/* Group 1344.600 downloaded from the LMFDB on 05 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -7, 16, 16418, 66, 771, 91, 11157, 141, 7190, 222]); a,b,c := Explode([GPC.1, GPC.3, GPC.6]); AssignNames(~GPC, ["a", "a2", "b", "b2", "b4", "c", "c2", "c6"]); GPerm := PermutationGroup< 26 | (1,2,3,4)(10,13)(11,15)(14,16)(25,26), (1,2)(3,4)(5,6,7,8)(9,10)(11,16)(12,14)(13,15), (17,18,19,20,21,22,23), (5,7)(6,8), (1,3)(2,4)(9,11,12,15)(10,13,14,16), (1,3)(2,4), (9,12)(10,14)(11,15)(13,16), (24,25,26) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_600 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^2*b^4*c^21>,< 2, 1, c^21>,< 2, 1, b^4*c^21>,< 2, 1, a^2*c^21>,< 2, 1, a^2*b^4>,< 2, 1, b^4>,< 2, 1, a^2>,< 3, 2, c^14>,< 4, 2, b^6>,< 4, 2, b^2*c^21>,< 4, 2, a^2*b^2>,< 4, 2, a^2*b^2*c^21>,< 4, 4, a>,< 4, 4, a^3>,< 4, 4, a*c^21>,< 4, 4, a^3*c^21>,< 4, 12, a^3*b^5*c^21>,< 4, 12, a*b>,< 4, 12, a^3*b^5*c^28>,< 4, 12, a*b*c^7>,< 6, 2, c^7>,< 6, 2, b^4*c^7>,< 6, 2, a^2*c^7>,< 6, 2, a^2*b^4*c^14>,< 6, 2, a^2*b^4*c^7>,< 6, 2, b^4*c^28>,< 6, 2, a^2*c^28>,< 7, 1, c^24>,< 7, 1, c^18>,< 7, 1, c^6>,< 7, 1, c^36>,< 7, 1, c^30>,< 7, 1, c^12>,< 8, 6, b^7>,< 8, 6, b>,< 8, 6, b^5>,< 8, 6, b^3>,< 8, 6, a^2*b^7>,< 8, 6, a^2*b>,< 8, 6, a^2*b^5>,< 8, 6, a^2*b^3>,< 12, 4, b^6*c^14>,< 12, 4, b^6*c^7>,< 12, 4, a^2*b^6*c^14>,< 12, 4, a^2*b^6*c^7>,< 12, 4, a^3*c^14>,< 12, 4, a*c^28>,< 12, 4, a^3*c^28>,< 12, 4, a*c^14>,< 12, 4, a^3*c^7>,< 12, 4, a*c^35>,< 12, 4, a^3*c^35>,< 12, 4, a*c^7>,< 14, 1, a^2*b^4*c^33>,< 14, 1, a^2*b^4*c^9>,< 14, 1, a^2*b^4*c^15>,< 14, 1, a^2*b^4*c^27>,< 14, 1, a^2*b^4*c^39>,< 14, 1, a^2*b^4*c^3>,< 14, 1, c^3>,< 14, 1, c^39>,< 14, 1, c^9>,< 14, 1, c^33>,< 14, 1, c^15>,< 14, 1, c^27>,< 14, 1, b^4*c^3>,< 14, 1, b^4*c^39>,< 14, 1, b^4*c^9>,< 14, 1, b^4*c^33>,< 14, 1, b^4*c^15>,< 14, 1, b^4*c^27>,< 14, 1, a^2*c^3>,< 14, 1, a^2*c^39>,< 14, 1, a^2*c^9>,< 14, 1, a^2*c^33>,< 14, 1, a^2*c^15>,< 14, 1, a^2*c^27>,< 14, 1, a^2*b^4*c^6>,< 14, 1, a^2*b^4*c^36>,< 14, 1, a^2*b^4*c^18>,< 14, 1, a^2*b^4*c^24>,< 14, 1, a^2*b^4*c^30>,< 14, 1, a^2*b^4*c^12>,< 14, 1, b^4*c^24>,< 14, 1, b^4*c^18>,< 14, 1, b^4*c^30>,< 14, 1, b^4*c^12>,< 14, 1, b^4*c^36>,< 14, 1, b^4*c^6>,< 14, 1, a^2*c^12>,< 14, 1, a^2*c^30>,< 14, 1, a^2*c^36>,< 14, 1, a^2*c^6>,< 14, 1, a^2*c^18>,< 14, 1, a^2*c^24>,< 21, 2, c^2>,< 21, 2, c^40>,< 21, 2, c^4>,< 21, 2, c^38>,< 21, 2, c^8>,< 21, 2, c^34>,< 28, 2, b^2*c^12>,< 28, 2, b^6*c^30>,< 28, 2, b^6*c^36>,< 28, 2, b^2*c^6>,< 28, 2, b^2*c^18>,< 28, 2, b^6*c^24>,< 28, 2, b^6*c^3>,< 28, 2, b^2*c^39>,< 28, 2, b^2*c^9>,< 28, 2, b^6*c^33>,< 28, 2, b^6*c^15>,< 28, 2, b^2*c^27>,< 28, 2, a^2*b^6*c^6>,< 28, 2, a^2*b^2*c^36>,< 28, 2, a^2*b^2*c^18>,< 28, 2, a^2*b^6*c^24>,< 28, 2, a^2*b^6*c^30>,< 28, 2, a^2*b^2*c^12>,< 28, 2, a^2*b^6*c^3>,< 28, 2, a^2*b^2*c^39>,< 28, 2, a^2*b^2*c^9>,< 28, 2, a^2*b^6*c^33>,< 28, 2, a^2*b^6*c^15>,< 28, 2, a^2*b^2*c^27>,< 28, 4, a^3*c^6>,< 28, 4, a*c^36>,< 28, 4, a*c^18>,< 28, 4, a^3*c^24>,< 28, 4, a^3*c^30>,< 28, 4, a*c^12>,< 28, 4, a^3*c^12>,< 28, 4, a*c^30>,< 28, 4, a*c^24>,< 28, 4, a^3*c^18>,< 28, 4, a^3*c^36>,< 28, 4, a*c^6>,< 28, 4, a^3*c^3>,< 28, 4, a*c^39>,< 28, 4, a*c^9>,< 28, 4, a^3*c^33>,< 28, 4, a^3*c^15>,< 28, 4, a*c^27>,< 28, 4, a^3*c^27>,< 28, 4, a*c^15>,< 28, 4, a*c^33>,< 28, 4, a^3*c^9>,< 28, 4, a^3*c^39>,< 28, 4, a*c^3>,< 28, 12, a*b*c^6>,< 28, 12, a^3*b*c>,< 28, 12, a^3*b^3*c^4>,< 28, 12, a*b*c^24>,< 28, 12, a*b*c^2>,< 28, 12, a^3*b*c^5>,< 28, 12, a*b*c^12>,< 28, 12, a^3*b^3*c^2>,< 28, 12, a^3*b*c^3>,< 28, 12, a*b*c^4>,< 28, 12, a*b*c^36>,< 28, 12, a^3*b^3*c^6>,< 28, 12, a*b*c>,< 28, 12, a^3*b*c^6>,< 28, 12, a^3*b*c^24>,< 28, 12, a*b^3*c^4>,< 28, 12, a*b*c^5>,< 28, 12, a^3*b*c^2>,< 28, 12, a*b^3*c^2>,< 28, 12, a^3*b*c^12>,< 28, 12, a^3*b*c^4>,< 28, 12, a*b*c^3>,< 28, 12, a*b^3*c^6>,< 28, 12, a^3*b*c^36>,< 42, 2, c>,< 42, 2, c^13>,< 42, 2, c^5>,< 42, 2, c^37>,< 42, 2, c^25>,< 42, 2, c^31>,< 42, 2, b^4*c>,< 42, 2, b^4*c^13>,< 42, 2, b^4*c^5>,< 42, 2, b^4*c^37>,< 42, 2, b^4*c^25>,< 42, 2, b^4*c^31>,< 42, 2, a^2*c>,< 42, 2, a^2*c^13>,< 42, 2, a^2*c^5>,< 42, 2, a^2*c^37>,< 42, 2, a^2*c^25>,< 42, 2, a^2*c^31>,< 42, 2, a^2*b^4*c^2>,< 42, 2, a^2*b^4*c^26>,< 42, 2, a^2*b^4*c^10>,< 42, 2, a^2*b^4*c^4>,< 42, 2, a^2*b^4*c^8>,< 42, 2, a^2*b^4*c^20>,< 42, 2, a^2*b^4*c>,< 42, 2, a^2*b^4*c^13>,< 42, 2, a^2*b^4*c^5>,< 42, 2, a^2*b^4*c^37>,< 42, 2, a^2*b^4*c^25>,< 42, 2, a^2*b^4*c^31>,< 42, 2, b^4*c^4>,< 42, 2, b^4*c^38>,< 42, 2, b^4*c^20>,< 42, 2, b^4*c^22>,< 42, 2, b^4*c^2>,< 42, 2, b^4*c^40>,< 42, 2, a^2*c^4>,< 42, 2, a^2*c^38>,< 42, 2, a^2*c^20>,< 42, 2, a^2*c^22>,< 42, 2, a^2*c^2>,< 42, 2, a^2*c^40>,< 56, 6, b*c^6>,< 56, 6, b^5*c>,< 56, 6, b^3*c^4>,< 56, 6, b^5*c^24>,< 56, 6, b^5*c^2>,< 56, 6, b*c^5>,< 56, 6, b*c^12>,< 56, 6, b^7*c^2>,< 56, 6, b*c^3>,< 56, 6, b^5*c^4>,< 56, 6, b^5*c^36>,< 56, 6, b^3*c^6>,< 56, 6, b^7*c^6>,< 