/* Group 1344.7271 downloaded from the LMFDB on 26 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, 2, -2, -3, -7, 8122, 66, 35204, 9452, 116, 19973, 22285, 141, 46598, 14350, 222, 73735]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "d4", "d12"]); GPerm := PermutationGroup< 26 | (2,3)(4,5)(6,7)(11,12)(13,16)(15,18)(20,23), (9,10)(13,16)(14,21)(17,24)(19,25)(20,23)(22,26), (11,13,15,20)(12,16,18,23)(14,19,21,26)(17,22,24,25), (11,14,12,17)(13,19,16,22)(15,21,18,24)(20,26,23,25), (11,15)(12,18)(13,20)(14,21)(16,23)(17,24)(19,26)(22,25), (11,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,26), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_7271 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^2>,< 2, 1, c^2*d^42>,< 2, 1, d^42>,< 2, 12, b>,< 2, 12, b*c*d^49>,< 2, 14, a*d^60>,< 2, 14, a*c^2*d^60>,< 2, 28, a*d^57>,< 2, 84, a*b*d^26>,< 3, 2, d^56>,< 4, 2, c>,< 4, 2, c^3>,< 4, 4, d^21>,< 4, 4, c*d^21>,< 4, 12, b*c^2*d^7>,< 4, 12, b*c^3*d^42>,< 4, 14, a*c^3*d^60>,< 4, 14, a*c*d^60>,< 4, 28, a*c^3*d^57>,< 4, 84, a*b*c*d^53>,< 4, 84, a*b*c^3*d^52>,< 4, 84, a*b*c^2*d^9>,< 6, 2, c^2*d^56>,< 6, 2, d^14>,< 6, 2, c^2*d^14>,< 6, 28, a*d^4>,< 6, 28, a*c^2*d^4>,< 6, 28, a*d>,< 6, 28, a*d^5>,< 7, 2, d^24>,< 7, 2, d^48>,< 7, 2, d^72>,< 12, 2, c^3*d^28>,< 12, 2, c*d^56>,< 12, 2, c^3*d^56>,< 12, 2, c*d^28>,< 12, 4, d^7>,< 12, 4, d^77>,< 12, 4, c^3*d^7>,< 12, 4, c^3*d^35>,< 12, 28, a*c*d^4>,< 12, 28, a*c^3*d^4>,< 12, 28, a*c*d>,< 12, 28, a*c*d^5>,< 14, 2, c^2*d^30>,< 14, 2, c^2*d^6>,< 14, 2, c^2*d^66>,< 14, 2, d^6>,< 14, 2, d^18>,< 14, 2, d^30>,< 14, 2, c^2*d^24>,< 14, 2, c^2*d^72>,< 14, 2, c^2*d^36>,< 14, 24, b*d^12>,< 14, 24, b*d^8>,< 14, 24, b*d^4>,< 14, 24, b*c*d>,< 14, 24, b*c*d^3>,< 14, 24, b*c*d^5>,< 21, 4, d^4>,< 21, 4, d^8>,< 21, 4, d^16>,< 28, 4, d^3>,< 28, 4, d^9>,< 28, 4, d^15>,< 28, 4, d^27>,< 28, 4, d^33>,< 28, 4, d^39>,< 28, 4, c^3*d^12>,< 28, 4, c*d^72>,< 28, 4, c*d^36>,< 28, 4, c^3*d^48>,< 28, 4, c^3*d^60>,< 28, 4, c*d^24>,< 28, 4, c^3*d^3>,< 28, 4, c*d^81>,< 28, 4, c*d^9>,< 28, 4, c^3*d^75>,< 28, 4, c^3*d^15>,< 28, 4, c*d^69>,< 28, 24, b*d>,< 28, 24, b*d^3>,< 28, 24, b*d^5>,< 28, 24, b*c*d^12>,< 28, 24, b*c*d^8>,< 28, 24, b*c*d^4>,< 42, 4, d^2>,< 42, 4, d^10>,< 42, 4, d^22>,< 42, 4, c^2*d^8>,< 42, 4, c^2*d^40>,< 42, 4, c^2*d^4>,< 42, 4, c^2*d^2>,< 42, 4, c^2*d^10>,< 42, 4, c^2*d^22>,< 84, 4, d>,< 84, 4, c^2*d>,< 84, 4, d^5>,< 84, 4, d^61>,< 84, 4, d^17>,< 84, 4, d^73>,< 84, 4, d^13>,< 84, 4, c^2*d^13>,< 84, 4, d^37>,< 84, 4, c^2*d^37>,< 84, 4, d^25>,< 84, 4, c^2*d^25>,< 84, 4, c*d^4>,< 84, 4, c^3*d^10>,< 84, 4, c*d^8>,< 84, 4, c^3*d^50>,< 84, 4, c^3*d^44>,< 84, 4, c*d^2>,< 84, 4, c*d^44>,< 84, 4, c^3*d^2>,< 84, 4, c^3*d^8>,< 84, 4, c*d^50>,< 84, 4, c*d^10>,< 84, 4, c^3*d^4>,< 84, 4, c*d>,< 84, 4, c*d^13>,< 84, 4, c*d^5>,< 84, 4, c*d^65>,< 84, 4, c*d^25>,< 84, 4, c*d^73>,< 84, 4, c*d^17>,< 84, 4, c*d^53>,< 84, 4, c*d^37>,< 84, 4, c*d^61>,< 84, 4, c^3*d^13>,< 84, 4, c^3*d>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 2, 0, -1, 2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, -2, 0, -1, -2, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, -2, 0, -1, 2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, 2, 0, -1, -2, -2, -2, 2, 0, 0, 2, 2, -2, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, 2, 0, -1, 2, 2, -2, -2, 0, 0, -2, -2, 2, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, -2, 0, -1, -2, -2, -2, 2, 0, 0, -2, -2, 2, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, 2, 2, 2, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, -2, 0, -1, 2, 2, -2, -2, 0, 0, 2, 2, -2, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, 2, 2, 2, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 2, 0, -1, -2, -2, 2, -2, 0, 0, -2, -2, -2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,2,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,-2,2,-2,0,0,-2,2,2,2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,-2,2,0,2*K.1,0,0,2*K.1,0,-2*K.1,-2*K.1,0,0,0,-2*K.1,2*K.1,0,2*K.1,0,0,0,0,0,0,-2*K.1,-2*K.1,0,0,0,-2*K.1,0,0,0,0,0,2*K.1,2*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,2,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,-2,2,-2,0,0,-2,2,2,2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,-2,2,0,-2*K.1,0,0,-2*K.1,0,2*K.1,2*K.1,0,0,0,2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,0,0,2*K.1,2*K.1,0,0,0,2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,2,-2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,0,0,-2,2,-2,0,0,2,-2,2,2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,-2,2,0,2*K.1,0,0,2*K.1,0,-2*K.1,-2*K.1,0,0,0,-2*K.1,2*K.1,0,2*K.1,0,0,0,0,0,0,-2*K.1,-2*K.1,0,0,0,-2*K.1,0,0,0,0,0,2*K.1,2*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,2,2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,0,0,-2,2,-2,0,0,2,-2,2,2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,-2,2,0,-2*K.1,0,0,-2*K.1,0,2*K.1,2*K.1,0,0,0,2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,0,0,2*K.1,2*K.1,0,0,0,2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,2,0,0,0,0,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,-2,0,0,0,0,2,2