# Group 1344.7422 downloaded from the LMFDB on 24 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(24285043570437304890507304982726151809093015281000883254283,1344); a := GPC.1; b := GPC.2; c := GPC.3; d := GPC.5; GPerm := Group( (2,3)(4,5)(6,7)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,25)(24,26), (9,10)(11,13,15,17)(12,14,16,18), (12,16)(14,18)(19,21,23,24)(20,22,25,26), (11,14)(12,13)(15,18)(16,17)(19,22)(20,24)(21,25)(23,26), (19,23)(20,25)(21,24)(22,26), (11,15)(12,16)(13,17)(14,18), (8,9,10), (1,2,4,6,7,5,3) ); # Booleans booleans_1344_7422 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_1344_7422:=rec(); chartbl_1344_7422.IsFinite:= true; chartbl_1344_7422.UnderlyingCharacteristic:= 0; chartbl_1344_7422.UnderlyingGroup:= GPC; chartbl_1344_7422.Size:= 1344; chartbl_1344_7422.InfoText:= "Character table for group 1344.7422 downloaded from the LMFDB."; chartbl_1344_7422.Identifier:= " (C2*D28).D6 "; chartbl_1344_7422.NrConjugacyClasses:= 126; chartbl_1344_7422.ConjugacyClasses:= [ of ..., f6*f7*f8^3, f4*f6*f7*f8^3, f4, f2, f2*f3, f1*f2*f5*f7^2*f8^4, f1*f4*f6*f7*f8^6, f1*f2*f3*f4*f5*f7^2*f8^6, f7^2*f8^4, f5*f7^2*f8, f5*f6*f8^5, f2*f5*f7^2*f8, f3*f4, f3*f4*f6*f8, f3*f4*f5*f6*f7, f3*f5*f8^4, f2*f3*f4*f5*f6*f7, f1*f2*f6*f7*f8, f1*f5*f6*f8^2, f1*f2*f3*f7^2*f8^6, f1*f3*f6*f7*f8^2, f1*f3*f4*f5*f7, f6*f8, f4*f7*f8^2, f4*f6*f8, f2*f7*f8^2, f1*f2*f5, f1*f2*f5*f7, f1*f4*f6*f7^2*f8, f8^2, f8^4, f8^6, f5*f6*f7, f5*f7*f8^6, f2*f4*f5*f6*f7, f1*f2*f7, f1*f2*f6, f1*f4*f5*f8, f4*f6*f7*f8^2, f4*f6*f7, f4*f6*f7*f8^5, f4*f8^2, f4*f8^6, f4*f8^3, f6*f7, f6*f7*f8, f6*f7*f8^2, f2*f8, f2*f8^6, f2*f8^3, f2*f8^4, f2*f8^5, f2*f8^2, f2*f3*f8, f2*f3*f8^6, f2*f3*f7^2, f2*f3*f8^4, f2*f3*f7, f2*f3*f8^2, f7^2, f7*f8, f7^2*f8^2, f5*f6, f5*f7^2*f8^6, f5*f7^2, f5*f6*f8^6, f5*f6*f8, f5*f7^2*f8^5, f2*f4*f5*f6, f2*f5*f7^2, f2*f4*f5*f6*f8, f2*f4*f5*f6*f8^2, f2*f5*f7^2*f8^2, f2*f4*f5*f6*f8^3, f3*f5, f3*f5*f6*f8, f3*f4*f5*f6, f3*f5*f8^2, f3*f5*f7, f3*f5*f6*f8^6, f3*f5*f7^2, f3*f5*f6*f8^4, f3*f5*f6, f3*f5*f8^6, f3*f5*f8, f3*f5*f6*f8^2, f3*f8, f3*f7^2, f3*f7, f3*f6, f3*f6*f7, f3*f6*f7^2, f2*f3*f5, f2*f3*f5*f6, f2*f3*f5*f7, f2*f3*f5*f7^2, f2*f3*f5*f8^6, f2*f3*f5*f8, f4*f7, f4*f7^2, f4*f7*f8, f6, f6*f7^2, f6*f7^2*f8, f4*f6, f4*f6*f7^2, f4*f6*f7^2*f8, f2*f7, f2*f7*f8^4, f2*f7^2*f8, f2*f7^2, f2*f7*f8, f2*f6, f5, f5*f6*f7*f8^3, f5*f7, f5*f6*f7*f8, f5*f6*f7^2, f5*f8^2, f2*f5, f2*f5*f7, f2*f5*f8^6, f2*f5*f8, f2*f5*f8^3, f2*f5*f8^2]; chartbl_1344_7422.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126]; chartbl_1344_7422.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 2, 2, 3, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 10, 10, 10, 10, 10, 10, 10, 32, 33, 31, 24, 24, 26, 24, 24, 26, 31, 33, 32, 32, 31, 33, 33, 32, 31, 31, 31, 33, 33, 32, 32, 31, 31, 33, 33, 32, 32, 62, 63, 61, 46, 46, 47, 47, 48, 48, 41, 42, 40, 40, 42, 41, 40, 40, 41, 41, 42, 42, 42, 42, 41, 41, 40, 40, 43, 44, 45, 43, 44, 45, 40, 41, 42, 42, 41, 40, 61, 62, 63, 63, 61, 62, 63, 61, 62, 61, 61, 62, 62, 63, 63, 103, 103, 104, 104, 105, 105, 106, 107, 108, 106, 107, 108], [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 12, 11, 13, 14, 15, 17, 16, 18, 19, 20, 21, 22, 23, 2, 4, 3, 5, 7, 7, 8, 33, 31, 32, 11, 12, 13, 19, 19, 20, 41, 42, 40, 44, 45, 43, 47, 48, 46, 51, 52, 54, 53, 49, 50, 57, 58, 60, 59, 55, 56, 31, 32, 33, 66, 67, 68, 69, 65, 64, 71, 73, 75, 70, 72, 74, 78, 79, 82, 83, 87, 86, 77, 76, 80, 81, 84, 85, 89, 90, 88, 92, 93, 91, 95, 97, 99, 94, 96, 98, 44, 43, 45, 46, 48, 47, 41, 40, 42, 49, 50, 53, 54, 52, 51, 64, 65, 68, 69, 66, 67, 70, 72, 74, 75, 73, 71], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 17, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 1, 1, 35, 34, 36, 37, 38, 39, 3, 3, 3, 4, 4, 4, 2, 2, 2, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 10, 10, 10, 11, 12, 12, 11, 11, 12, 13, 13, 13, 13, 13, 13, 16, 17, 17, 16, 16, 17, 16, 17, 17, 16, 16, 17, 14, 14, 14, 15, 15, 15, 18, 18, 18, 18, 18, 18, 25, 25, 25, 24, 24, 24, 26, 26, 26, 27, 27, 27, 27, 27, 27, 34, 35, 34, 35, 35, 34, 36, 36, 36, 36, 36, 36]]; chartbl_1344_7422.SizesCentralizers:= [1344, 1344, 1344, 1344, 336, 112, 48, 48, 16, 672, 672, 672, 336, 224, 224, 224, 224, 112, 48, 48, 16, 16, 16, 672, 672, 672, 168, 48, 48, 24, 672, 672, 672, 336, 336, 168, 48, 48, 24, 672, 672, 672, 672, 672, 672, 672, 672, 672, 336, 336, 336, 336, 336, 336, 112, 112, 112, 112, 112, 112, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 336, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 336, 336, 336, 336, 336, 336, 336, 336, 336, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168, 168]; chartbl_1344_7422.