56, 6, b*c^36>,< 56, 6, b*c^4>,< 56, 6, b^5*c^3>,< 56, 6, b^3*c^2>,< 56, 6, b^5*c^12>,< 56, 6, b^5*c^5>,< 56, 6, b*c^2>,< 56, 6, b*c^24>,< 56, 6, b^7*c^4>,< 56, 6, b*c>,< 56, 6, b^5*c^6>,< 56, 6, a^2*b*c^6>,< 56, 6, a^2*b^5*c>,< 56, 6, a^2*b^3*c^4>,< 56, 6, a^2*b^5*c^24>,< 56, 6, a^2*b^5*c^2>,< 56, 6, a^2*b*c^5>,< 56, 6, a^2*b*c^12>,< 56, 6, a^2*b^7*c^2>,< 56, 6, a^2*b*c^3>,< 56, 6, a^2*b^5*c^4>,< 56, 6, a^2*b^5*c^36>,< 56, 6, a^2*b^3*c^6>,< 56, 6, a^2*b^7*c^6>,< 56, 6, a^2*b*c^36>,< 56, 6, a^2*b*c^4>,< 56, 6, a^2*b^5*c^3>,< 56, 6, a^2*b^3*c^2>,< 56, 6, a^2*b^5*c^12>,< 56, 6, a^2*b^5*c^5>,< 56, 6, a^2*b*c^2>,< 56, 6, a^2*b*c^24>,< 56, 6, a^2*b^7*c^4>,< 56, 6, a^2*b*c>,< 56, 6, a^2*b^5*c^6>,< 84, 4, b^2*c^2>,< 84, 4, b^2*c^26>,< 84, 4, b^2*c^10>,< 84, 4, b^2*c^4>,< 84, 4, b^2*c^8>,< 84, 4, b^2*c^20>,< 84, 4, b^2*c>,< 84, 4, b^2*c^13>,< 84, 4, b^2*c^5>,< 84, 4, b^2*c^37>,< 84, 4, b^2*c^25>,< 84, 4, b^2*c^31>,< 84, 4, a^2*b^2*c^2>,< 84, 4, a^2*b^2*c^26>,< 84, 4, a^2*b^2*c^10>,< 84, 4, a^2*b^2*c^4>,< 84, 4, a^2*b^2*c^8>,< 84, 4, a^2*b^2*c^20>,< 84, 4, a^2*b^2*c>,< 84, 4, a^2*b^2*c^13>,< 84, 4, a^2*b^2*c^5>,< 84, 4, a^2*b^2*c^37>,< 84, 4, a^2*b^2*c^25>,< 84, 4, a^2*b^2*c^31>,< 84, 4, a*c^2>,< 84, 4, a^3*c^40>,< 84, 4, a*c^10>,< 84, 4, a^3*c^32>,< 84, 4, a^3*c^22>,< 84, 4, a*c^20>,< 84, 4, a*c^26>,< 84, 4, a^3*c^16>,< 84, 4, a*c^34>,< 84, 4, a^3*c^8>,< 84, 4, a^3*c^38>,< 84, 4, a*c^4>,< 84, 4, a^3*c^4>,< 84, 4, a*c^38>,< 84, 4, a*c^8>,< 84, 4, a^3*c^34>,< 84, 4, a*c^16>,< 84, 4, a^3*c^26>,< 84, 4, a^3*c^20>,< 84, 4, a*c^22>,< 84, 4, a*c^32>,< 84, 4, a^3*c^10>,< 84, 4, a*c^40>,< 84, 4, a^3*c^2>,< 84, 4, a*c>,< 84, 4, a^3*b^2*c^34>,< 84, 4, a*c^5>,< 84, 4, a^3*b^2*c^2>,< 84, 4, a^3*b^2*c^4>,< 84, 4, a*c^31>,< 84, 4, a*c^13>,< 84, 4, a^3*b^2*c^22>,< 84, 4, a*b^2*c^10>,< 84, 4, a^3*c^25>,< 84, 4, a^3*c^19>,< 84, 4, a*b^2*c^16>,< 84, 4, a^3*b^2*c^16>,< 84, 4, a*c^19>,< 84, 4, a*c^25>,< 84, 4, a^3*b^2*c^10>,< 84, 4, a*b^2*c^22>,< 84, 4, a^3*c^13>,< 84, 4, a^3*c^31>,< 84, 4, a*b^2*c^4>,< 84, 4, a*b^2*c^2>,< 84, 4, a^3*c^5>,< 84, 4, a*b^2*c^34>,< 84, 4, a^3*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1*K.1,-1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,-1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1*K.1,-1,-1,1,-1,1,-1,K.1,-1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,1,K.1,1,-1,-1*K.1,1,K.1,-1*K.1,1,1,-1*K.1,1,K.1,-1*K.1,K.1,K.1,-1,1,-1,-1*K.1,1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,K.1,-1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,-1,1,K.1,-1,-1,1,-1,1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,K.1,1,-1*K.1,1,-1,K.1,1,-1*K.1,K.1,1,1,K.1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,1,-1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1*K.1,-1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1*K.1,-1,-1,1,-1,1,-1,K.1,-1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,1,K.1,1,-1,-1*K.1,1,K.1,-1*K.1,1,1,-1*K.1,1,K.1,-1*K.1,K.1,K.1,-1,1,-1,-1*K.1,1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,K.1,-1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1*K.1,K.1,K.1,-1*K.1,-1,1,K.1,-1,-1,1,-1,1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,K.1,1,-1*K.1,1,-1,K.1,1,-1*K.1,K.1,1,1,K.1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,1,-1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1,K.1,-1,-1,1,-1,-1,-1,K.1,-1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1,K.1,-1,1,K.1,1,-1*K.1,K.1,1,1,K.1,1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,K.1,K.1,K.1,-1*K.1,1,-1,-1*K.1,-1,-1,1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1,-1*K.1,-1,1,-1*K.1,1,K.1,-1*K.1,1,1,-1*K.1,1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,K.1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1,K.1,-1*K.1,K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1,K.1,-1,-1,1,-1,-1,-1,K.1,-1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1,K.1,-1,1,K.1,1,-1*K.1,K.1,1,1,K.1,1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1,-1*K.1,K.1,-1*K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,K.1,-1*K.1,1,-1,-1*K.1,-1,-1,1,-1,-1,-1,-1*K.1,-1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1,-1*K.1,-1,1,-1*K.1,1,K.1,-1*K.1,1,1,-1*K.1,1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,K.1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^-1,K.1,K.1^2,K.1^3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^3,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1^3,K.1^2,K.1^2,K.1^-1,K.1^-3,K.1,K.1,K.1^-3,K.1^3,K.1^-1,K.1^-3,K.1,K.1^3,K.1,K.1^-3,K.1,K.1^2,K.1,K.1^-2,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1,K.1,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^2,K.1,K.1^3,K.1^2,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-3,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^2,K.1^2