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,-1,-2*K.1^3,2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,1,-1,2,2,2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,-1,2*K.1^3,-2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1,-1,2,2,2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,1-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,-1,-2*K.1^3,2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1,-1,2,2,2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,-1,2*K.1^3,-2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,1,-1,2,2,2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1,1,2,2,2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,-1,1,2,2,2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^3,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,-1,1,2,2,2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^3,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1,1,2,2,2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,-2,-2,-2,-2,-2,2,-2,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,1-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 4, 4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, 4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, -4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,4,4,4,-2-4*K.1,2+4*K.1,2+4*K.1,-2-4*K.1,0,0,0,0,0,0,0,0,-4,-4,-4,4,4,-4,4,-4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,2,2,2,0,2+4*K.1,0,0,-2-4*K.1,0,-2-4*K.1,2+4*K.1,0,0,0,2+4*K.1,2+4*K.1,0,2+4*K.1,0,0,0,0,0,0,2+4*K.1,-2-4*K.1,0,0,0,-2-4*K.1,0,0,0,0,0,-2-4*K.1,-2-4*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,4,4,4,2+4*K.1,-2-4*K.1,-2-4*K.1,2+4*K.1,0,0,0,0,0,0,0,0,-4,-4,-4,4,4,-4,4,-4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,2,2,2,0,-2-4*K.1,0,0,2+4*K.1,0,2+4*K.1,-2-4*K.1,0,0,0,-2-4*K.1,-2-4*K.1,0,-2-4*K.1,0,0,0,0,0,0,-2-4*K.1,2+4*K.1,0,0,0,2+4*K.1,0,0,0,0,0,2+4*K.1,2+4*K.1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,4,4,4,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-4,-4,4,-4,-4,4,-4,-4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,2,-2,2,0,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,4,4,4,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,-4,-4,4,-4,-4,4,-4,-4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,2,2,-2,2,0,-2*K.1-2*K.1^-1,0,0,2*K.1+2*K.1^-1,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,-4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2,2,2,2,-2,2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,-4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2,2,2,2,-2,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,-4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2,2,2,2,-2,2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2,2,2,2,2,-2,2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2,2,2,2,2,-2,2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,-4,-4,4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2,2,2,2,2,-2,2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2,-2,-2,-2,2,2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2,-2,-2,-2,2,2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^5-2*K.1^-5,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1-2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^5+2*K.1^-5,0,0,0,0,2*K.1+2*K.1^-1,0,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,0,0,0,-2*K.1-2*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^5+2*K.1^-5,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,-2*K.1^5-2*K.1^-5,0,0,0,0,-2*K.1-2*K.1^-1,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,0,0,0,2*K.1+2*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1-2*K.1^-1,0,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^5+2*K.1^-5,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^3-2*K.1^-3,0,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1+2*K.1^-1,0,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^3-2*K.1^-3,0,0,0,0,-2*K.1^5-2*K.1^-5,0,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,0,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,-2*K.1^3-2*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^3-2*K.1^-3,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^5-2*K.1^-5,0,0,0,0,-2*K.1-2*K.1^-1,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^5+2*K.1^-5,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,0,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,-2*K.1^5-2*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^5+2*K.1^-5,0,0,0,0,2*K.1+2*K.1^-1,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,-2*K.1^5-2*K.1^-5,0,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,2*K.1^5+2*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,0,2*K.1^3+2*K.1^11,0,0,-2*K.1^5-2*K.1^9,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,0,0,0,2*K.1^5+2*K.1^9,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,0,-2*K.1^3-2*K.1^11,0,0,2*K.1^5+2*K.1^9,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,0,0,0,-2*K.1^5-2*K.1^9,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,2*K.1^3+2*K.1^11,0,0,0,0,0,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,0,-2*K.1^5-2*K.1^9,