-10,2*K.1^2,2*K.1^-16,2*K.1^5,2*K.1,2*K.1^10,2*K.1^14,2*K.1^-7,2*K.1^-1,2*K.1^-5,2*K.1^-14,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^-4,-1*K.1^13,-1*K.1^-16,-1*K.1^5,-1*K.1^-7,-1*K.1^10,-1*K.1^16,-1*K.1^-10,-1*K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^8,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-13,-1*K.1^14,-1*K.1^2,-1*K.1^-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^15,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^12,2*K.1^-15,2*K.1^-9,2*K.1^-12,2*K.1^3,-1*K.1^6,-1*K.1^-12,-1*K.1^-12,-1*K.1^-15,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^15,-1*K.1^-9,-1*K.1^6,-1*K.1^12,-1*K.1^-6,-1*K.1^-6,-1*K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^-15,-1*K.1^-3,-1*K.1^12,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^-11,2*K.1^11,-1*K.1^-11,-1*K.1^11,0,0,2,2*K.1^3,2*K.1^12,2*K.1^-12,2*K.1^-6,2*K.1^-9,2*K.1^6,2*K.1^9,2*K.1^-15,2*K.1^-3,2*K.1^15,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^-6,-1*K.1^-12,-1*K.1^12,-1*K.1^-15,-1*K.1^15,-1*K.1^-9,2*K.1^-14,2*K.1^-2,2*K.1^5,2*K.1^-4,2*K.1^2,2*K.1,2*K.1^13,2*K.1^-5,2*K.1^16,2*K.1^-10,2*K.1^-1,2*K.1^-8,2*K.1^4,2*K.1^10,2*K.1^-16,2*K.1^8,2*K.1^-7,2*K.1^-13,2*K.1^14,2*K.1^7,-1*K.1^2,-1*K.1^-5,-1*K.1^16,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^-10,-1*K.1^14,-1*K.1^7,-1*K.1^-14,-1*K.1^-16,-1*K.1^-4,-1*K.1^-7,-1*K.1^10,-1*K.1^-13,-1*K.1^-2,-1*K.1^-8,-1*K.1^13,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^15,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^12,2*K.1^-15,2*K.1^-9,2*K.1^-12,2*K.1^3,-1*K.1^6,-1*K.1^-12,-1*K.1^-12,-1*K.1^-15,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^15,-1*K.1^-9,-1*K.1^6,-1*K.1^12,-1*K.1^-6,-1*K.1^-6,-1*K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^-15,-1*K.1^-3,-1*K.1^12,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(33: Sparse := true); S := [ K |2,0,-1,2*K.1^11,2*K.1^-11,-1*K.1^11,-1*K.1^-11,0,0,2,2*K.1^-3,2*K.1^-12,2*K.1^12,2*K.1^6,2*K.1^9,2*K.1^-6,2*K.1^-9,2*K.1^15,2*K.1^3,2*K.1^-15,-1,-1,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^6,-1*K.1^12,-1*K.1^-12,-1*K.1^15,-1*K.1^-15,-1*K.1^9,2*K.1^14,2*K.1^2,2*K.1^-5,2*K.1^4,2*K.1^-2,2*K.1^-1,2*K.1^-13,2*K.1^5,2*K.1^-16,2*K.1^10,2*K.1,2*K.1^8,2*K.1^-4,2*K.1^-10,2*K.1^16,2*K.1^-8,2*K.1^7,2*K.1^13,2*K.1^-14,2*K.1^-7,-1*K.1^-2,-1*K.1^5,-1*K.1^-16,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^10,-1*K.1^-14,-1*K.1^-7,-1*K.1^14,-1*K.1^16,-1*K.1^4,-1*K.1^7,-1*K.1^-10,-1*K.1^13,-1*K.1^2,-1*K.1^8,-1*K.1^-13,-1*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-15,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^-12,2*K.1^15,2*K.1^9,2*K.1^12,2*K.1^-3,-1*K.1^-6,-1*K.1^12,-1*K.1^12,-1*K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-15,-1*K.1^9,-1*K.1^-6,-1*K.1^-12,-1*K.1^6,-1*K.1^6,-1*K.1^-15,-1*K.1^-3,-1*K.1^-3,-1*K.1^15,-1*K.1^3,-1*K.1^-12,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 0, 6, 0, 0, 0, 0, 0, 