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1,K.1^2,K.1^2,K.1^-3,K.1^-2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1,K.1,K.1^-2,K.1^3,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^3,K.1^-3,K.1,K.1^2,K.1^3,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^3,K.1^3,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1,K.1^2,K.1^2,K.1^-2,K.1^-3,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-2,K.1^3,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^3,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-3,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-3,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^-2,K.1^3,K.1^-1,K.1^3,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1,K.1^-3,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^3,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^2,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-3,K.1^3,K.1^-2,K.1,K.1,K.1,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^3,K.1,K.1^3,K.1^2,K.1^-3,K.1,K.1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^3,K.1^-1,K.1^-3,K.1,K.1,K.1^-2,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1^-3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^2,K.1^-3,K.1,K.1^-3,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^3,K.1^3,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^3,K.1,K.1^3,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^3,K.1^3,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1,K.1^2,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1,K.1^2,K.1^-3,K.1^-3,K.1,K.1^3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1^-3,K.1^-1,K.1,K.1^-1,K.1^3,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^3,K.1,K.1^-1,K.1,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^3,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1,K.1^2,K.1^2,K.1^3,K.1^3,K.1^-3,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^3,K.1^-1,K.1^-2,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^-1,K.1^-3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-3,K.1^2,K.1^3,K.1,K.1^-1,K.1,K.1^-3,K.1,K.1^-1,K.1,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1,K.1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^3,K.1,K.1,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1^-2,K.1^2,K.1,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1^2,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^2,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^-1,K.1,K.1^2,K.1^3,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^3,K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1,K.1,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^2,K.1,K.1^3,K.1^2,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-1,K.1^2,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,K.1^3,K.1,-1*K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-3,K.1^-3,-1*K.1^-2,K.1^3,-1*K.1^-3,K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^3,-1*K.1^-3,K.1^3,K.1^-1,-1*K.1,K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,K.1^-1,K.1^2,K.1^-3,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-3,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1,K.1^3,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^2,K.1^2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1,K.1,K.1^-2,K.1^3,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^3,K.1^-3,K.1,K.1^2,K.1^3,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1,K.1^-3,K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^3,K.1^3,-1*K.1^2,K.1^-3,-1*K.1^3,K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,K.1,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-3,-1*K.1^3,K.1^-3,K.1,-1*K.1^-1,K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,K.1,K.1^-2,K.1^3,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^3,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^2,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-3,K.1^3,K.1^-2,K.1,K.1,K.1,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,K.1^2,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-2,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,K.1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-3,K.1^-3,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-3,-1*K.1^3,K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-3,K.1^-1,K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-2,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^3,K.1^2,K.1^-3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^3,K.1^3,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^3,K.1,K.1^3,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^-3,K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,K.1^-2,K.1^-3,-1*K.1^-3,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-3,K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^3,-1*K.1^-3,K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