/* Group 1344.8572 downloaded from the LMFDB on 03 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -7, -2, -2, -2, -3, 24290, 8698, 66, 779, 15684, 6180, 116, 37637, 14805, 141, 15702, 166, 14359]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "d4", "d8"]); GPerm := PermutationGroup< 26 | (2,3)(4,5)(6,7)(12,16)(17,19)(18,24)(25,26), (9,10)(11,12)(13,19)(14,18)(15,16)(17,21)(20,26)(22,24)(23,25), (13,20)(14,22)(17,25)(18,24)(19,26)(21,23), (11,13)(12,17)(14,23)(15,21)(16,19)(18,26)(20,22)(24,25), (11,14,15,22)(12,18,16,24)(13,20,21,23)(17,25,19,26), (11,15)(12,16)(13,21)(14,22)(17,19)(18,24)(20,23)(25,26), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_8572 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^12>,< 2, 4, a>,< 2, 4, a*d^9>,< 2, 6, a*c^7*d^3>,< 2, 12, c^7>,< 2, 14, b>,< 2, 28, a*b*c^10*d^18>,< 2, 28, a*b*c^6*d^3>,< 2, 42, a*b*c^13*d^5>,< 2, 84, b*c^13*d^3>,< 3, 2, d^16>,< 4, 2, d^6>,< 4, 6, a*c^7*d^13>,< 4, 12, c^7*d^13>,< 4, 14, b*d^6>,< 4, 42, a*b*c^13*d^19>,< 4, 84, b*c^5*d^4>,< 6, 2, d^4>,< 6, 8, a*d^8>,< 6, 8, a*d>,< 6, 14, b*d^8>,< 6, 14, b*d^16>,< 6, 56, a*b*c^10*d^2>,< 6, 56, a*b*c^6*d^19>,< 7, 2, c^2>,< 7, 2, c^4>,< 7, 2, c^6>,< 8, 4, d^21>,< 8, 12, a*c^7*d^18>,< 8, 14, b*d^3>,< 8, 14, b*d^9>,< 8, 84, a*b*c^5*d^22>,< 12, 4, d^2>,< 12, 28, b*d^2>,< 14, 2, c^2*d^12>,< 14, 2, c^6*d^12>,< 14, 2, c^10*d^12>,< 14, 8, a*c^6>,< 14, 8, a*c^4>,< 14, 8, a*c^2>,< 14, 8, a*c^6*d^9>,< 14, 8, a*c^4*d^9>,< 14, 8, a*c^2*d^9>,< 14, 12, a*c*d^3>,< 14, 12, a*c^3*d^3>,< 14, 12, a*c^5*d^3>,< 14, 24, c>,< 14, 24, c^3>,< 14, 24, c^5>,< 21, 4, c^4*d^16>,< 21, 4, c^8*d^8>,< 21, 4, c^2*d^16>,< 24, 4, d^7>,< 24, 4, d^17>,< 24, 28, b*d>,< 24, 28, b*d^5>,< 28, 4, c^2*d^6>,< 28, 4, c^6*d^18>,< 28, 4, c^10*d^6>,< 28, 12, a*c*d>,< 28, 12, a*c^3*d>,< 28, 12, a*c^5*d>,< 28, 24, c*d>,< 28, 24, c^3*d>,< 28, 24, c^5*d>,< 42, 4, c^8*d^4>,< 42, 4, c^12*d^20>,< 42, 4, c^4*d^20>,< 42, 16, a*c^2*d^8>,< 42, 16, a*c^4*d^8>,< 42, 16, a*c^6*d^8>,< 42, 16, a*c^2*d>,< 42, 16, a*c^4*d>,< 42, 16, a*c^6*d>,< 56, 8, c^6*d^3>,< 56, 8, c^4*d^9>,< 56, 8, c^2*d^15>,< 56, 24, a*c>,< 56, 24, a*c^3>,< 56, 24, a*c^5>,< 84, 8, c^4*d^2>,< 84, 8, c^6*d^10>,< 84, 8, c^2*d^22>,< 168, 8, c^2*d>,< 168, 8, c^2*d^17>,< 168, 8, c^4*d>,< 168, 8, c^4*d^17>,< 168, 8, c^6*d>,< 168, 8, c^6*d^17>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, -1, 2, 0, 0, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 0, 2, 2, 0, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, -2, 0, -2, 0, 0, -2, 0, 2, -2, 2, 0, 2, 2, 0, 2, 0, 0, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, -2, 0, 2, 0, 0, 2, 0, 2, -2, 2, 0, -2, -2, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, 2, 0, -2, 0, 0, 2, 0, 2, -2, -2, 0, 2, -2, 0, 2, 0, 0, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, 2, 0, 2, 0, 0, -2, 0, 2, -2, -2, 0, -2, 2, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, -2, 2, 2, 0, 0, -1, 2, 0, 0, -2, 0, 0, -1, 1, 1, 1, 1, -1, -1, 2, 2, 2, 2, 0, -2, -2, 0, -1, 1, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 2, -2, -2, 0, 0, -1, 2, 0, 0, 2, 0, 0, -1, 1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 0, 2, 2, 0, -1, -1, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 0, 0, -2, 2, -2, 0, 0, -1, 2, 0, 0, -2, 0, 0, -1, 1, -1, 1, 1, -1, 1, 2, 2, 2, -2, 0, 2, 2, 0, -1, 1, 2, 2, 2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, -1, -1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 0, 0, 2, -2, 