0, -1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6,6,6,6,6,6,6,6,6,6,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6,6,6,6,6,6,6,6,6,6,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,-1*K.1+2*K.1^2-K.1^4-K.1^7+K.1^8+K.1^9+K.1^-10,1+K.1-2*K.1^2+K.1^4+K.1^7-K.1^8-K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^-5,6*K.1^2,6*K.1^-2,6*K.1^-1,6*K.1^4,6*K.1,6*K.1^-4,6*K.1^3,6*K.1^5,6*K.1^-3,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^-5,6*K.1^5,6*K.1,6*K.1^-4,6*K.1^-1,6*K.1^-2,6*K.1^2,6*K.1^3,6*K.1^-3,6*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-4,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^5,-1*K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^5,6*K.1^-2,6*K.1^2,6*K.1,6*K.1^-4,6*K.1^-1,6*K.1^4,6*K.1^-3,6*K.1^-5,6*K.1^3,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^5,6*K.1^-5,6*K.1^-1,6*K.1^4,6*K.1,6*K.1^2,6*K.1^-2,6*K.1^-3,6*K.1^3,6*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^4,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-5,-1*K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^-4,6*K.1^-5,6*K.1^5,6*K.1^-3,6*K.1,6*K.1^3,6*K.1^-1,6*K.1^-2,6*K.1^4,6*K.1^2,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^-4,6*K.1^4,6*K.1^3,6*K.1^-1,6*K.1^-3,6*K.1^5,6*K.1^-5,6*K.1^-2,6*K.1^2,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^-5,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^4,6*K.1^5,6*K.1^-5,6*K.1^3,6*K.1^-1,6*K.1^-3,6*K.1,6*K.1^2,6*K.1^-4,6*K.1^-2,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^4,6*K.1^-4,6*K.1^-3,6*K.1,6*K.1^3,6*K.1^-5,6*K.1^5,6*K.1^2,6*K.1^-2,6*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^-3,6*K.1^-1,6*K.1,6*K.1^-5,6*K.1^-2,6*K.1^5,6*K.1^2,6*K.1^4,6*K.1^3,6*K.1^-4,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^-3,6*K.1^3,6*K.1^5,6*K.1^2,6*K.1^-5,6*K.1,6*K.1^-1,6*K.1^4,6*K.1^-4,6*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^4,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^3,6*K.1,6*K.1^-1,6*K.1^5,6*K.1^2,6*K.1^-5,6*K.1^-2,6*K.1^-4,6*K.1^-3,6*K.1^4,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^3,6*K.1^-3,6*K.1^-5,6*K.1^-2,6*K.1^5,6*K.1^-1,6*K.1,6*K.1^-4,6*K.1^4,6*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1^-4,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^-2,6*K.1^3,6*K.1^-3,6*K.1^4,6*K.1^-5,6*K.1^-4,6*K.1^5,6*K.1^-1,6*K.1^2,6*K.1,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^-2,6*K.1^2,6*K.1^-4,6*K.1^5,6*K.1^4,6*K.1^-3,6*K.1^3,6*K.1^-1,6*K.1,6*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^2,6*K.1^-3,6*K.1^3,6*K.1^-4,6*K.1^5,6*K.1^4,6*K.1^-5,6*K.1,6*K.1^-2,6*K.1^-1,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^2,6*K.1^-2,6*K.1^4,6*K.1^-5,6*K.1^-4,6*K.1^3,6*K.1^-3,6*K.1,6*K.1^-1,6*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^-1,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1^-1,6*K.1^-4,6*K.1^4,6*K.1^2,6*K.1^3,6*K.1^-2,6*K.1^-3,6*K.1^5,6*K.1,6*K.1^-5,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1^-1,6*K.1,6*K.1^-2,6*K.1^-3,6*K.1^2,6*K.1^4,6*K.1^-4,6*K.1^5,6*K.1^-5,6*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-5,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-5,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^-4,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(11: Sparse := true); S := [ K |6,0,6,0,0,0,0,0,0,-1,6*K.1,6*K.1^4,6*K.1^-4,6*K.1^-2,6*K.1^-3,6*K.1^2,6*K.1^3,6*K.1^-5,6*K.1^-1,6*K.1^5,-1,-1,0,0,0,0,0,0,0,0,0,0,6*K.1,6*K.1^-1,6*K.1^2,6*K.1^3,6*K.1^-2,6*K.1^-4,6*K.1^4,6*K.1^-5,6*K.1^5,6*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^5,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^5,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^4,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-105,6*K.1^42,6*K.1^-42,6*K.1^-21,6*K.1^84,6*K.1^21,6*K.1^-84,6*K.1^63,6*K.1^105,6*K.1^-63,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-105,-3*K.1^105,-3*K.1^21,-3*K.1^-84,-3*K.1^-21,-3*K.1^-42,-3*K.1^42,-3*K.1^63,-3*K.1^-63,-3*K.1^84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^105,-1*K.1^-63,-1*K.1^-21,-1*K.1^21,-1*K.1^-84,-1*K.1^42,-1*K.1^63,-1*K.1^84,-1*K.1^-42,-1*K.1^-105,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^105,6*K.1^-42,6*K.1^42,6*K.1^21,6*K.1^-84,6*K.1^-21,6*K.1^84,6*K.1^-63,6*K.1^-105,6*K.1^63,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^105,-3*K.1^-105,-3*K.1^-21,-3*K.1^84,-3*K.1^21,-3*K.1^42,-3*K.1^-42,-3*K.1^-63,-3*K.1^63,-3*K.1^-84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-105,-1*K.1^63,-1*K.1^21,-1*K.1^-21,-1*K.1^84,-1*K.1^-42,-1*K.1^-63,-1*K.1^-84,-1*K.1^42,-1*K.1^105,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-105,6*K.1^42,6*K.1^-42,6*K.1^-21,6*K.1^84,6*K.1^21,6*K.1^-84,6*K.1^63,6*K.1^105,6*K.1^-63,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-105,-3*K.1^105,-3*K.1^21,-3*K.1^-84,-3*K.1^-21,-3*K.1^-42,-3*K.1^42,-3*K.1^63,-3*K.1^-63,-3*K.1^84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^105,-1*K.1^-63,-1*K.1^-21,-1*K.1^21,-1*K.1^-84,-1*K.1^42,-1*K.1^63,-1*K.1^84,-1*K.1^-42,-1*K.1^-105,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^105,6*K.1^-42,6*K.1^42,6*K.1^21,6*K.1^-84,6*K.1^-21,6*K.1^84,6*K.1^-63,6*K.1^-105,6*K.1^63,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^105,-3*K.1^-105,-3*K.1^-21,-3*K.1^84,-3*K.1^21,-3*K.1^42,-3*K.1^-42,-3*K.1^-63,-3*K.1^63,-3*K.1^-84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-105,-1*K.1^63,-1*K.1^21,-1*K.1^-21,-1*K.1^84,-1*K.1^-42,-1*K.1^-63,-1*K.1^-84,-1*K.1^42,-1*K.1^105,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-84,6*K.1^-105,6*K.1^105,6*K.1^-63,6*K.1^21,6*K.1^63,6*K.1^-21,6*K.1^-42,6*K.1^84,6*K.1^42,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-84,-3*K.1^84,-3*K.1^63,-3*K.1^-21,-3*K.1^-63,-3*K.1^105,-3*K.1^-105,-3*K.1^-42,-3*K.1^42,-3*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^84,-1*K.1^42,-1*K.1^-63,-1*K.1^63,-1*K.1^-21,-1*K.1^-105,-1*K.1^-42,-1*K.1^21,-1*K.1^105,-1*K.1^-84,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^84,6*K.1^105,6*K.1^-105,6*K.1^63,6*K.1^-21,6*K.1^-63,6*K.1^21,6*K.1^42,6*K.1^-84,6*K.1^-42,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^84,-3*K.1^-84,-3*K.1^-63,-3*K.1^21,-3*K.1^63,-3*K.1^-105,-3*K.1^105,-3*K.1^42,-3*K.1^-42,-3*K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-84,-1*K.1^-42,-1*K.1^63,-1*K.1^-63,-1*K.1^21,-1*K.1^105,-1*K.1^42,-1*K.1^-21,-1*K.1^-105,-1*K.1^84,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-84,6*K.1^-105,6*K.1^105