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,2*K.1^3+2*K.1^11,0,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,-2*K.1^3-2*K.1^11,0,0,0,0,0,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,0,2*K.1^5+2*K.1^9,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,-2*K.1^5-2*K.1^9,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,2*K.1^3+2*K.1^11,0,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,0,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,-2*K.1^3-2*K.1^11,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,4,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,-4,4,-4,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,2*K.1^5+2*K.1^9,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,-2*K.1^3-2*K.1^11,0,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,0,2*K.1^5+2*K.1^9,0,0,0,0,0,0,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,2*K.1^3+2*K.1^11,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,-2*K.1^3+2*K.1^-3,0,0,0,-2*K.1^2+2*K.1^-2,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,0,0,0,0,0,2*K.1-2*K.1^-1,-2*K.1+2*K.1^-1,0,0,2*K.1^3-2*K.1^-3,0,0,0,-2*K.1^3+2*K.1^-3,2*K.1-2*K.1^-1,-2*K.1+2*K.1^-1,0,0,0,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,0,0,0,0,2*K.1^2-2*K.1^-2,0,0,0,0,-2*K.1^2+2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,2*K.1^3-2*K.1^-3,0,0,0,2*K.1^2-2*K.1^-2,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,0,0,0,0,0,-2*K.1+2*K.1^-1,2*K.1-2*K.1^-1,0,0,-2*K.1^3+2*K.1^-3,0,0,0,2*K.1^3-2*K.1^-3,-2*K.1+2*K.1^-1,2*K.1-2*K.1^-1,0,0,0,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,0,0,0,0,-2*K.1^2+2*K.1^-2,0,0,0,0,2*K.1^2-2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,-2*K.1^2+2*K.1^-2,0,0,0,2*K.1-2*K.1^-1,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,0,0,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,0,0,0,0,0,2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^-3,0,0,2*K.1^2-2*K.1^-2,0,0,0,-2*K.1^2+2*K.1^-2,2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^-3,0,0,0,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,0,0,0,0,-2*K.1+2*K.1^-1,0,0,0,0,2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,2*K.1^2-2*K.1^-2,0,0,0,-2*K.1+2*K.1^-1,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,-2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,0,0,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,0,0,0,0,0,-2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^-3,0,0,-2*K.1^2+2*K.1^-2,0,0,0,2*K.1^2-2*K.1^-2,-2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^-3,0,0,0,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,0,0,0,0,2*K.1-2*K.1^-1,0,0,0,0,-2*K.1+2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,-2*K.1+2*K.1^-1,0,0,0,-2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^2+2*K.1^-2,2*K.1^2-2*K.1^-2,0,0,2*K.1-2*K.1^-1,0,0,0,-2*K.1+2*K.1^-1,-2*K.1^2+2*K.1^-2,2*K.1^2-2*K.1^-2,0,0,0,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^3-2*K.1^-3,0,0,0,0,-2*K.1^3+2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,2*K.1-2*K.1^-1,0,0,0,2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,-2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,0,0,0,0,0,2*K.1^2-2*K.1^-2,-2*K.1^2+2*K.1^-2,0,0,-2*K.1+2*K.1^-1,0,0,0,2*K.1-2*K.1^-1,2*K.1^2-2*K.1^-2,-2*K.1^2+2*K.1^-2,0,0,0,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,0,0,0,0,-2*K.1^3+2*K.1^-3,0,0,0,0,2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^15-2*K.1^-15,0,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^3+K.1^-3,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^9-K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^15-K.1^-15,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^15-K.1^-15,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^3-K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^15+K.1^-15,K.1^15+K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^15-2*K.1^-15,0,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^3+K.1^-3,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^9-K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^15-K.1^-15,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^15-K.1^-15,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^3-K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^15+K.1^-15,K.1^15+K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^15+2*K.1^-15,0,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,0,0,0,0,0,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^3-K.1^-3,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^9+K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^15+K.1^-15,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^15+K.1^-15,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^3+K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^15-K.1^-15,-1*K.1^15-K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^15+2*K.1^-15,0,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,0,0,0,0,0,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^3-K.1^-3,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^9+K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^15+K.1^-15,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