2, 0, 0, -1, 2, 0, 0, 2, 0, 0, -1, 1, -1, -1, -1, 1, -1, 2, 2, 2, -2, 0, -2, -2, 0, -1, -1, 2, 2, 2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, -1, -1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, 0, -2, -2, 2, 0, 0, -1, 2, 0, 0, -2, 0, 0, -1, -1, 1, 1, 1, 1, -1, 2, 2, 2, -2, 0, 2, 2, 0, -1, 1, 2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, 0, 2, 2, -2, 0, 0, -1, 2, 0, 0, 2, 0, 0, -1, -1, 1, -1, -1, -1, 1, 2, 2, 2, -2, 0, -2, -2, 0, -1, -1, 2, 2, 2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 1, -2, -2, -2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, -1, 2, 0, 0, -2, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 0, -2, -2, 0, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,-2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,-2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,-2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,2,-2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,-2,-2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,-2,-2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,-2,-2,0,0,0,0,0,2,2,-2,2,0,0,0,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,2,2,0,0,0,0,0,2,2,2,-2,0,0,0,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,-2,2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,-2,2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,-2,2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,0,0,0,2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,-2,0,0,0,2,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,-2,0,0,0,2,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,-2,-2,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,-2,0,0,0,2,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, -2, -4, 0, 0, 4, 0, 0, -2, 0, 0, 2, 2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 2, -2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, -2, -4, 0, 0, -4, 0, 0, -2, 0, 0, -2, -2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 2, 2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,4,4,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,4,4,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,0,0,0,0,-2,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,0,0,0,0,-2,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,0,0,0,0,-2,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,-4,0,0,0,0,0,0,4,-4,4,0,0,0,0,4,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,-4,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,-4,0,0,0,0,0,0,4,-4,4,0,0,0,0,4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,-4,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,-4,0,0,0,0,0,0,4,-4,4,0,0,0,0,4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,-4,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,4,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,-4,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,-4,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,-4,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,0,0,0,0,-2,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,0,0,0,0,-2,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,0,0,0,0,-2,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,0,0,0,0,-2,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,0,0,0,0,-2,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,0,0,0,0,-2,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,0,0,0,0,-2,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