^3,K.1,K.1^2,-1*K.1^-3,K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^3,K.1,K.1^-1,K.1,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-3,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-3,K.1,-1*K.1^-1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1,-1*K.1^2,K.1^2,K.1^3,-1*K.1^3,K.1^-3,-1*K.1,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^3,K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1,K.1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^3,K.1,K.1,K.1^-1,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1^-2,K.1^2,K.1,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^3,K.1^2,K.1^2,K.1^-2,K.1,K.1,-1*K.1^3,K.1^-1,-1*K.1,K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-3,-1*K.1^-3,K.1^3,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-3,K.1,-1*K.1^2,K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^-1,K.1,K.1^2,K.1^3,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^3,K.1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-3,K.1,K.1^2,K.1,K.1^-2,K.1^-3,K.1^3,K.1^-3,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1,K.1,K.1^3,K.1,K.1^-2,K.1,K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,K.1^3,K.1,-1*K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-3,K.1^-3,-1*K.1^-2,K.1^3,-1*K.1^-3,K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^3,-1*K.1^-3,K.1^3,K.1^-1,-1*K.1,K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,K.1^-1,K.1^2,K.1^-3,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-3,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1,K.1^3,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^2,K.1^2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^3,K.1^-3,K.1^3,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1,K.1,K.1^-2,K.1^3,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1,K.1^-3,K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^3,K.1^3,-1*K.1^2,K.1^-3,-1*K.1^3,K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,K.1,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-3,-1*K.1^3,K.1^-3,K.1,-1*K.1^-1,K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,K.1,K.1^-2,K.1^3,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-1,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,K.1^3,K.1^-1,K.1^3,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1,K.1^-3,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^3,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,K.1^2,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-2,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,K.1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-3,K.1^-3,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-3,-1*K.1^3,K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-3,K.1^-1,K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^3,K.1^2,K.1^-3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,K.1^-3,K.1,K.1^-3,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^3,K.1^3,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-3,K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,K.1^-2,K.1^-3,-1*K.1^-3,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-3,K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^3,-1*K.1^-3,K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^3,K.1,K.1^2,-1*K.1^-3,K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^3,K.1^-2,K.1^-3,K.1^-1,K.1,K.1^-1,K.1^3,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-3,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-3,K.1,-1*K.1^-1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1,-1*K.1^2,K.1^2,K.1^3,-1*K.1^3,K.1^-3,-1*K.1,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^3,K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-3,K.1^2,K.1^3,K.1,K.1^-1,K.1,K.1^-3,K.1,K.1^-1,K.1,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^3,K.1^2,K.1^2,K.1^-2,K.1,K.1,-1*K.1^3,K.1^-1,-1*K.1,K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-3,-1*K.1^-3,K.1^3,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-3,K.1,-1*K.1^2,K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^-1,K.1,K.1^2,K.1^3,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^2,K.1^-2,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-3,K.1^-3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-2,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^3,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1^3,K.1^2,K.1^2,K.1^-1,K.1^-3,K.1,K.1,K.1^-3,K.1^3,K.1^-1,K.1^-3,K.1,K.1^3,K.1,K.1^-3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1,K.1,K.1^3,K.1,K.1^-2,K.1,K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1,K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^-3,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-3,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^3,K.1^3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