^15+K.1^-15,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^3+K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^15-K.1^-15,-1*K.1^15-K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^3-2*K.1^-3,0,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,0,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^9-K.1^-9,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^15-K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^3-K.1^-3,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^15-K.1^-15,K.1^15+K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3-K.1^-3,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^9+K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^9+K.1^-9,K.1^15+K.1^-15,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^9-K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^3-2*K.1^-3,0,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,0,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^9-K.1^-9,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^15-K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^3-K.1^-3,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^15-K.1^-15,K.1^15+K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3-K.1^-3,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^9+K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^9+K.1^-9,K.1^15+K.1^-15,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^9-K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^3+2*K.1^-3,0,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^9+K.1^-9,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^15+K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^3+K.1^-3,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^15+K.1^-15,-1*K.1^15-K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^3+K.1^-3,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^9-K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^9+K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^3+2*K.1^-3,0,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^9+K.1^-9,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^15+K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^3+K.1^-3,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^15+K.1^-15,-1*K.1^15-K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^3+K.1^-3,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^9-K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^9+K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^15+K.1^-15,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^3+K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^9-K.1^-9,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^9-K.1^-9,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^15-K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^9+K.1^-9,K.1^9+K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^15+K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^15+K.1^-15,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^3+K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^9-K.1^-9,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^9-K.1^-9,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^15-K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^9+K.1^-9,K.1^9+K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^15+K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2-4*K.1^14,-2+4*K.1^14,-2+4*K.1^14,2-4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^15-K.1^-15,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^3-K.1^-3,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^9+K.1^-9,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^9+K.1^-9,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^15+K.1^-15,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^15+K.1^-15,K.1^3+K.1^-3,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^15-K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2+4*K.1^14,2-4*K.1^14,2-4*K.1^14,-2+4*K.1^14,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,0,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^15-K.1^-15,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^3-K.1^-3,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^9+K.1^-9,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^9+K.1^-9,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^15+K.1^-15,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^15+K.1^-15,K.1^3+K.1^-3,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^15-K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7-2*K.1^-7,2-4*K.1^14,2*K.1^7+2*K.1^-7,-2+4*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,0,0,0,0,0,-2*K.1^5+2*K.1^9+2*K.1^19,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^5-K.1^9-K.1^19,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,2*K.1^7+2*K.1^-7,2-4*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,0,0,0,0,0,2*K.1^5-2*K.1^9-2*K.1^19,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^7+2*K.1^-7,-2+4*K.1^14,-2*K.1^7-2*K.1^-7,2-4*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,0,0,0,0,0,-2*K.1^5+2*K.1^9+2*K.1^19,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7+2*K.1^-7,2-4*K.1^14,