/* Group 1344.9877 downloaded from the LMFDB on 27 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -3, -2, -7, 66, 7540, 116, 789, 4406, 166, 4647]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.5, GPC.7]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "e", "e2"]); GPerm := PermutationGroup< 22 | (2,3)(4,5)(6,7)(20,22), (8,9)(10,11)(13,14)(15,16,17,18)(19,20,21,22), (8,10)(9,11)(15,17)(16,18), (8,11)(9,10)(19,21)(20,22), (15,17)(16,18)(19,21)(20,22), (19,21)(20,22), (12,13,14), (1,2,4,6,7,5,3) >; GLZN := MatrixGroup< 2, Integers(84) | [[1, 12, 0, 1], [13, 0, 0, 13], [71, 0, 0, 71], [1, 28, 0, 1], [41, 31, 0, 1], [1, 42, 0, 1], [41, 0, 0, 41], [43, 49, 42, 29]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_9877 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GLZN; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(2, [1, 0, 0, 1])>,< 2, 1, Matrix(2, [43, 0, 0, 43])>,< 2, 1, Matrix(2, [43, 42, 0, 43])>,< 2, 1, Matrix(2, [1, 42, 0, 1])>,< 2, 1, Matrix(2, [71, 0, 0, 71])>,< 2, 1, Matrix(2, [29, 42, 0, 29])>,< 2, 1, Matrix(2, [13, 0, 0, 13])>,< 2, 1, Matrix(2, [55, 42, 0, 55])>,< 2, 1, Matrix(2, [29, 0, 0, 29])>,< 2, 1, Matrix(2, [71, 42, 0, 71])>,< 2, 1, Matrix(2, [55, 0, 0, 55])>,< 2, 1, Matrix(2, [13, 42, 0, 13])>,< 2, 1, Matrix(2, [83, 0, 0, 83])>,< 2, 1, Matrix(2, [41, 42, 0, 41])>,< 2, 1, Matrix(2, [41, 0, 0, 41])>,< 2, 1, Matrix(2, [83, 42, 0, 83])>,< 2, 14, Matrix(2, [41, 24, 42, 29])>,< 2, 14, Matrix(2, [83, 24, 42, 71])>,< 2, 14, Matrix(2, [55, 24, 42, 43])>,< 2, 14, Matrix(2, [29, 60, 42, 41])>,< 2, 14, Matrix(2, [13, 24, 42, 1])>,< 2, 14, Matrix(2, [71, 60, 42, 83])>,< 2, 14, Matrix(2, [43, 60, 42, 55])>,< 2, 14, Matrix(2, [1, 60, 42, 13])>,< 3, 2, Matrix(2, [1, 28, 0, 1])>,< 4, 6, Matrix(2, [1, 35, 42, 71])>,< 4, 6, Matrix(2, [43, 77, 42, 29])>,< 4, 6, Matrix(2, [71, 49, 42, 1])>,< 4, 6, Matrix(2, [29, 7, 42, 43])>,< 4, 6, Matrix(2, [13, 35, 42, 83])>,< 4, 6, Matrix(2, [55, 77, 42, 41])>,< 4, 6, Matrix(2, [83, 49, 42, 13])>,< 4, 6, Matrix(2, [41, 7, 42, 55])>,< 4, 42, Matrix(2, [13, 77, 0, 29])>,< 4, 42, Matrix(2, [13, 35, 0, 29])>,< 4, 42, Matrix(2, [1, 17, 0, 41])>,< 4, 42, Matrix(2, [1, 59, 0, 41])>,< 4, 42, Matrix(2, [41, 45, 0, 1])>,< 4, 42, Matrix(2, [41, 3, 0, 1])>,< 4, 42, Matrix(2, [29, 35, 0, 13])>,< 4, 42, Matrix(2, [29, 77, 0, 13])>,< 6, 2, Matrix(2, [43, 70, 0, 43])>,< 6, 2, Matrix(2, [43, 28, 0, 43])>,< 6, 2, Matrix(2, [1, 70, 0, 1])>,< 6, 2, Matrix(2, [71, 56, 0, 71])>,< 6, 2, Matrix(2, [29, 14, 0, 29])>,< 6, 2, Matrix(2, [13, 28, 0, 13])>,< 6, 2, Matrix(2, [55, 70, 0, 55])>,< 6, 2, Matrix(2, [29, 56, 0, 29])>,< 6, 2, Matrix(2, [71, 14, 0, 71])>,< 6, 2, Matrix(2, [55, 28, 0, 55])>,< 6, 2, Matrix(2, [13, 70, 0, 13])>,< 6, 2, Matrix(2, [83, 56, 0, 83])>,< 6, 2, Matrix(2, [41, 14, 0, 41])>,< 6, 2, Matrix(2, [41, 56, 0, 41])>,< 6, 2, Matrix(2, [83, 14, 0, 83])>,< 6, 14, Matrix(2, [41, 52, 42, 29])>,< 6, 14, Matrix(2, [83, 22, 42, 71])>,< 6, 14, Matrix(2, [83, 52, 42, 71])>,< 6, 14, Matrix(2, [41, 22, 42, 