^2,K.1^2,K.1^2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-3,K.1,K.1^2,K.1^2,K.1^-3,K.1^-2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-1,K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^3,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1,K.1,K.1^-2,K.1^3,K.1^2,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^-2,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^3,K.1^3,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1,K.1^2,K.1^2,K.1^-2,K.1^-3,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^3,K.1^-3,K.1,K.1^-2,K.1^3,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^3,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-1,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-2,K.1^3,K.1^-3,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^3,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^3,K.1^-3,K.1,K.1,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-3,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-3,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-2,K.1^3,K.1^2,K.1^3,K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^3,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^3,K.1^3,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^3,K.1,K.1^3,K.1^2,K.1^-3,K.1,K.1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1^-3,K.1^2,K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^3,K.1^-1,K.1^-3,K.1,K.1,K.1^-2,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1,K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^2,K.1^-3,K.1^3,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1,K.1,K.1^-3,K.1^-2,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-3,K.1^3,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1^2,K.1^-3,K.1^-2,K.1^-3,K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^3,K.1^3,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^3,K.1^-2,K.1,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-3,K.1^-3,K.1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-3,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^3,K.1,K.1^-3,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^3,K.1^3,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^3,K.1^-2,K.1^2,K.1^-2,K.1^3,K.1,K.1^2,K.1^-3,K.1,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1^-1,K.1^-3,K.1^2,K.1^-2,K.1^3,K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^3,K.1^-3,K.1,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^3,K.1^3,K.1^-2,K.1,K.1^3,K.1^2,K.1^-2,K.1,K.1^-3,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-3,K.1^3,K.1^-3,K.1^3,K.1,K.1^2,K.1^-3,K.1^-3,K.1,K.1^3,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-3,K.1^3,K.1^-2,K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^-1,K.1^-3,K.1^3,K.1,K.1^2,K.1,K.1^3,K.1^3,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1^3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-3,K.1,K.1^-1,K.1^3,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-2,K.1^-3,K.1^-2,K.1,K.1^2,K.1^-3,K.1^-3,K.1^3,K.1,K.1^2,K.1^2,K.1^3,K.1^3,K.1^-3,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^3,K.1^-1,K.1^-2,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,K.1,K.1^3,K.1^-2,K.1^2,K.1^-3,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-3,K.1^3,K.1^-1,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1^-3,K.1^2,K.1^-2,K.1,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^2,K.1^-1,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^3,K.1^3,K.1^3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1,K.1^3,K.1^2,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^3,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^3,K.1^-3,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^-1,K.1^-3,K.1^-3,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,K.1^2,K.1^3,K.1,K.1^3,K.1^-3,K.1^3,K.1,K.1,K.1,K.1^-1,K.1^3,K.1^-3,K.1^2,K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,K.1^2,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^3,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^-3,K.1^2,K.1^3,K.1^2,K.1^-1,K.1^-2,K.1^3,K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^2,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,K.1^6,K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,K.1^10,K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^5,K.1^3,K.1^13,K.1^13,K.1^5,K.1,K.1,-1*K.1^3,K.1^9,K.1^11,K.1^11,-1*K.1^9,-1*K.1^5,K.1^3,-1*K.1^9,-1*K.1^11,K.1^5,-1*K.1^11,K.1^9,-1*K.1^11,-1*K.1,-1*K.1^11,K.1^13,K.1^9,K.1^5,K.1^9,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^13,K.1^11,K.1^3,K.1^11,K.1^3,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^5,K.1,K.1^13,-1*K.1^3,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,K.1^8,K.1^4,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^12,K.1^10,-1*K.1^12,K.1^8,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