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,0,0,0,0,0,2*K.1^5-2*K.1^9-2*K.1^19,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^5+K.1^9+K.1^19,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7-2*K.1^-7,2-4*K.1^14,2*K.1^7+2*K.1^-7,-2+4*K.1^14,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,-2*K.1^5+2*K.1^9+2*K.1^19,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^5+K.1^9+K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,2*K.1^7+2*K.1^-7,2-4*K.1^14,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,2*K.1^5-2*K.1^9-2*K.1^19,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^5-K.1^9-K.1^19,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9+K.1^19,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^7+2*K.1^-7,-2+4*K.1^14,-2*K.1^7-2*K.1^-7,2-4*K.1^14,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,-2*K.1^5+2*K.1^9+2*K.1^19,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^5+K.1^9+K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9-K.1^19,K.1^5+K.1^9+K.1^19-2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7+2*K.1^-7,2-4*K.1^14,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,2*K.1^5-2*K.1^9-2*K.1^19,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^5-K.1^9-K.1^19,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1^5+K.1^9+K.1^19-2*K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7-2*K.1^-7,2-4*K.1^14,2*K.1^7+2*K.1^-7,-2+4*K.1^14,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,0,0,0,0,0,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9-K.1^19,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9+K.1^19,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^5+K.1^9+K.1^19,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,2*K.1^7+2*K.1^-7,2-4*K.1^14,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,0,0,0,0,0,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9+K.1^19,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9-K.1^19,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^5-K.1^9-K.1^19,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^7+2*K.1^-7,-2+4*K.1^14,-2*K.1^7-2*K.1^-7,2-4*K.1^14,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,0,0,0,0,0,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9-K.1^19,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9+K.1^19,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^5+K.1^9+K.1^19,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,-2,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7+2*K.1^-7,2-4*K.1^14,-2*K.1^7-2*K.1^-7,-2+4*K.1^14,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7+2*K.1^11+2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^23,0,0,0,0,0,-2*K.1+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^17+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9-2*K.1^19,2*K.1-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^17-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5+2*K.1^7-2*K.1^11-2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^23,-2*K.1^5+2*K.1^9+2*K.1^19,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9+K.1^19,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9-K.1^19,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^5-K.1^7+K.1^11+K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9-K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^5-K.1^9-K.1^19,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1-K.1^7-K.1^9+K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11-K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8+2*K.1^20+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,-2*K.1^2+2*K.1^12+2*K.1^16,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,0,0,0,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^6-K.1^8+K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^2-K.1^12-K.1^16,-1*K.1^2+K.1^12+K.1^16,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8-K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^6-K.1^8+K.1^22,K.1^2-K.1^12-K.1^16,-1*K.1^2+K.1^12+K.1^16,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,2*K.1^2-2*K.1^12-2*K.1^16,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,0,0,0,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^2+K.1^12+K.1^16,K.1^2-K.1^12-K.1^16,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8+K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1*K.1^2+K.1^12+K.1^16,K.1^2-K.1^12-K.1^16,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^6-K.1^8+K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,-2*K.1^2+2*K.1^12+2*K.1^16,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,0,0,0,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^6-K.1^8+K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^2-K.1^12-K.1^16,-1*K.1^2+K.1^12+K.1^16,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8-K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^6-K.1^8+K.1^22,K.1^2-K.1^12-K.1^16,-1*K.1^2+K.1^12+K.1^16,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,2*K.1^2-2*K.1^12-2*K.1^16,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,0,0,0,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^2+K.1^12+K.1^16,K.1^2-K.1^12-K.1^16,