29])>,< 6, 14, Matrix(2, [55, 80, 42, 43])>,< 6, 14, Matrix(2, [13, 50, 42, 1])>,< 6, 14, Matrix(2, [29, 4, 42, 41])>,< 6, 14, Matrix(2, [71, 34, 42, 83])>,< 6, 14, Matrix(2, [13, 80, 42, 1])>,< 6, 14, Matrix(2, [55, 50, 42, 43])>,< 6, 14, Matrix(2, [71, 4, 42, 83])>,< 6, 14, Matrix(2, [29, 34, 42, 41])>,< 6, 14, Matrix(2, [43, 32, 42, 55])>,< 6, 14, Matrix(2, [1, 62, 42, 13])>,< 6, 14, Matrix(2, [1, 32, 42, 13])>,< 6, 14, Matrix(2, [43, 62, 42, 55])>,< 7, 2, Matrix(2, [1, 72, 0, 1])>,< 7, 2, Matrix(2, [1, 60, 0, 1])>,< 7, 2, Matrix(2, [1, 48, 0, 1])>,< 14, 2, Matrix(2, [43, 36, 0, 43])>,< 14, 2, Matrix(2, [43, 24, 0, 43])>,< 14, 2, Matrix(2, [43, 12, 0, 43])>,< 14, 2, Matrix(2, [43, 6, 0, 43])>,< 14, 2, Matrix(2, [43, 18, 0, 43])>,< 14, 2, Matrix(2, [43, 30, 0, 43])>,< 14, 2, Matrix(2, [1, 6, 0, 1])>,< 14, 2, Matrix(2, [1, 18, 0, 1])>,< 14, 2, Matrix(2, [1, 30, 0, 1])>,< 14, 2, Matrix(2, [71, 12, 0, 71])>,< 14, 2, Matrix(2, [71, 36, 0, 71])>,< 14, 2, Matrix(2, [71, 60, 0, 71])>,< 14, 2, Matrix(2, [29, 6, 0, 29])>,< 14, 2, Matrix(2, [29, 18, 0, 29])>,< 14, 2, Matrix(2, [29, 30, 0, 29])>,< 14, 2, Matrix(2, [13, 72, 0, 13])>,< 14, 2, Matrix(2, [13, 48, 0, 13])>,< 14, 2, Matrix(2, [13, 24, 0, 13])>,< 14, 2, Matrix(2, [55, 78, 0, 55])>,< 14, 2, Matrix(2, [55, 66, 0, 55])>,< 14, 2, Matrix(2, [55, 54, 0, 55])>,< 14, 2, Matrix(2, [29, 12, 0, 29])>,< 14, 2, Matrix(2, [29, 36, 0, 29])>,< 14, 2, Matrix(2, [29, 60, 0, 29])>,< 14, 2, Matrix(2, [71, 6, 0, 71])>,< 14, 2, Matrix(2, [71, 18, 0, 71])>,< 14, 2, Matrix(2, [71, 30, 0, 71])>,< 14, 2, Matrix(2, [55, 72, 0, 55])>,< 14, 2, Matrix(2, [55, 48, 0, 55])>,< 14, 2, Matrix(2, [55, 24, 0, 55])>,< 14, 2, Matrix(2, [13, 78, 0, 13])>,< 14, 2, Matrix(2, [13, 66, 0, 13])>,< 14, 2, Matrix(2, [13, 54, 0, 13])>,< 14, 2, Matrix(2, [83, 72, 0, 83])>,< 14, 2, Matrix(2, [83, 48, 0, 83])>,< 14, 2, Matrix(2, [83, 24, 0, 83])>,< 14, 2, Matrix(2, [41, 78, 0, 41])>,< 14, 2, Matrix(2, [41, 66, 0, 41])>,< 14, 2, Matrix(2, [41, 54, 0, 41])>,< 14, 2, Matrix(2, [41, 72, 0, 41])>,< 14, 2, Matrix(2, [41, 48, 0, 41])>,< 14, 2, Matrix(2, [41, 24, 0, 41])>,< 14, 2, Matrix(2, [83, 78, 0, 83])>,< 14, 2, Matrix(2, [83, 66, 0, 83])>,< 14, 2, Matrix(2, [83, 54, 0, 83])>,< 21, 4, Matrix(2, [1, 32, 0, 1])>,< 21, 4, Matrix(2, [1, 64, 0, 1])>,< 21, 4, Matrix(2, [1, 44, 0, 1])>,< 28, 6, Matrix(2, [43, 53, 42, 29])>,< 28, 6, Matrix(2, [1, 59, 42, 71])>,< 28, 6, Matrix(2, [43, 23, 42, 29])>,< 28, 6, Matrix(2, [43, 65, 42, 29])>,< 28, 6, Matrix(2, [43, 41, 42, 29])>,< 28, 6, Matrix(2, [1, 71, 42, 71])>,< 28, 6, Matrix(2, [43, 29, 42, 29])>,< 28, 6, Matrix(2, [1, 83, 42, 71])>,< 28, 6, Matrix(2, [1, 23, 42, 71])>,< 28, 6, Matrix(2, [1, 65, 42, 71])>,< 28, 6, Matrix(2, [43, 17, 42, 29])>,< 28, 6, Matrix(2, [1, 11, 42, 71])>,< 28, 6, Matrix(2, [29, 67, 42, 43])>,< 28, 6, Matrix(2, [71, 73, 42, 1])>,< 28, 6, Matrix(2, [29, 37, 42, 43])>,< 28, 6, Matrix(2, [29, 79, 42, 43])>,< 28, 6, Matrix(2, [29, 55, 42, 43])>,< 28, 6, Matrix(2, [71, 1, 42, 1])>,< 28, 