^12,K.1^10,K.1^6,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^10,K.1^12,K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^12,K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1,K.1^5,K.1^9,K.1^3,-1*K.1^12,K.1^4,-1*K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^2,-1*K.1^13,-1*K.1^12,-1*K.1^9,-1*K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^11,-1*K.1^11,K.1^13,K.1^5,K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^11,K.1^6,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^6,K.1^13,K.1,K.1^12,K.1^3,-1*K.1^10,-1*K.1^8,K.1,-1*K.1^6,-1*K.1^5,K.1^9,K.1^12,-1*K.1^10,-1*K.1^11,-1*K.1^2,K.1^3,K.1^5,-1*K.1^9,-1*K.1^5,K.1^10,K.1^8,K.1^2,-1*K.1^11,K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^6,K.1^4,K.1^10,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^12,K.1^4,-1*K.1^2,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^11,K.1,K.1^13,K.1,K.1^13,K.1^9,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,K.1^9,-1*K.1^11,K.1^5,K.1^3,-1*K.1^9,K.1^3,-1*K.1^5,K.1^3,K.1^13,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^5,K.1^9,K.1^5,K.1,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1,K.1^13,K.1^9,K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^6,K.1^12,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^12,K.1^12,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,K.1^2,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^12,K.1^2,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^4,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^10,K.1^10,K.1^10,K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,K.1^2,-1*K.1^10,K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^12,K.1,K.1^2,K.1^5,K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^11,K.1^13,-1*K.1^3,-1*K.1^8,-1*K.1^3,K.1^9,K.1^11,K.1^8,-1*K.1,-1*K.1^13,-1*K.1^2,-1*K.1^11,K.1^4,K.1^6,-1*K.1^13,K.1^8,K.1^9,-1*K.1^5,-1*K.1^2,K.1^4,K.1^3,K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^3,-1*K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^6,K.1^4,K.1^10,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^12,K.1^4,-1*K.1^2,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^11,K.1,K.1,K.1^9,K.1^13,K.1^13,-1*K.1^11,K.1^5,K.1^3,K.1^3,-1*K.1^5,-1*K.1^9,K.1^11,-1*K.1^5,-1*K.1^3,K.1^9,-1*K.1^3,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^3,K.1,K.1^5,K.1^9,K.1^5,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1,K.1^3,K.1^11,K.1^3,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1^9,K.1^13,K.1,-1*K.1^11,-1*K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^6,K.1^12,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^12,K.1^12,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,K.1^2,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^12,K.1^2,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^4,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^10,K.1^10,K.1^10,-1*K.1^13,K.1^9,K.1^5,K.1^11,K.1^2,-1*K.1^10,-1*K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1,K.1^2,-1*K.1^5,K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,K.1^3,-1*K.1^3,K.1,K.1^9,K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,K.1^13,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^8,K.1^3,-1*K.1^9,-1*K.1^11,K.1^8,K.1,K.1^13,-1*K.1^2,K.1^11,K.1^4,K.1^6,K.1^13,K.1^8,-1*K.1^9,K.1^5,-1*K.1^2,K.1^4,-1*K.1^3,K.1^12,K.1^11,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^3,-1*K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,K.1^6,K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,K.1^10,K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^3,K.1^13,K.1,K.1^13,K.1,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,K.1^5,-1*K.1^3,K.1^9,K.1^11,-1*K.1^5,K.1^11,-1*K.1^9,K.1^11,K.1,K.1^11,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^9,K.1^5,K.1^9,K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^13,K.1,K.1^5,K.1^3,-1*K.1^5,-1*K.1,-1*K.1^13,K.1^3,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,K.1^8,K.1^4,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^12,K.1^10,-1*K.1^12,K.1^8,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^8,-1*K.1^12,K.1^2,-1*K.1^12,K.1^10,K.1^6,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^10,K.1^12,K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^12,K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^12,K.1^4,K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^2,K.1^13,-1*K.1^12,K.1^9,-1*K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,-1*K.1^11,K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^11,K.1^6,-1*K.1^11,K.1^5,K.1^3,-1*K.1^6,-1*K.1^13,-1*K.1,K.1^12,-1*K.1^3,-1*K.1^10,-1*K.1^8,-1*K.1,-1*K.1^6,K.1^5,-1*K.1^9,K.1^12,-1*K.1^10,K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,K.1^5,K.1^10,K.1^8,K.1^2,K.1^11,K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