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "2F", "2G", "2H", "3A", "4A1", "4A-1", "4B", "4C", "4D", "4E1", "4E-1", "4F", "4G", "4H", "4I", "4J", "4K", "6A", "6B", "6C", "6D", "6E1", "6E-1", "6F", "7A1", "7A2", "7A3", "12A1", "12A-1", "12B", "12C1", "12C-1", "12D", "14A1", "14A3", "14A5", "14B1", "14B3", "14B5", "14C1", "14C3", "14C5", "14D1", "14D-1", "14D3", "14D-3", "14D5", "14D-5", "14E1", "14E-1", "14E3", "14E-3", "14E5", "14E-5", "21A1", "21A2", "21A4", "28A1", "28A-1", "28A3", "28A-3", "28A5", "28A-5", "28B1", "28B3", "28B5", "28B9", "28B11", "28B13", "28C1", "28C-1", "28C3", "28C-3", "28C5", "28C-5", "28C9", "28C-9", "28C11", "28C-11", "28C13", "28C-13", "28D1", "28D3", "28D5", "28E1", "28E3", "28E5", "28F1", "28F3", "28F5", "28F9", "28F11", "28F13", "42A1", "42A5", "42A11", "42B1", "42B5", "42B11", "42C1", "42C5", "42C11", "42D1", "42D-1", "42D5", "42D-5", "42D11", "42D-11", "84A1", "84A-1", "84A5", "84A-5", "84A11", "84A-11", "84B1", "84B5", "84B11", "84B13", "84B19", "84B25"]; chartbl_1344_7422.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84]; chartbl_1344_7422.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, 2, 2, 2, 2, 0, 2, 2, 0, -1, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, 2, 2, 2, -2, 0, -2, -2, 0, -1, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 1, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [2, 2, 2, 2, -2, 0, -2, 2, 0, -1, 2, 2, -2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, 2, 2, 2, -1, -1, 1, 1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [2, 2, 2, 2, -2, 0, 2, -2, 0, -1, 2, 2, -2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 2, 2, 2, -1, -1, 1, -1, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1], [2, 2, 2, 2, -2, 0, 2, 2, 0, -1, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, -1, -1, -1, 1, -1, -1, -1, 2, 2, 2, 1, 1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1], [2, 2, 2, 2, 2, 0, -2, -2, 0, -1, 2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 2, 2, 2, -1, -1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [2, 2, 2, 2, 2, 0, -2, 2, 0, -1, -2, -2, -2, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, -1, -1, -1, -1, 1, 1, -1, 2, 2, 2, 1, 1, 1, -1, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 0, 2, -2, 0, -1, -2, -2, -2, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 2, 2, 2, 1, 1, 1, 1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(4), 2*E(4), 0, 2*E(4), -2, -2*E(4), 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2*E(4), -2*E(4), 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2*E(4), -2*E(4), -2*E(4), 2*E(4), 0, 0, 0, 0, 2*E(4), 0, 0, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2*E(4), 0, 0, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 0, 0, 0], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(4), -2*E(4), 0, -2*E(4), -2, 2*E(4), 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, -2*E(4), 2*E(4), 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2*E(4), 2*E(4), 2*E(4), -2*E(4), 0, 0, 0, 0, -2*E(4), 0, 0, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), 2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 0, 0, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 0, 0, 0], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(4), 2*E(4), 0, -2*E(4), 2, 2*E(4), -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2*E(4), -2*E(4), 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2*E(4), -2*E(4), -2*E(4), 2*E(4), 0, 0, 0, 0, 2*E(4), 0, 0, -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2, -2, 2, 2, 2, 0, -2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 2*E(4), 0, 0, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 0, 0, 0], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(4), -2*E(4), 0, 2*E(4), 2, -2*E(4), -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, -2*E(4), 2*E(4), 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2*E(4), 