/* Group 1344.7534 downloaded from the LMFDB on 01 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 7, 2, 2, 3, 448, 1442, 1306, 66, 1675, 91, 1932, 40325, 14805, 141, 15702, 166, 14359]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.6]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4", "d", "d2", "d4"]); GPerm := PermutationGroup< 22 | (2,3)(4,5)(6,7)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22), (9,10)(11,13,14,12)(15,16,18,17)(19,20)(21,22), (11,14)(12,13)(15,18)(16,17)(19,21)(20,22), (11,15,14,18)(12,16,13,17)(21,22), (19,20)(21,22), (11,14)(12,13)(15,18)(16,17), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_7534 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^6>,< 2, 1, c^14>,< 2, 1, c^14*d^6>,< 2, 2, a*d^9>,< 2, 2, a*c^14*d^9>,< 2, 14, b>,< 2, 14, b*d^6>,< 2, 28, a*b*d^9>,< 2, 42, a*b*c^7*d^10>,< 2, 42, a*b*c^11*d^8>,< 2, 84, b*c^7*d^3>,< 2, 84, b*c^11*d^6>,< 3, 2, d^8>,< 4, 4, d^9>,< 4, 4, a>,< 4, 6, a*c^7>,< 4, 6, a*c^7*d^2>,< 4, 12, c^7*d>,< 4, 12, c^7>,< 4, 12, a*c^21*d^7>,< 4, 14, b*d^3>,< 4, 14, b*d^9>,< 4, 14, a*b*c^14>,< 4, 14, a*b>,< 4, 84, a*b*c^3*d^3>,< 6, 2, d^2>,< 6, 2, c^14*d^8>,< 6, 2, c^14*d^2>,< 6, 4, a*d>,< 6, 4, a*c^14*d>,< 6, 14, b*d^4>,< 6, 14, b*d^8>,< 6, 14, b*d^2>,< 6, 14, b*c^2*d^2>,< 6, 28, a*b*d>,< 6, 28, a*b*d^5>,< 7, 2, c^4>,< 7, 2, c^8>,< 7, 2, c^12>,< 12, 4, d^7>,< 12, 4, d^11>,< 12, 4, a*c^14*d^4>,< 12, 4, a*c^14*d^8>,< 12, 28, b*d>,< 12, 28, b*c^2*d>,< 12, 28, a*b*d^4>,< 12, 28, a*b*d^2>,< 14, 2, c^2>,< 14, 2, c^6>,< 14, 2, c^10>,< 14, 2, c^16*d^6>,< 14, 2, c^20*d^6>,< 14, 2, c^24*d^6>,< 14, 2, c^6*d^6>,< 14, 2, c^18*d^6>,< 14, 2, c^2*d^6>,< 14, 4, a*c^12*d^9>,< 14, 4, a*c^8*d^9>,< 14, 4, a*c^4*d^9>,< 14, 4, a*c^6*d^9>,< 14, 4, a*c^18*d^9>,< 14, 4, a*c^2*d^9>,< 21, 4, c^4*d^4>,< 21, 4, c^8*d^8>,< 21, 4, c^16*d^4>,< 28, 8, c^12*d^3>,< 28, 8, c^8*d^9>,< 28, 8, c^4*d^3>,< 28, 8, a*c^26>,< 28, 8, a*c^8>,< 28, 8, a*c^18>,< 28, 12, a*c>,< 28, 12, a*c^3>,< 28, 12, a*c^5>,< 28, 12, a*c*d^2>,< 28, 12, a*c^3*d^2>,< 28, 12, a*c^5*d^2>,< 28, 12, c*d>,< 28, 12, c^3*d>,< 28, 12, c^5*d>,< 28, 12, c^9*d>,< 28, 12, c^17*d>,< 28, 12, c^13*d>,< 28, 24, c>,< 28, 24, c^3>,< 28, 24, c^5>,< 28, 24, a*c*d>,< 28, 24, a*c^3*d>,< 28, 24, a*c^5*d>,< 42, 4, c^2*d^2>,< 42, 4, c^10*d^2>,< 42, 4, c^6*d^2>,< 42, 4, c^8*d^2>,< 42, 4, c^12*d^10>,< 42, 4, c^4*d^10>,< 42, 4, c^22*d^8>,< 42, 4, c^26*d^4>,< 42, 4, c^18*d^4>,< 42, 8, a*c^4*d>,< 42, 8, a*c^8*d>,< 42, 8, a*c^12*d>,< 42, 8, a*c^2*d>,< 42, 8, a*c^10*d>,< 42, 8, a*c^6*d>,< 84, 8, c^4*d>,< 84, 8, c^6*d>,< 84, 8, c^12*d>,< 84, 8, c^2*d>,< 84, 8, c^8*d>,< 84, 8, c^4*d^5>,< 84, 8, a*c^4*d^4>,< 84, 8, a*c^8*d^8>,< 84, 8, a*c^2*d^8>,< 84, 8, a*c^2*d^4>,< 84, 8, a*c^8*d^4>,< 84, 8, a*c^4*d^8>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, -2, 2, 0, -2, 2, 0, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, -2, -2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, -2, 2, 0, 2, -2, 0, 0, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, -2, -2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 2, -2, 0, -2, 2, 0, 0, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 2, 2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 2, -2, 0, 2, -2, 0, 0, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 2, 2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, 0, 0, -1, -2, 2, 0, 0, 0, 0, 0, -2, 2, -2, 2, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 2, 2, 2, -1, 1, -1, 1, 1, -1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, 2, -2, 2, -2, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 2, 2, 2, 1, -1, 1, -1, -1, 1, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, -1, -2, 2, 0, 0, 0, 0, 0, 2, -2, 2, -2, 0, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 2, 2, 2, -1, 1, -1, 1, -1, 1, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -2, 2, -2, 2, 0, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 1, -1, 1, -1, 1, -1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, -1, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, -1, 2, 2, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2, 2, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,-2,-2,2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,-2,-2,2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,0,-2,-2,2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,0,-2,-2,2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,2,2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,0,0,2,2,-2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,0,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,1,1,-1,1,-1,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,1,1,-1,1,-1,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,1,1,-1,1,-1,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,1,1,-1,1,-1,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,0,1,1,-1,-1,1,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,0,1,1,-1,-1,1,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,0,1,1,-1,-1,1,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,0,1,1,-1,-1,1,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-2,-2,-2,2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, -4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, -4, 4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, 2, 2, -2, -2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, 4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 4, -4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, -2, -2, 2, 2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, 4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,-2-4*K.1,2+4*K.1,2+4*K.1,-2-4*K.1,0,0,4,4,4,0,0,0,0,0,0,0,0,4,4,-4,-4,-4,-4,-4,4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,2+4*K.1,-2-4*K.1,-2-4*K.1,2+4*K.1,0,0,4,4,4,0,0,0,0,0,0,0,0,4,4,-4,-4,-4,-4,-4,4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,-4,4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,-4,4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,-4,4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,4,-4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,4,-4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,4,0,0,4,-4,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2,2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2,2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2,-2,2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2,-2,2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2,-2,2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2,2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2,2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2,2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,-4,4,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,-4,4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,-4,4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,-4,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,-4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,2,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,0,0,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,0,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,4*K.1^2+4*K.1^-2,-4*K.1^3-4*K.1^-3,4*K.1+4*K.1^-1,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,-4*K.1-4*K.1^-1,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,0,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,0,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,4*K.1+4*K.1^-1,-4*K.1^2-4*K.1^-2,4*K.1^3+4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,-4*K.1^3-4*K.1^-3,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,-8,8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,4,0,0,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,0,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,4*K.1^3+4*K.1^-3,-4*K.1-4*K.1^-1,4*K.1^2+4*K.1^-2,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,-4*K.1^2-4*K.1^-2,4*K.1+4*K.1^-1,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,-8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,-4,4,4,0,0,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,0,0,4*K.1^3+4*K.1^-3,4*K.1^2+4*K.1^-2,-4*K.1^2-4*K.1^-2,-4*K.1^3-4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,-4*K.1-4*K.1^-1,4*K.1+4*K.1^-1,-4*K.1^3-4*K.1^-3,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,-8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,-4,4,4,0,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1+4*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,-4*K.1^3-4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^3-4*K.1^-3,4*K.1^3+4*K.1^-3,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |8,8,-8,-8,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,-4,4,4,0,0,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^2+4*K.1^-2,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,0,4*K.1+4*K.1^-1,4*K.1^3+4*K.1^-3,-4*K.1^3-4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^2-4*K.1^-2,-4*K.1^3-4*K.1^-3,-4*K.1^2-4*K.1^-2,4*K.1^2+4*K.1^-2,-4*K.1-4*K.1^-1,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_7534:= KnownIrreducibles(CR);