^10,K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^9,K.1^11,K.1^3,K.1^11,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1^11,K.1,-1*K.1^3,-1*K.1^3,K.1^9,K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^13,-1*K.1,-1*K.1^9,-1*K.1^13,K.1^5,K.1,K.1^5,K.1^13,K.1^5,K.1^3,K.1^5,-1*K.1^11,K.1^13,K.1,K.1^13,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^9,K.1^11,K.1^3,-1*K.1,K.1^9,K.1,-1*K.1^3,-1*K.1^11,K.1^9,K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,K.1^12,K.1^6,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^4,K.1^10,K.1^8,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^10,K.1^12,K.1^8,K.1^10,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^2,K.1^4,K.1^2,K.1^12,K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^6,K.1^12,-1*K.1^2,K.1^10,K.1^8,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^3,K.1,K.1^13,-1*K.1^9,-1*K.1^8,K.1^12,K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^6,K.1^11,-1*K.1^8,-1*K.1^13,K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,-1*K.1^5,K.1^5,-1*K.1^11,K.1,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,-1*K.1^3,K.1^9,K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^5,-1*K.1,K.1^9,K.1^4,-1*K.1^11,-1*K.1^3,K.1^8,-1*K.1^9,-1*K.1^2,K.1^10,-1*K.1^3,K.1^4,-1*K.1,K.1^13,K.1^8,-1*K.1^2,K.1^5,-1*K.1^6,-1*K.1^9,K.1,-1*K.1^13,-1*K.1,K.1^2,-1*K.1^10,K.1^6,K.1^5,-1*K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,K.1^6,K.1^8,K.1^12,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^13,K.1^5,K.1^3,K.1^3,-1*K.1^13,K.1^11,K.1^11,-1*K.1^5,-1*K.1,K.1^9,K.1^9,K.1,K.1^13,K.1^5,K.1,-1*K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^13,-1*K.1,K.1^11,K.1,K.1^13,K.1,-1*K.1^3,K.1^9,K.1^5,K.1^9,K.1^5,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^5,-1*K.1^13,K.1^11,K.1^3,-1*K.1^5,-1*K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^6,K.1^4,K.1^4,K.1^6,K.1^12,-1*K.1^12,K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^8,K.1^8,K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,-1*K.1^12,K.1^10,K.1^8,-1*K.1^8,K.1^6,K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^12,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^10,K.1^4,K.1^4,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^5,K.1^6,-1*K.1^2,-1*K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^8,-1*K.1^3,K.1^6,K.1,-1*K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,K.1^3,-1*K.1^13,-1*K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^11,K.1^9,K.1^10,K.1^9,K.1^13,-1*K.1^5,-1*K.1^10,K.1^3,K.1^11,-1*K.1^6,K.1^5,K.1^12,-1*K.1^4,K.1^11,-1*K.1^10,K.1^13,-1*K.1,-1*K.1^6,K.1^12,-1*K.1^9,K.1^8,K.1^5,-1*K.1^13,K.1,K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^9,K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,K.1^6,K.1^8,K.1^12,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^5,K.1^3,K.1^11,K.1^3,K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^11,-1*K.1^11,K.1^5,K.1,-1*K.1^9,-1*K.1^9,-1*K.1,-1*K.1^13,-1*K.1^5,-1*K.1,K.1^9,K.1^13,K.1^9,K.1,K.1^9,K.1^11,K.1^9,-1*K.1^3,K.1,K.1^13,K.1,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^5,K.1^3,K.1^11,-1*K.1^13,K.1^5,K.1^13,-1*K.1^11,-1*K.1^3,K.1^5,-1*K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^6,K.1^4,K.1^4,K.1^6,K.1^12,-1*K.1^12,K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^8,K.1^8,K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,-1*K.1^12,K.1^10,K.1^8,-1*K.1^8,K.1^6,K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^12,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^10,K.1^4,K.1^4,K.1^4,K.1^2,K.1^2,K.1^2,K.1^11,K.1^13,K.1,-1*K.1^5,K.1^6,-1*K.1^2,K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^8,K.1^3,K.1^6,-1*K.1,-1*K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,-1*K.1^9,K.1^9,-1*K.1^3,K.1^13,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,-1*K.1^11,K.1^5,K.1^11,-1*K.1^9,K.1^10,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1^10,-1*K.1^3,-1*K.1^11,-1*K.1^6,-1*K.1^5,K.1^12,-1*K.1^4,-1*K.1^11,-1*K.1^10,-1*K.1^13,K.1,-1*K.1^6,K.1^12,K.1^9,K.1^8,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,K.1^9,K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^10,K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1,K.1^9,K.1^11,K.1^11,-1*K.1,K.1^3,K.1^3,-1*K.1^9,-1*K.1^13,K.1^5,K.1^5,K.1^13,K.1,K.1^9,K.1^13,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^11,-1*K.1^13,-1*K.1,-1*K.1^13,K.1^3,K.1^13,K.1,K.1^13,-1*K.1^11,K.1^5,K.1^9,K.1^5,K.1^9,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^9,-1*K.1,K.1^3,K.1^11,-1*K.1^9,K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,K.1^12,K.1^6,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^4,K.1^10,K.1^8,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^10,K.1^12,K.1^8,K.1^10,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^2,K.1^4,K.1^2,K.