2*E(4), 2*E(4), -2*E(4), 0, 0, 0, 0, -2*E(4), 0, 0, 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), -2, -2, 2, 2, 2, 0, -2, 0, 0, 0, 0, 0, -2, -2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 0, 0, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 0, 0, 0], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, -2, -2, 2, -2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, -2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, -2, -2, 2, -2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, -2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, -2, -2, 2, -2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, -2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [2, 2, 2, 2, -2, -2, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, -2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, -2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, -2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, -2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, -2, -2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, -2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [2, 2, 2, 2, -2, 2, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, -2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, -2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, -2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, -2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, -2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, -2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [2, 2, 2, 2, 2, -2, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, -2, -2, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, -2, -2, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, -2, -2, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^3+E(28)^-3, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^3+E(28)^-3, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)^6-E(28)^-6, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)^6-E(28)^-6, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^-5, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^5+E(28)^-5, -1*E(28)^6-E(28)^-6, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^5+E(28)^-5, -1*E(28)^6-E(28)^-6, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)-E(28)^-1, E(28)^4+E(28)^-4, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)-E(28)^-1, E(28)^4+E(28)^-4, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, 2*E(28)^7, -2, -2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)+E(28)^-1, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, -2*E(28)^7, -2, 2*E(28)^7, 2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)+E(28)^-1, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^3+E(28)^-3, E(28)^2+E(28)^-2, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^-5, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^5-E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)-E(28)^-1, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, -1*E(28)^3-E(28)^-3, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, -2*E(28)^7, 2*E(28)^7, 0, -2*E(28)^7, 2, 2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2*E(28)^7, -2*E(28)^7, 0, 2*E(28)^7, 2, -2*E(28)^7, -2, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^6+E(28)^-6, -1*E(28)^4-E(28)^-4, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^4-E(28)^10, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^6+E(28)^8, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)+E(28)^-1, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^11, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)-E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^3+E(28)^-3, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^2+E(28)^-2, E(28)^6+E(28)^-6, E(28)^6+E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, -4, -4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, -2-4*E(3), 2+4*E(3), 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 2+4*E(3), -2-4*E(3), 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, -2-4*E(3), 2+4*E(3), 0, -4, -4, -4, -4, -4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 2+4*E(3), -2-4*E(3), 0, -4, -4, -4, -4, -4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(4), 