6, Matrix(2, [29, 43, 42, 43])>,< 28, 6, Matrix(2, [71, 13, 42, 1])>,< 28, 6, Matrix(2, [71, 37, 42, 1])>,< 28, 6, Matrix(2, [71, 79, 42, 1])>,< 28, 6, Matrix(2, [29, 31, 42, 43])>,< 28, 6, Matrix(2, [71, 25, 42, 1])>,< 28, 6, Matrix(2, [55, 17, 42, 41])>,< 28, 6, Matrix(2, [13, 11, 42, 83])>,< 28, 6, Matrix(2, [55, 47, 42, 41])>,< 28, 6, Matrix(2, [55, 5, 42, 41])>,< 28, 6, Matrix(2, [55, 29, 42, 41])>,< 28, 6, Matrix(2, [13, 83, 42, 83])>,< 28, 6, Matrix(2, [55, 41, 42, 41])>,< 28, 6, Matrix(2, [13, 71, 42, 83])>,< 28, 6, Matrix(2, [13, 47, 42, 83])>,< 28, 6, Matrix(2, [13, 5, 42, 83])>,< 28, 6, Matrix(2, [55, 53, 42, 41])>,< 28, 6, Matrix(2, [13, 59, 42, 83])>,< 28, 6, Matrix(2, [41, 31, 42, 55])>,< 28, 6, Matrix(2, [83, 25, 42, 13])>,< 28, 6, Matrix(2, [41, 61, 42, 55])>,< 28, 6, Matrix(2, [41, 19, 42, 55])>,< 28, 6, Matrix(2, [41, 43, 42, 55])>,< 28, 6, Matrix(2, [83, 13, 42, 13])>,< 28, 6, Matrix(2, [41, 55, 42, 55])>,< 28, 6, Matrix(2, [83, 1, 42, 13])>,< 28, 6, Matrix(2, [83, 61, 42, 13])>,< 28, 6, Matrix(2, [83, 19, 42, 13])>,< 28, 6, Matrix(2, [41, 67, 42, 55])>,< 28, 6, Matrix(2, [83, 73, 42, 13])>,< 42, 4, Matrix(2, [43, 58, 0, 43])>,< 42, 4, Matrix(2, [43, 10, 0, 43])>,< 42, 4, Matrix(2, [43, 34, 0, 43])>,< 42, 4, Matrix(2, [43, 4, 0, 43])>,< 42, 4, Matrix(2, [43, 64, 0, 43])>,< 42, 4, Matrix(2, [43, 40, 0, 43])>,< 42, 4, Matrix(2, [1, 58, 0, 1])>,< 42, 4, Matrix(2, [1, 10, 0, 1])>,< 42, 4, Matrix(2, [1, 34, 0, 1])>,< 42, 4, Matrix(2, [71, 32, 0, 71])>,< 42, 4, Matrix(2, [71, 8, 0, 71])>,< 42, 4, Matrix(2, [71, 68, 0, 71])>,< 42, 4, Matrix(2, [29, 2, 0, 29])>,< 42, 4, Matrix(2, [29, 38, 0, 29])>,< 42, 4, Matrix(2, [29, 62, 0, 29])>,< 42, 4, Matrix(2, [13, 52, 0, 13])>,< 42, 4, Matrix(2, [13, 76, 0, 13])>,< 42, 4, Matrix(2, [13, 16, 0, 13])>,< 42, 4, Matrix(2, [55, 82, 0, 55])>,< 42, 4, Matrix(2, [55, 46, 0, 55])>,< 42, 4, Matrix(2, [55, 22, 0, 55])>,< 42, 4, Matrix(2, [29, 32, 0, 29])>,< 42, 4, Matrix(2, [29, 8, 0, 29])>,< 42, 4, Matrix(2, [29, 68, 0, 29])>,< 42, 4, Matrix(2, [71, 2, 0, 71])>,< 42, 4, Matrix(2, [71, 38, 0, 71])>,< 42, 4, Matrix(2, [71, 62, 0, 71])>,< 42, 4, Matrix(2, [55, 52, 0, 55])>,< 42, 4, Matrix(2, [55, 76, 0, 55])>,< 42, 4, Matrix(2, [55, 16, 0, 55])>,< 42, 4, Matrix(2, [13, 82, 0, 13])>,< 42, 4, Matrix(2, [13, 46, 0, 13])>,< 42, 4, Matrix(2, [13, 22, 0, 13])>,< 42, 4, Matrix(2, [83, 80, 0, 83])>,< 42, 4, Matrix(2, [83, 20, 0, 83])>,< 42, 4, Matrix(2, [83, 44, 0, 83])>,< 42, 4, Matrix(2, [41, 26, 0, 41])>,< 42, 4, Matrix(2, [41, 74, 0, 41])>,< 42, 4, Matrix(2, [41, 50, 0, 41])>,< 42, 4, Matrix(2, [41, 80, 0, 41])>,< 42, 4, Matrix(2, [41, 20, 0, 41])>,< 42, 4, Matrix(2, [41, 44, 0, 41])>,< 42, 4, Matrix(2, [83, 26, 0, 83])>,< 42, 4, Matrix(2, [83, 74, 0, 83])>,< 42, 4, Matrix(2, [83, 50, 0, 83])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 2, -2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 2, 2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, 