,6*K.1^-63,6*K.1^21,6*K.1^63,6*K.1^-21,6*K.1^-42,6*K.1^84,6*K.1^42,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-84,-3*K.1^84,-3*K.1^63,-3*K.1^-21,-3*K.1^-63,-3*K.1^105,-3*K.1^-105,-3*K.1^-42,-3*K.1^42,-3*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^84,-1*K.1^42,-1*K.1^-63,-1*K.1^63,-1*K.1^-21,-1*K.1^-105,-1*K.1^-42,-1*K.1^21,-1*K.1^105,-1*K.1^-84,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^84,6*K.1^105,6*K.1^-105,6*K.1^63,6*K.1^-21,6*K.1^-63,6*K.1^21,6*K.1^42,6*K.1^-84,6*K.1^-42,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^84,-3*K.1^-84,-3*K.1^-63,-3*K.1^21,-3*K.1^63,-3*K.1^-105,-3*K.1^105,-3*K.1^42,-3*K.1^-42,-3*K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-84,-1*K.1^-42,-1*K.1^63,-1*K.1^-63,-1*K.1^21,-1*K.1^105,-1*K.1^42,-1*K.1^-21,-1*K.1^-105,-1*K.1^84,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-63,6*K.1^-21,6*K.1^21,6*K.1^-105,6*K.1^-42,6*K.1^105,6*K.1^42,6*K.1^84,6*K.1^63,6*K.1^-84,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-63,-3*K.1^63,-3*K.1^105,-3*K.1^42,-3*K.1^-105,-3*K.1^21,-3*K.1^-21,-3*K.1^84,-3*K.1^-84,-3*K.1^-42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^63,-1*K.1^-84,-1*K.1^-105,-1*K.1^105,-1*K.1^42,-1*K.1^-21,-1*K.1^84,-1*K.1^-42,-1*K.1^21,-1*K.1^-63,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^63,6*K.1^21,6*K.1^-21,6*K.1^105,6*K.1^42,6*K.1^-105,6*K.1^-42,6*K.1^-84,6*K.1^-63,6*K.1^84,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^63,-3*K.1^-63,-3*K.1^-105,-3*K.1^-42,-3*K.1^105,-3*K.1^-21,-3*K.1^21,-3*K.1^-84,-3*K.1^84,-3*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-63,-1*K.1^84,-1*K.1^105,-1*K.1^-105,-1*K.1^-42,-1*K.1^21,-1*K.1^-84,-1*K.1^42,-1*K.1^-21,-1*K.1^63,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-63,6*K.1^-21,6*K.1^21,6*K.1^-105,6*K.1^-42,6*K.1^105,6*K.1^42,6*K.1^84,6*K.1^63,6*K.1^-84,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-63,-3*K.1^63,-3*K.1^105,-3*K.1^42,-3*K.1^-105,-3*K.1^21,-3*K.1^-21,-3*K.1^84,-3*K.1^-84,-3*K.1^-42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^63,-1*K.1^-84,-1*K.1^-105,-1*K.1^105,-1*K.1^42,-1*K.1^-21,-1*K.1^84,-1*K.1^-42,-1*K.1^21,-1*K.1^-63,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^63,6*K.1^21,6*K.1^-21,6*K.1^105,6*K.1^42,6*K.1^-105,6*K.1^-42,6*K.1^-84,6*K.1^-63,6*K.1^84,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^63,-3*K.1^-63,-3*K.1^-105,-3*K.1^-42,-3*K.1^105,-3*K.1^-21,-3*K.1^21,-3*K.1^-84,-3*K.1^84,-3*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-63,-1*K.1^84,-1*K.1^105,-1*K.1^-105,-1*K.1^-42,-1*K.1^21,-1*K.1^-84,-1*K.1^42,-1*K.1^-21,-1*K.1^63,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-42,6*K.1^63,6*K.1^-63,6*K.1^84,6*K.1^-105,6*K.1^-84,6*K.1^105,6*K.1^-21,6*K.1^42,6*K.1^21,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-42,-3*K.1^42,-3*K.1^-84,-3*K.1^105,-3*K.1^84,-3*K.1^-63,-3*K.1^63,-3*K.1^-21,-3*K.1^21,-3*K.1^-105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^42,-1*K.1^21,-1*K.1^84,-1*K.1^-84,-1*K.1^105,-1*K.1^63,-1*K.1^-21,-1*K.1^-105,-1*K.1^-63,-1*K.1^-42,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^42,6*K.1^-63,6*K.