4*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 4, 4, 4, -2*E(4), 2*E(4), 0, 0, 0, 0, 4, -4, -4, 4, 4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4*E(4), -4*E(4), -4*E(4), 4*E(4), 0, 0, 0, 0, 4*E(4), 0, 0, -4*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 0, 0, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(4), -4*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 4, 4, 4, 2*E(4), -2*E(4), 0, 0, 0, 0, 4, -4, -4, 4, 4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -4*E(4), 4*E(4), 4*E(4), -4*E(4), 0, 0, 0, 0, -4*E(4), 0, 0, 4*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2*E(4), 0, 0, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 0, 0, 0], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2, -2, -2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2, -2, -2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2, -2, -2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2, 2, -2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2, 2, -2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2, 2, -2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2, -2, 2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2, -2, 2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [4, 4, 4, 4, -4, 0, 0, 0, 0, -2, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2, -2, 2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2, 2, 2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2, 2, 2, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2], [4, 4, 4, 4, 4, 0, 0, 0, 0, -2, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2, 2, 2, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2+2*E(7)^-2, -2*E(7)^2+2*E(7)^-2, 2*E(7)^3-2*E(7)^-3, -2*E(7)^3+2*E(7)^-3, 2*E(7)-2*E(7)^-1, 2*E(7)^2-2*E(7)^-2, -2*E(7)+2*E(7)^-1, 2*E(7)-2*E(7)^-1, 2*E(7)^3-2*E(7)^-3, 2*E(7)^2-2*E(7)^-2, -2*E(7)^3+2*E(7)^-3, -2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^2-2*E(7)^-2, 2*E(7)^2-2*E(7)^-2, -2*E(7)^3+2*E(7)^-3, 2*E(7)^3-2*E(7)^-3, -2*E(7)+2*E(7)^-1, -2*E(7)^2+2*E(7)^-2, 2*E(7)-2*E(7)^-1, -2*E(7)+2*E(7)^-1, -2*E(7)^3+2*E(7)^-3, -2*E(7)^2+2*E(7)^-2, 2*E(7)^3-2*E(7)^-3, 2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)+2*E(7)^-1, -2*E(7)+2*E(7)^-1, -2*E(7)^2+2*E(7)^-2, 2*E(7)^2-2*E(7)^-2, -2*E(7)^3+2*E(7)^-3, 2*E(7)-2*E(7)^-1, 2*E(7)^3-2*E(7)^-3, -2*E(7)^3+2*E(7)^-3, -2*E(7)^2+2*E(7)^-2, 2*E(7)-2*E(7)^-1, 2*E(7)^2-2*E(7)^-2, 2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)-2*E(7)^-1, 2*E(7)-2*E(7)^-1, 2*E(7)^2-2*E(7)^-2, -2*E(7)^2+2*E(7)^-2, 2*E(7)^3-2*E(7)^-3, -2*E(7)+2*E(7)^-1, -2*E(7)^3+2*E(7)^-3, 2*E(7)^3-2*E(7)^-3, 2*E(7)^2-2*E(7)^-2, -2*E(7)+2*E(7)^-1, -2*E(7)^2+2*E(7)^-2, -2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3+2*E(7)^-3, -2*E(7)^3+2*E(7)^-3, 2*E(7)-2*E(7)^-1, -2*E(7)+2*E(7)^-1, -2*E(7)^2+2*E(7)^-2, 2*E(7)^3-2*E(7)^-3, 2*E(7)^2-2*E(7)^-2, -2*E(7)^2+2*E(7)^-2, 2*E(7)-2*E(7)^-1, 2*E(7)^3-2*E(7)^-3, -2*E(7)+2*E(7)^-1, 2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^3-2*E(7)^-3, 2*E(7)^3-2*E(7)^-3, -2*E(7)+2*E(7)^-1, 2*E(7)-2*E(7)^-1, 2*E(7)^2-2*E(7)^-2, -2*E(7)^3+2*E(7)^-3, -2*E(7)^2+2*E(7)^-2, 2*E(7)^2-2*E(7)^-2, -2*E(7)+2*E(7)^-1, -2*E(7)^3+2*E(7)^-3, 2*E(7)-2*E(7)^-1, -2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)-2*E(28)^-1, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)+2*E(28)^-1, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)+2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)-2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, -2*E(28)-2*E(28)^-1, -2*E(28)^5-2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, -2*E(28)-2*E(28)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, -4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 0, 0, 0, 0, 0, 0, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^4+2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)^3-2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, 2*E(28)+2*E(28)^-1, 2*E(28)^5+2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^3+2*E(28)^-3, 2*E(28)+2*E(28)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^-6, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2*E(28)^6-2*E(28)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 0, 0, 0, 0, 0, 0, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -2*E(28)^5-2*E(28)^9, -2*E(28)^3-2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^11, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)^5+2*E(28)^9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, 0, 0, 0, 0, 0, 0, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, 2*E(28)^5+2*E(28)^9, 2*E(28)^3+2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)^3-2*E(28)^11, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^5+E(28)^-5], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, 0, 0, 0, 0, 0, 0, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -2*E(28)^5-2*E(28)^9, -2*E(28)^3-2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)^3+2*E(28)^11, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 0, 0, 0, 0, 0, 0, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, 2*E(28)^5+2*E(28)^9, 2*E(28)^3+2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^11, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)^5-2*E(28)^9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^4+E(28)^-4, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^4-E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^-3, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^3-E(28)^-3, E(28)+E(28)^-1, -1*E(28)^5-E(28)^-5], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, 0, 0, 0, 0, 0, 0, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)^5+2*E(28)^9, -2*E(28)^3-2*E(28)^11, 2*E(28)^3+2*E(28)^11, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^9, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, E(28)+E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, 0, 0, 0, 0, 0, 0, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)^5-2*E(28)^9, 2*E(28)^3+2*E(28)^11, -2*E(28)^3-2*E(28)^11, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, 2*E(28)^5+2*E(28)^9, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, E(28)+E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)-E(28)^-1], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, 0, 0, 0, 0, 0, 0, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)^5+2*E(28)^9, -2*E(28)^3-2*E(28)^11, 2*E(28)^3+2*E(28)^11, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, -2*E(28)^5-2*E(28)^9, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1*E(28)^4-E(28)^10, -1*E(28)-E(28)^-1, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)^5-E(28)^9, -1*E(28)^3-E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -2*E(28)^2-2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, 0, 0, 0, 0, 0, 0, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)^5-2*E(28)^9, 2*E(28)^3+2*E(28)^11, -2*E(28)^3-2*E(28)^11, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^9, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -1*E(28)^6-E(28)^-6, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^6+E(28)^8, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^6-E(28)^8, E(28)^4+E(28)^10, -1*E(28)-E(28)^-1, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, -1*E(28)^5-E(28)^-5, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)^5+E(28)^9, E(28)^3+E(28)^11, E(28)^5+E(28)^-5, E(28)^3+E(28)^-3, E(28)+E(28)^-1], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, 0, 0, 0, 0, 0, 0, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, 2*E(28)^3+2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 2*E(28)^5+2*E(28)^9, -2*E(28)^5-2*E(28)^9, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, -2*E(28)^3-2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, -1*E(28)^3-E(28)^-3, -1*E(28)^3-E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, 0, 0, 0, 0, 0, 0, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -2*E(28)^3-2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, -2*E(28)^5-2*E(28)^9, 2*E(28)^5+2*E(28)^9, -2*E(28)^3-2*E(28)^-3, -2*E(28)^5-2*E(28)^-5, 2*E(28)^5+2*E(28)^-5, 2*E(28)+2*E(28)^-1, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, -2*E(28)-2*E(28)^-1, 2*E(28)^3+2*E(28)^-3, 2*E(28)^3+2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^3-E(28)^-3, E(28)^3+E(28)^11, E(28)+E(28)^-1, E(28)^5+E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^3+E(28)^-3], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, -4*E(28)^7, 4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, -2*E(28)^7, 2*E(28)^7, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, 