2, -2, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,2,2,-2,-2,-2,-2,2,2,2,-2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,2,2,-2,-2,-2,-2,2,2,2,-2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,-2,2,-2,-2,2,2,2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,2,2,-2,-2,2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,-2,2,-2,-2,2,2,2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,2,2,-2,-2,2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,-2,2,-2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,-2,2,-2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,-2,2,-2,2,2,-2,2,-2,-2,2,2,-2,2,-2,-2,2,2,2,-2,2,2,2,-2,-2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,-2,-2,2,-2,2,2,-2,2,-2,-2,2,2,-2,2,-2,-2,2,2,2,-2,2,2,2,-2,-2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,2,2,2,-2,2,2,2,-2,-2,-2,2,2,2,2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,-2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,2,2,2,-2,2,2,2,-2,-2,-2,2,2,2,2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,-2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,2,-2,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2,-2,2,2,2,2,2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,2,-2,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2,-2,2,2,2,2,2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,2,2,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,2,2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,-1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,2,2,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,2,2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,-2,2,-2,-2,-2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,2,-2,-2,-2,2,-2,-2,-2,2,-2,2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,2,-2,2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,2,-2,-2,-2,2,-2,-2,-2,2,-2,2,-2,2,2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,-2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,2,-2,-2,2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,-2,-2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,2,2,2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2,2,2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,-4,4,-4,4,-4,-4,-4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,-4,4,-4,4,-4,-4,-4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,-4,4,-4,4,-4,-4,-4,4,4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,4,4,-4,4,4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2,2,2,-2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,4,4,-4,4,4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2,2,2,-2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,4,4,-4,4,4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2,2,2,-2,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,4,-4,4,4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,4,-4,4,4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,4,-4,4,4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,-4,4,-4,4,4,4,-4,4