1^63,6*K.1^-84,6*K.1^105,6*K.1^84,6*K.1^-105,6*K.1^21,6*K.1^-42,6*K.1^-21,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^42,-3*K.1^-42,-3*K.1^84,-3*K.1^-105,-3*K.1^-84,-3*K.1^63,-3*K.1^-63,-3*K.1^21,-3*K.1^-21,-3*K.1^105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-42,-1*K.1^-21,-1*K.1^-84,-1*K.1^84,-1*K.1^-105,-1*K.1^-63,-1*K.1^21,-1*K.1^105,-1*K.1^63,-1*K.1^42,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-42,6*K.1^63,6*K.1^-63,6*K.1^84,6*K.1^-105,6*K.1^-84,6*K.1^105,6*K.1^-21,6*K.1^42,6*K.1^21,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-42,-3*K.1^42,-3*K.1^-84,-3*K.1^105,-3*K.1^84,-3*K.1^-63,-3*K.1^63,-3*K.1^-21,-3*K.1^21,-3*K.1^-105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^42,-1*K.1^21,-1*K.1^84,-1*K.1^-84,-1*K.1^105,-1*K.1^63,-1*K.1^-21,-1*K.1^-105,-1*K.1^-63,-1*K.1^-42,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^42,6*K.1^-63,6*K.1^63,6*K.1^-84,6*K.1^105,6*K.1^84,6*K.1^-105,6*K.1^21,6*K.1^-42,6*K.1^-21,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^42,-3*K.1^-42,-3*K.1^84,-3*K.1^-105,-3*K.1^-84,-3*K.1^63,-3*K.1^-63,-3*K.1^21,-3*K.1^-21,-3*K.1^105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-42,-1*K.1^-21,-1*K.1^-84,-1*K.1^84,-1*K.1^-105,-1*K.1^-63,-1*K.1^21,-1*K.1^105,-1*K.1^63,-1*K.1^42,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-21,6*K.1^-84,6*K.1^84,6*K.1^42,6*K.1^63,6*K.1^-42,6*K.1^-63,6*K.1^105,6*K.1^21,6*K.1^-105,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-21,-3*K.1^21,-3*K.1^-42,-3*K.1^-63,-3*K.1^42,-3*K.1^84,-3*K.1^-84,-3*K.1^105,-3*K.1^-105,-3*K.1^63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^21,-1*K.1^-105,-1*K.1^42,-1*K.1^-42,-1*K.1^-63,-1*K.1^-84,-1*K.1^105,-1*K.1^63,-1*K.1^84,-1*K.1^-21,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^21,6*K.1^84,6*K.1^-84,6*K.1^-42,6*K.1^-63,6*K.1^42,6*K.1^63,6*K.1^-105,6*K.1^-21,6*K.1^105,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^21,-3*K.1^-21,-3*K.1^42,-3*K.1^63,-3*K.1^-42,-3*K.1^-84,-3*K.1^84,-3*K.1^-105,-3*K.1^105,-3*K.1^-63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-21,-1*K.1^105,-1*K.1^-42,-1*K.1^42,-1*K.1^63,-1*K.1^84,-1*K.1^-105,-1*K.1^-63,-1*K.1^-84,-1*K.1^21,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^-21,6*K.1^-84,6*K.1^84,6*K.1^42,6*K.1^63,6*K.1^-42,6*K.1^-63,6*K.1^105,6*K.1^21,6*K.1^-105,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^-21,-3*K.1^21,-3*K.1^-42,-3*K.1^-63,-3*K.1^42,-3*K.1^84,-3*K.1^-84,-3*K.1^105,-3*K.1^-105,-3*K.1^63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^21,-1*K.1^-105,-1*K.1^42,-1*K.1^-42,-1*K.1^-63,-1*K.1^-84,-1*K.1^105,-1*K.1^63,-1*K.1^84,-1*K.1^-21,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(231: Sparse := true); S := [ K |6,0,-3,0,0,0,0,0,0,-1,6*K.1^21,6*K.1^84,6*K.1^-84,6*K.1^-42,6*K.1^-63,6*K.1^42,6*K.1^63,6*K.1^-105,6*K.1^-21,6*K.1^105,K.1^3+K.1^7-K.1^10+2*K.1^11-K.1^14-K.1^18-2*K.1^22+K.1^24+K.1^28-K.1^31+K.1^32-K.1^33-K.1^35+K.1^36-K.1^39+K.1^40-K.1^43+2*K.1^44+K.1^45-K.1^47+K.1^49-K.1^51-K.1^52+K.1^53-K.1^56+K.1^57-K.1^60+K.1^61-K.1^64+K.1^65-K.1^68+K.1^69+K.1^70-K.1^72+K.1^74-K.1^76+K.1^78-K.1^81+K.1^82-K.1^85+K.1^86-K.1^89+K.1^90-K.1^93-K.1^97-K.1^99+K.1^103+K.1^107-K.1^110+K.1^111-K.1^114-K.1^-113,1-K.1^3-K.1^7+K.1^10-2*K.1^11+K.1^14+K.1^18+2*K.1^22-K.1^24-K.1^28+K.1^31-K.1^32+K.1^33+K.1^35-K.1^36+K.1^39-K.1^40+K.1^43-2*K.1^44-K.1^45+K.1^47-K.1^49+K.1^51+K.1^52-K.1^53+K.1^56-K.1^57+K.1^60-K.1^61+K.1^64-K.1^65+K.1^68-K.1^69-K.1^70+K.1^72-K.1^74+K.1^76-K.1^78+K.1^81-K.1^82+K.1^85-K.1^86+K.1^89-K.1^90+K.1^93+K.1^97+K.1^99-K.1^103-K.1^107+K.1^110-K.1^111+K.1^114+K.1^-113,0,0,0,0,0,0,0,0,0,0,-3*K.1^21,-3*K.1^-21,-3*K.1^42,-3*K.1^63,-3*K.1^-42,-3*K.1^-84,-3*K.1^84,-3*K.1^-105,-3*K.1^105,-3*K.1^-63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-21,-1*K.1^105,-1*K.1^-42,-1*K.1^42,-1*K.1^63,-1*K.1^84,-1*K.1^-105,-1*K.1^-63,-1*K.1^-84,-1*K.1^21,-2*K.1-2*K.1^5+2*K.1^8-2*K.1^9+2*K.1^12+2*K.1^16+K.1^20-2*K.1^22-2*K.1^26+2*K.1^29-2*K.1^30+2*K.1^33-2*K.1^34+2*K.1^37-2*K.1^38+2*K.1^41-K.1^42-2*K.1^43+2*K.1^45-2*K.1^47+2*K.1^49+2*K.1^50-2*K.1^51+2*K.1^54-2*K.1^55+2*K.1^58-2*K.1^59+2*K.1^62-2*K.1^63+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^70-2*K.1^72+2*K.1^74+K.1^75-2*K.1^76+2*K.1^79-2*K.1^80+2*K.1^83-2*K.1^84-2*K.1^86+2*K.1^87-2*K.1^88+2*K.1^91+2*K.1^95-K.1^97-2*K.1^101-2*K.1^105+K.1^108-2*K.1^109+2*K.1^112+2*K.1^-115-K.1^-112,-2*K.1^4+K.1^15-2*K.1^37-K.1^70-K.1^81+2*K.1^92-K.1^114,K.1+K.1^4-K.1^7-K.1^8-K.1^12+K.1^14-K.1^15+K.1^18+K.1^19+K.1^22-K.1^25+K.1^26-K.1^28-K.1^29-K.1^33+K.1^34+K.1^35+K.1^37+K.1^39-K.1^41+K.1^43-K.1^45-K.1^46+K.1^47-K.1^49-K.1^50+K.1^51+K.1^52-K.1^54+K.1^55+K.1^56-K.1^58+K.1^59+K.1^60-K.1^62+K.1^64-K.1^66+K.1^68-K.1^70-K.1^71+K.1^72-K.1^74-K.1^75+K.1^76+K.1^77-K.1^79+K.1^80+K.1^81-K.1^83+K.1^85-K.1^87-K.1^91-2*K.1^92+K.1^93+K.1^97+K.1^98+K.1^101-K.1^104-K.1^107-K.1^108-K.1^112+K.1^114+K.1^-113+K.1^-112,-1-K.1-K.1^5+K.1^7+K.1^11+K.1^12+K.1^15-K.1^18-K.1^21-K.1^22-K.1^26-K.1^27+K.1^28+K.1^32-K.1^34+K.1^36-K.1^38-K.1^39+K.1^40-K.1^42-K.1^43+K.1^44+K.1^45-K.1^47+K.1^48+2*K.1^49-K.1^51+K.1^53-K.1^55+K.1^57-K.1^59-K.1^60+K.1^61-K.1^63-K.1^64+K.1^65-K.1^67-K.1^68+K.1^69+K.1^70-K.1^72+K.1^73+K.1^74-K.1^76+K.1^78-K.1^80+2*K.1^82-K.1^84-K.1^85+K.1^86+K.1^90+K.1^91-K.1^93+K.1^94-K.1^97-K.1^100-K.1^101-2*K.1^104-K.1^105+K.1^107+K.1^111+K.1^112+2*K.1^115-K.1^-113,-2*K.1+2*K.1^4+2*K.1^8-2*K.1^11+K.1^12-2*K.1^15-2*K.1^19+2*K.1^25+2*K.1^29-2*K.1^32+2*K.1^33-2*K.1^36+2*K.1^37-2*K.1^40+2*K.1^41-2*K.1^44+K.1^45+2*K.1^46-2*K.1^48+2*K.1^50-2*K.1^52-2*K.1^53+2*K.1^54-K.1^56-2*K.1^57+2*K.1^58-2*K.1^61+2*K.1^62-2*K.1^65+2*K.1^66-2*K.1^69+2*K.1^70+2*K.1^71-2*K.1^73+2*K.1^75-2*K.1^77-2*K.1^78+2*K.1^79-2*K.1^82+2*K.1^83-2*K.1^86+2*K.1^87-2*K.1^90+2*K.1^91-2*K.1^94-2*K.1^98+2*K.1^104+2*K.1^108-K.1^111+2*K.1^112-2*K.1^115-2*K.1^-112,1-K.1^3-K.1^6-K.1^7-K.1^11+K.1^13+K.1^17+K.1^18+K.1^21-K.1^24+2*K.1^25-K.1^27-K.1^28-K.1^32+K.1^33+K.1^34-2*K.1^36+K.1^38-K.1^40+K.1^42-K.1^44-K.1^45+K.1^46+K.1^47-K.1^48-K.1^49+K.1^50+K.1^51-K.1^53+K.1^54+K.1^55-K.1^57+2*K.1^58+K.1^59-K.1^61+K.1^63-K.1^65+K.1^67-2*K.1^69-K.1^70+K.1^71-K.1^73-K.1^74+K.1^75+K.1^76-K.1^78+K.1^79+K.1^80-K.1^82+K.1^84-K.1^86-K.1^90+K.1^92+K.1^96+K.1^97+K.1^100-K.1^103-K.1^106-K.1^107-K.1^111-K.1^113+K.1^-114+K.1^-113