,0,0,0,0,-2,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,0,0,0,0,-2,4,0,0,0,0,0,-2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,0,0,0,0,-2,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,2,0,0,2-4*K.1^4,-2+4*K.1^4,0,0,4,4,4,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,2,0,0,-2+4*K.1^4,2-4*K.1^4,0,0,4,4,4,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,2,0,0,2-4*K.1^4,-2+4*K.1^4,0,0,4,4,4,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,2,0,0,-2+4*K.1^4,2-4*K.1^4,0,0,4,4,4,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,0,0,0,0,0,0,0,0,0,-4,-8,0,0,0,0,0,-4,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,0,0,0,0,0,4,0,4*K.1^3+4*K.1^-3,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,0,0,0,0,0,0,0,0,0,-4,-8,0,0,0,0,0,-4,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,4,0,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,0,0,0,0,0,0,0,0,0,-4,-8,0,0,0,0,0,-4,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,0,0,0,0,0,4,0,4*K.1+4*K.1^-1,4*K.1^3+4*K.1^-3,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,-8,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2-4*K.1^-2,-4*K.1^3-4*K.1^-3,-4*K.1-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,-8,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,-4*K.1^3-4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,-8,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^3-4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,-4*K.1^12-4*K.1^-12,4*K.1^24+4*K.1^-24,-4*K.1^36-4*K.1^-36,0,0,0,0,0,0,0,4*K.1^12+4*K.1^-12,4*K.1^36+4*K.1^-36,-4*K.1^24-4*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,-4*K.1^12-4*K.1^-12,4*K.1^24+4*K.1^-24,-4*K.1^36-4*K.1^-36,0,0,0,0,0,0,0,4*K.1^12+4*K.1^-12,4*K.1^36+4*K.1^-36,-4*K.1^24-4*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,-4*K.1^36-4*K.1^-36,-4*K.1^12-4*K.1^-12,4*K.1^24+4*K.1^-24,0,0,0,0,0,0,0,4*K.1^36+4*K.1^-36,-4*K.1^24-4*K.1^-24,4*K.1^12+4*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,-4*K.1^36-4*K.1^-36,-4*K.1^12-4*K.1^-12,4*K.1^24+4*K.1^-24,0,0,0,0,0,0,0,4*K.1^36+4*K.1^-36,-4*K.1^24-4*K.1^-24,4*K.1^12+4*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,4*K.1^24+4*K.1^-24,-4*K.1^36-4*K.1^-36,-4*K.1^12-4*K.1^-12,0,0,0,0,0,0,0,-4*K.1^24-4*K.1^-24,4*K.1^12+4*K.1^-12,4*K.1^36+4*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,4*K.1^24+4*K.1^-24,-4*K.1^36-4*K.1^-36,-4*K.1^12-4*K.1^-12,0,0,0,0,0,0,0,-4*K.1^24-4*K.1^-24,4*K.1^12+4*K.1^-12,4*K.1^36+4*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-4*K.1-4*K.1^5+2*K.1^7+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+2*K.1^35+4*K.1^37-4*K.1^45,4*K.1+4*K.1^5-2*K.1^7-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-2*K.1^35-4*K.1^37+4*K.1^45,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^5+K.1^7-K.1^9-K.1^15+2*K.1^23+K.1^27+K.1^33-K.1^35+2*K.1^37-K.1^39+2*K.1^47,K.1-K.1^3-K.1^9+2*K.1^11-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29+2*K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+2*K.1^5-K.1^7+K.1^9+K.1^15-2*K.1^23-K.1^27-K.1^33+K.1^35-2*K.1^37+K.1^39-2*K.1^47,K.1+2*K.1^3-2*K.1^11-K.1^13-K.1^15+2*K.1^23+K.1^27+K.1^29-2*K.1^31-2*K.1^35-K.1^41+2*K.1^47,-1*K.1-2*K.1^3+2*K.1^11+K.1^13+K.1^15-2*K.1^23-K.1^27-K.1^29+2*K.1^31+2*K.1^35+K.1^41-2*K.1^47,-1*K.1+K.1^3+K.1^9-2*K.1^11+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29-2*K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_8572:= KnownIrreducibles(CR);