2*E(28)^6+2*E(28)^8, -2*E(28)^6-2*E(28)^8, 2*E(28)^4+2*E(28)^10, -2*E(28)^4-2*E(28)^10, 0, 0, 0, 0, 0, 0, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, 2*E(28)^3+2*E(28)^11, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 2*E(28)^5+2*E(28)^9, -2*E(28)^5-2*E(28)^9, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, -2*E(28)^3-2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, E(28)^3+E(28)^-3, -1*E(28)^3-E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, -1*E(28)^5-E(28)^9, E(28)^3+E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^5+E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [4, -4, -4, 4, 0, 0, 0, 0, 0, -2, 4*E(28)^7, -4*E(28)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 2*E(28)^4+2*E(28)^-4, -2*E(28)^6-2*E(28)^-6, -2*E(28)^2-2*E(28)^-2, 2*E(28)^7, -2*E(28)^7, 0, 0, 0, 0, -2*E(28)^6-2*E(28)^-6, 2*E(28)^6+2*E(28)^-6, -2*E(28)^4-2*E(28)^-4, -2*E(28)^2-2*E(28)^-2, 2*E(28)^4+2*E(28)^-4, -2*E(28)^4-2*E(28)^-4, 2*E(28)^2+2*E(28)^-2, 2*E(28)^2+2*E(28)^-2, 2*E(28)^6+2*E(28)^-6, 2-4*E(28)^2+2*E(28)^4-2*E(28)^6+2*E(28)^8-2*E(28)^10, -2+4*E(28)^2-2*E(28)^4+2*E(28)^6-2*E(28)^8+2*E(28)^10, -2*E(28)^6-2*E(28)^8, 2*E(28)^6+2*E(28)^8, -2*E(28)^4-2*E(28)^10, 2*E(28)^4+2*E(28)^10, 0, 0, 0, 0, 0, 0, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, -1*E(28)^4-E(28)^-4, -2*E(28)^3-2*E(28)^11, -2*E(28)^3+2*E(28)^5-2*E(28)^7+2*E(28)^9-2*E(28)^11, -2*E(28)^5-2*E(28)^9, 2*E(28)^5+2*E(28)^9, 2*E(28)^3+2*E(28)^-3, 2*E(28)^5+2*E(28)^-5, -2*E(28)^5-2*E(28)^-5, -2*E(28)-2*E(28)^-1, 2*E(28)^3-2*E(28)^5+2*E(28)^7-2*E(28)^9+2*E(28)^11, 2*E(28)+2*E(28)^-1, -2*E(28)^3-2*E(28)^-3, 2*E(28)^3+2*E(28)^11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^4-E(28)^-4, E(28)^6+E(28)^-6, E(28)^2+E(28)^-2, E(28)^4+E(28)^-4, -1*E(28)^2-E(28)^-2, -1*E(28)^6-E(28)^-6, -1*E(28)^6-E(28)^-6, 1-2*E(28)^2+E(28)^4-E(28)^6+E(28)^8-E(28)^10, -1*E(28)^6-E(28)^8, -1*E(28)^4-E(28)^10, E(28)^6+E(28)^8, E(28)^4+E(28)^10, -1+2*E(28)^2-E(28)^4+E(28)^6-E(28)^8+E(28)^10, E(28)^3+E(28)^-3, E(28)^3+E(28)^11, -1*E(28)-E(28)^-1, -1*E(28)^5-E(28)^-5, E(28)^5+E(28)^9, -1*E(28)^3-E(28)^11, -1*E(28)^3+E(28)^5-E(28)^7+E(28)^9-E(28)^11, E(28)^3-E(28)^5+E(28)^7-E(28)^9+E(28)^11, -1*E(28)^5-E(28)^9, E(28)+E(28)^-1, E(28)^5+E(28)^-5, -1*E(28)^3-E(28)^-3], [8, -8, 8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 0, 0, 0, 0, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 0, 0, 0, 0, 0, 0, -4*E(7)-4*E(7)^-1, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)^3-4*E(7)^-3, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, 4*E(7)^2+4*E(7)^-2, -4*E(7)-4*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 0, 0, 0, 0, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 0, 0, 0, 0, 0, 0, -4*E(7)^3-4*E(7)^-3, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^2-4*E(7)^-2, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, 4*E(7)+4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 0, 0, 0, 0, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 0, 0, 0, 0, 0, 0, -4*E(7)^2-4*E(7)^-2, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)-4*E(7)^-1, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, 4*E(7)^3+4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, -8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, 0, 0, 0, 0, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 0, 0, 0, 0, 0, 0, -4*E(7)-4*E(7)^-1, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)^3-4*E(7)^-3, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, -4*E(7)^2-4*E(7)^-2, 4*E(7)+4*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, -8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, 0, 0, 0, 0, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 0, 0, 0, 0, 0, 0, -4*E(7)^3-4*E(7)^-3, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^2-4*E(7)^-2, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, -4*E(7)-4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, -8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, 0, 0, 0, 0, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 0, 0, 0, 0, 0, 0, -4*E(7)^2-4*E(7)^-2, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)-4*E(7)^-1, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, -4*E(7)^3-4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_1344_7422);