,-1*K.1^8-K.1^19-K.1^52+K.1^63-K.1^74-K.1^107-K.1^-113,-1*K.1-K.1^2-2*K.1^6+K.1^8+K.1^12+K.1^13+K.1^16-K.1^19-K.1^22-K.1^23-K.1^27+K.1^28+K.1^29+K.1^33-K.1^35+K.1^37-K.1^39-K.1^40+K.1^41-K.1^43-K.1^44+K.1^45+K.1^46-K.1^48+K.1^49+2*K.1^50-K.1^52+K.1^54-K.1^56+K.1^58-K.1^60+K.1^61+K.1^62-K.1^64-K.1^65+K.1^66-K.1^68-K.1^69+K.1^70+K.1^71-K.1^72-K.1^73+K.1^74+K.1^75-K.1^77+K.1^79-K.1^81-K.1^83-K.1^85-K.1^86+K.1^87+K.1^91+K.1^92+K.1^94+K.1^95-K.1^98-K.1^101-K.1^102-K.1^106+K.1^108+K.1^112+K.1^113+K.1^-115-K.1^-112,-1+K.1^3+K.1^6+K.1^7+K.1^11-K.1^13-K.1^14-K.1^17-K.1^18-K.1^21+K.1^24-2*K.1^25+K.1^27+K.1^28+K.1^32-K.1^33-K.1^34+2*K.1^36-K.1^38+K.1^40-K.1^42+K.1^44+K.1^45-K.1^46-K.1^47+K.1^48+K.1^49-K.1^50-K.1^51+K.1^53-K.1^54-K.1^55+K.1^57-2*K.1^58-K.1^59+K.1^61-K.1^63+K.1^65-K.1^67+2*K.1^69+K.1^70-K.1^71+K.1^73+K.1^74-K.1^75-K.1^76+K.1^78-K.1^79-K.1^80+K.1^82-K.1^84+K.1^86+K.1^90-K.1^91-K.1^92-K.1^96-K.1^97-K.1^100+K.1^103+K.1^106+K.1^107+K.1^111+K.1^113-K.1^-114-K.1^-113,2*K.1+2*K.1^5-2*K.1^8+2*K.1^9-2*K.1^12-2*K.1^16-K.1^20+2*K.1^22+2*K.1^26-2*K.1^29+2*K.1^30-2*K.1^33+2*K.1^34-2*K.1^37+2*K.1^38-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^45+2*K.1^47-2*K.1^49-2*K.1^50+2*K.1^51-2*K.1^54+2*K.1^55-2*K.1^58+2*K.1^59-2*K.1^62+2*K.1^63-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^70+2*K.1^72-2*K.1^74-K.1^75+2*K.1^76-2*K.1^79+2*K.1^80-2*K.1^83+2*K.1^84+2*K.1^86-2*K.1^87+2*K.1^88-2*K.1^91-2*K.1^95+K.1^97+2*K.1^101+2*K.1^105-K.1^108+2*K.1^109-2*K.1^112-2*K.1^-115+K.1^-112,2+2*K.1-2*K.1^3-3*K.1^7-2*K.1^8-2*K.1^11-2*K.1^12+2*K.1^14+2*K.1^17+3*K.1^18+2*K.1^19+2*K.1^21+2*K.1^22-2*K.1^24-4*K.1^28-K.1^29-2*K.1^32+2*K.1^34+2*K.1^35-2*K.1^36+2*K.1^38+2*K.1^39-2*K.1^41+2*K.1^42+2*K.1^43-2*K.1^44-4*K.1^45+2*K.1^47-4*K.1^49+3*K.1^51+2*K.1^52-2*K.1^53+2*K.1^55+2*K.1^56-2*K.1^57+2*K.1^59+2*K.1^60-2*K.1^61-2*K.1^62+2*K.1^63+2*K.1^64-2*K.1^65-2*K.1^66+2*K.1^67+2*K.1^68-2*K.1^69-4*K.1^70+2*K.1^72-4*K.1^74+2*K.1^76+2*K.1^77-2*K.1^78+2*K.1^80+2*K.1^81-2*K.1^82+2*K.1^84+2*K.1^85-2*K.1^86-2*K.1^87-2*K.1^90-2*K.1^91+2*K.1^93+2*K.1^96+2*K.1^97+2*K.1^98+2*K.1^100+2*K.1^101-2*K.1^103-K.1^106-4*K.1^107-2*K.1^108-2*K.1^111-2*K.1^112+2*K.1^114+2*K.1^-114+2*K.1^-113+2*K.1^-112,-1-K.1-K.1^2-K.1^5+K.1^7+K.1^8+K.1^11+2*K.1^12+2*K.1^13+K.1^16-K.1^18-K.1^19-K.1^21-K.1^22-K.1^23-K.1^26+K.1^28+K.1^29+K.1^32+K.1^33-K.1^34-2*K.1^35+K.1^37-K.1^38-K.1^39+K.1^41-K.1^42-K.1^43+2*K.1^45-K.1^47+2*K.1^49+K.1^50-K.1^51-K.1^52+K.1^53+K.1^54-K.1^55-K.1^56+K.1^57+K.1^58-K.1^59-K.1^60+K.1^62-K.1^63-K.1^64+K.1^66-K.1^67-3*K.1^68+2*K.1^70-K.1^72+2*K.1^74+K.1^75-K.1^76-K.1^77+K.1^78-K.1^80-K.1^81+K.1^83-K.1^84-K.1^85+K.1^87+2*K.1^90+2*K.1^91+K.1^95-K.1^97-K.1^98-K.1^100-3*K.1^101-K.1^102-K.1^105+K.1^107+K.1^108+K.1^111+K.1^112+K.1^-115-K.1^-113-K.1^-112,1+K.1+K.1^2+K.1^5-K.1^7-K.1^8-K.1^11-2*K.1^12-2*K.1^13-K.1^16+K.1^18+K.1^19+K.1^21+K.1^22+K.1^23+K.1^26-K.1^28-K.1^29-K.1^32-K.1^33+K.1^34+K.1^35-K.1^37+K.1^38+K.1^39-K.1^41+K.1^42+K.1^43-2*K.1^45+K.1^47-2*K.1^49-K.1^50+K.1^51+K.1^52-K.1^53-K.1^54+K.1^55+K.1^56-K.1^57-K.1^58+K.1^59+K.1^60-K.1^62+K.1^63+K.1^64-K.1^66+K.1^67+3*K.1^68-2*K.1^70+K.1^72-2*K.1^74-K.1^75+K.