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8+K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^6+K.1^8-K.1^22,-1*K.1^2+K.1^12+K.1^16,K.1^2-K.1^12-K.1^16,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^6-K.1^8+K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,-2*K.1^2+2*K.1^12+2*K.1^16,2*K.1^2-2*K.1^12-2*K.1^16,2*K.1^6-2*K.1^8+2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,0,0,0,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^2+K.1^12+K.1^16,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^6+K.1^8-K.1^22,K.1^6-K.1^8+K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^6+K.1^8-K.1^22,K.1^6-K.1^8+K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^2-K.1^12-K.1^16,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^2-K.1^12-K.1^16,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,2*K.1^2-2*K.1^12-2*K.1^16,-2*K.1^2+2*K.1^12+2*K.1^16,-2*K.1^6+2*K.1^8-2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,0,0,0,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^2-K.1^12-K.1^16,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^6-K.1^8+K.1^22,-1*K.1^6+K.1^8-K.1^22,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^6-K.1^8+K.1^22,-1*K.1^6+K.1^8-K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^2+K.1^12+K.1^16,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^2-K.1^12-K.1^16,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^2+K.1^12+K.1^16,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,-2*K.1^2+2*K.1^12+2*K.1^16,2*K.1^2-2*K.1^12-2*K.1^16,2*K.1^6-2*K.1^8+2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,0,0,0,-2*K.1^6+2*K.1^8-2*K.1^22,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^2+K.1^12+K.1^16,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^6+K.1^8-K.1^22,K.1^6-K.1^8+K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^6+K.1^8-K.1^22,K.1^6-K.1^8+K.1^22,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^2-K.1^12-K.1^16,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^2+K.1^12+K.1^16,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^2-K.1^12-K.1^16,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,2*K.1^2-2*K.1^12-2*K.1^16,-2*K.1^2+2*K.1^12+2*K.1^16,-2*K.1^6+2*K.1^8-2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,0,0,0,2*K.1^6-2*K.1^8+2*K.1^22,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^2-K.1^12-K.1^16,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^6-K.1^8+K.1^22,-1*K.1^6+K.1^8-K.1^22,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^6-K.1^8+K.1^22,-1*K.1^6+K.1^8-K.1^22,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^2+K.1^12+K.1^16,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^2-K.1^12-K.1^16,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,-2*K.1^6+2*K.1^8-2*K.1^22,2*K.1^6-2*K.1^8+2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1^6+K.1^8-K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^2-K.1^12-K.1^16,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^2+K.1^12+K.1^16,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^2-K.1^12-K.1^16,K.1^6-K.1^8+K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^6+K.1^8-K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^6-K.1^8+K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,2*K.1^6-2*K.1^8+2*K.1^22,-2*K.1^6+2*K.1^8-2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,0,0,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^2-K.1^12-K.1^16,K.1^6-K.1^8+K.1^22,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^2-K.1^12-K.1^16,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1^6+K.1^8-K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^6-K.1^8+K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^6+K.1^8-K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,-2*K.1^6+2*K.1^8-2*K.1^22,2*K.1^6-2*K.1^8+2*K.1^22,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1^6+K.1^8-K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^2-K.1^12-K.1^16,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^2+K.1^12+K.1^16,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^2-K.1^12-K.1^16,K.1^6-K.1^8+K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^6+K.1^8-K.1^22,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^6-K.1^8+K.1^22,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,-2*K.1^2+2*K.1^12+2*K.1^16,0,0,0,2*K.1^6-2*K.1^8+2*K.1^22,-2*K.1^6+2*K.1^8-2*K.1^22,-2-2*K.1^2+2*K.1^6+2*K.1^8-2*K.1^12+2*K.1^16+4*K.1^18-2*K.1^22,2*K.1^2-2*K.1^12-2*K.1^16,0,0,0,0,0,0,2+2*K.1^2-2*K.1^6-2*K.1^8+2*K.1^12-2*K.1^16-4*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^2-K.1^12-K.1^16,K.1^6-K.1^8+K.1^22,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^2+K.1^12+K.1^16,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^2-K.1^12-K.1^16,1+K.1^2-K.1^6-K.1^8+K.1^12-K.1^16-2*K.1^18+K.1^22,-1-K.1^2+K.1^6+K.1^8-K.1^12+K.1^16+2*K.1^18-K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^2+K.1^12+K.1^16,-1*K.1^6+K.1^8-K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^6-K.1^8+K.1^22,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^6+K.1^8-K.1^22,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_7271:= KnownIrreducibles(CR);