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,2,-2,-2,2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,-4,4,-4,4,4,4,-4,4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,2,-2,-2,2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,-4,4,-4,4,4,4,-4,4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,2,-2,-2,2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-4,-4,4,4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,-2,-2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-4,-4,4,4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,-2,-2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-4,-4,4,4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,-2,-2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,-4,-4,4,4,4,-4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,-2,2,2,-2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,-4,-4,4,4,4,-4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,-2,2,2,-2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,-4,4,-4,-4,4,4,4,-4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,-2,2,2,-2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,4,4,4,4,-4,-4,-4,-4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,-2,-2,-2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,4,4,4,4,-4,-4,-4,-4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,-2,-2,-2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,4,4,4,4,-4,-4,-4,-4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,-2,-2,-2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,4,-4,-4,-4,-4,4,-4,4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,4,-4,-4,-4,-4,4,-4,4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,4,-4,-4,-4,-4,4,-4,4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,-4,-4,4,-4,-4,4,4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,-4,-4,4,-4,-4,4,4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,-4,-4,4,-4,-4,4,4,4,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,2,2,2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,4,-4,-4,4,4,-4,-4,4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,4,-4,-4,4,4,-4,-4,4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,4,-4,-4,4,4,-4,-4,4,-4,4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,4,-4,-4,4,-4,4,-4,-4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,-4,-4,4,4,-4,4,-4,-4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,-4,-4,4,4,-4,4,-4,-4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,-4,-4,4,4,-4,4,-4,-4,-4,-4,4,4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,4,-4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,4,-4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,4,-4,4,-4,4,-4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,4,-4,-4,-4,-4,-4,4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,4,-4,-4,-4,-4,-4,4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,4,-4,-4,-4,-4,-4,4,-4,4,4,-4,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_9877:= KnownIrreducibles(CR);