1^76+K.1^77-K.1^78+K.1^80+K.1^81-K.1^83+K.1^84+K.1^85-K.1^87-2*K.1^90-2*K.1^91-K.1^95+K.1^97+K.1^98+K.1^100+3*K.1^101+K.1^102+K.1^105-K.1^107-K.1^108-K.1^111-2*K.1^112-K.1^-115+K.1^-113+K.1^-112,K.1+K.1^2+2*K.1^6-K.1^8-K.1^12-K.1^13-K.1^16+K.1^19+K.1^22+K.1^23+K.1^27-K.1^28-K.1^29-K.1^33+K.1^35-K.1^37+K.1^39+K.1^40-K.1^41+K.1^43+K.1^44-K.1^45-K.1^46+K.1^48-K.1^49-2*K.1^50+K.1^52-K.1^54+K.1^56-K.1^58+K.1^60-K.1^61-K.1^62+K.1^64+K.1^65-K.1^66+K.1^68+K.1^69-K.1^70-K.1^71+K.1^72+K.1^73-K.1^74-K.1^75+K.1^77-K.1^79+K.1^81+K.1^83+K.1^85+K.1^86-K.1^87-K.1^91-K.1^92-K.1^94-K.1^95+K.1^98+K.1^101+K.1^102+K.1^105+K.1^106-K.1^108-K.1^112-K.1^113-K.1^-115+K.1^-112,-1-K.1-2*K.1^2-K.1^6+K.1^7+K.1^8+2*K.1^9-K.1^10+K.1^11+K.1^12+2*K.1^13+K.1^17-K.1^18-K.1^19-K.1^20-K.1^22-2*K.1^23-K.1^27+K.1^28+K.1^29+2*K.1^30-K.1^31+K.1^34-2*K.1^35+K.1^38-2*K.1^39+K.1^42-K.1^44+K.1^45+2*K.1^46-K.1^48+K.1^49+2*K.1^50+K.1^51-2*K.1^52+K.1^54+K.1^55-2*K.1^56+K.1^59-2*K.1^60+K.1^63-2*K.1^64-2*K.1^65+K.1^67-2*K.1^68-K.1^69+K.1^70+2*K.1^71-K.1^73+K.1^74+2*K.1^75-2*K.1^77+K.1^80-2*K.1^81+K.1^84-2*K.1^85+2*K.1^88-K.1^89+K.1^90+K.1^91+2*K.1^92+K.1^96-K.1^97-2*K.1^98-K.1^99-K.1^100-K.1^101-2*K.1^102-K.1^106+K.1^107+K.1^108+2*K.1^109-K.1^110+K.1^111+K.1^112+2*K.1^113+K.1^-114-K.1^-113-K.1^-112,1+K.1+2*K.1^2+K.1^6-K.1^7-K.1^8-2*K.1^9+K.1^10-K.1^11-K.1^12-2*K.1^13-K.1^17+K.1^18+K.1^19+K.1^20+K.1^21+K.1^22+2*K.1^23+K.1^27-K.1^28-K.1^29-2*K.1^30+K.1^31-K.1^34+2*K.1^35-K.1^38+2*K.1^39-K.1^42+K.1^44-K.1^45-2*K.1^46+K.1^48-K.1^49-2*K.1^50-K.1^51+2*K.1^52-K.1^54-K.1^55+2*K.1^56-K.1^59+2*K.1^60-K.1^63+2*K.1^64+2*K.1^65-K.1^67+2*K.1^68+K.1^69-K.1^70-2*K.1^71+K.1^73-K.1^74-2*K.1^75+2*K.1^77-K.1^80+2*K.1^81-K.1^84+2*K.1^85-2*K.1^88+K.1^89-K.1^90-K.1^91-2*K.1^92-K.1^96+K.1^97+2*K.1^98+K.1^99+K.1^100+K.1^101+2*K.1^102+K.1^106-K.1^107-K.1^108-2*K.1^109+K.1^110-K.1^111-K.1^112-2*K.1^113-K.1^-114+K.1^-113+K.1^-112,K.1^5+K.1^27+K.1^38-K.1^49-K.1^82+2*K.1^104-K.1^115,2*K.1-K.1^4-K.1^8+K.1^11-K.1^12+K.1^15+K.1^19-K.1^25-K.1^29+K.1^32-K.1^33+K.1^36-K.1^37+K.1^40-K.1^41+K.1^44-K.1^45-K.1^46+K.1^48-K.1^50+K.1^52+K.1^53-K.1^54+K.1^57-K.1^58+K.1^61-K.1^62+K.1^65-K.1^66+K.1^67+K.1^69-K.1^70-K.1^71+K.1^73-K.1^75+K.1^77+K.1^78-K.1^79+K.1^82-K.1^83+K.1^86-K.1^87+K.1^90-K.1^91+K.1^94+K.1^98+K.1^100-K.1^104-K.1^108-K.1^112+K.1^115+K.1^-112,-2-2*K.1+2*K.1^3+3*K.1^7+2*K.1^8+2*K.1^11+2*K.1^12-2*K.1^14-2*K.1^17-3*K.1^18-2*K.1^19-2*K.1^21-2*K.1^22+2*K.1^24+4*K.1^28+K.1^29+2*K.1^32-2*K.1^34-2*K.1^35+2*K.1^36-2*K.1^38-2*K.1^39+2*K.1^41-2*K.1^42-2*K.1^43+2*K.1^44+4*K.1^45-2*K.1^47+4*K.1^49-3*K.1^51-2*K.1^52+2*K.1^53-2*K.1^55-2*K.1^56+2*K.1^57-2*K.1^59-2*K.1^60+2*K.1^61+2*K.1^62-2*K.1^63-2*K.1^64+2*K.1^65+2*K.1^66-2*K.1^67-2*K.1^68+2*K.1^69+4*K.1^70-2*K.1^72+4*K.1^74-2*K.1^76-2*K.1^77+2*K.1^78-2*K.1^80-2*K.1^81+2*K.1^82-K.1^84-2*K.1^85+2*K.1^86+2*K.1^87+2*K.1^90+2*K.1^91-2*K.1^93-2*K.1^96-2*K.1^97-2*K.1^98-2*K.1^100-2*K.1^101+2*K.1^103+K.1^106+4*K.1^107+2*K.1^108+2*K.1^111+2*K.1^112-2*K.1^114-2*K.1^-114-2*K.1^-113-2*K.1^-112,K.1^8+K.1^19+K.1^52+K.1^74+K.1^107+K.1^-113]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1386_18:= KnownIrreducibles(CR);