1^12,K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^6,K.1^12,-1*K.1^2,K.1^10,K.1^8,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^8,K.1^12,-1*K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^6,-1*K.1^11,-1*K.1^8,K.1^13,K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,K.1^5,-1*K.1^5,K.1^11,-1*K.1,-1*K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^3,K.1^5,-1*K.1^4,K.1^5,K.1,-1*K.1^9,K.1^4,K.1^11,K.1^3,K.1^8,K.1^9,-1*K.1^2,K.1^10,K.1^3,K.1^4,K.1,-1*K.1^13,K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^6,K.1^9,-1*K.1,K.1^13,K.1,K.1^2,-1*K.1^10,K.1^6,-1*K.1^5,-1*K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^4,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,K.1^8,K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^8,K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^5,K.1^11,-1*K.1,K.1^9,K.1^9,-1*K.1^11,K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,K.1^11,-1*K.1,K.1^3,K.1^13,-1*K.1^11,K.1^13,-1*K.1^3,K.1^13,-1*K.1^5,K.1^13,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^5,K.1^3,K.1^11,K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^9,-1*K.1^5,K.1^11,K.1,-1*K.1^11,K.1^5,K.1^9,K.1,-1*K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^6,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^6,K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^10,K.1^10,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^4,K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^2,K.1^12,K.1^12,K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^6,K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^9,-1*K.1^4,K.1^3,-1*K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,-1*K.1^13,K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^5,K.1,-1*K.1^5,-1*K.1^13,K.1^2,-1*K.1^13,K.1^11,K.1,-1*K.1^2,K.1^9,K.1^5,K.1^4,-1*K.1,K.1^8,-1*K.1^12,K.1^5,-1*K.1^2,K.1^11,-1*K.1^3,K.1^4,K.1^8,K.1^13,-1*K.1^10,-1*K.1,-1*K.1^11,K.1^3,K.1^11,-1*K.1^8,K.1^12,K.1^10,K.1^13,K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,-1*K.1^12,-1*K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,K.1^12,K.1^12,-1*K.1^12,K.1^10,K.1^4,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^10,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^13,K.1^5,K.1^9,K.1^5,K.1^9,-1*K.1^3,K.1^13,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^13,K.1^11,K.1,K.1,-1*K.1^11,-1*K.1^3,K.1^13,-1*K.1^11,-1*K.1,K.1^3,-1*K.1,K.1^11,-1*K.1,K.1^9,-1*K.1,-1*K.1^5,K.1^11,K.1^3,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^5,K.1,K.1^13,K.1,K.1^13,K.1^5,K.1^9,-1*K.1^3,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,K.1^4,K.1^12,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,K.1^10,K.1^2,K.1^6,-1*K.1^12,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^10,-1*K.1^4,K.1^10,K.1^6,-1*K.1^12,K.1^4,-1*K.1^4,K.1^10,-1*K.1^8,-1*K.1^12,K.1^6,K.1^2,-1*K.1^6,K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^12,K.1^12,K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^9,K.1^3,K.1^11,K.1^13,K.1^10,K.1^8,-1*K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^4,K.1^5,K.1^10,-1*K.1^11,K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,K.1,-1*K.1,-1*K.1^5,K.1^3,K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,-1*K.1^9,-1*K.1^13,K.1^9,K.1,-1*K.1^12,K.1,-1*K.1^3,-1*K.1^13,K.1^12,-1*K.1^5,-1*K.1^9,-1*K.1^10,K.1^13,-1*K.1^6,K.1^2,-1*K.1^9,K.1^12,-1*K.1^3,K.1^11,-1*K.1^10,-1*K.1^6,-1*K.1,K.1^4,K.1^13,K.1^3,-1*K.1^11,-1*K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1,-1*K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1,-1,-1,1,-1,1,1,1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,-1*K.1^12,-1*K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,K.1^12,K.1^12,-1*K.1^12,K.1^10,K.1^4,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^10,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^9,K.1^3,-1*K.1^13,K.1^5,K.1^5,-1*K.1^3,K.1^9,K.1^9,K.1^13,-1*K.1^11,-1*K.1,-1*K.1,K.1^11,K.1^3,-1*K.1^13,K.1^11,K.1,-1*K.1^3,K.1,-1*K.1^11,K.1,-1*K.1^9,K.1,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^9,K.1^11,K.1^3,K.1^11,-1*K.1^5,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1^5,-1*K.1^9,K.1^3,K.1^13,-1*K.1^3,K.1^9,K.1^5,K.1^13,K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,K.1^4,K.1^12,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,K.1^10,K.1^2,K.1^6,-1*K.1^12,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^10,-1*K.1^4,K.1^10,K.1^6,-1*K.1^12,K.1^4,-1*K.1^4,K.1^10,-1*K.1^8,-1*K.1^12,K.1^6,K.1^2,-1*K.1^6,K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^12,K.1^12,K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^10,K.1^8,K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^4,-1*K.1^5,K.1^10,K.1^11,K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,-1*K.1,K.1,K.1^5,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,K.1^9,K.1^13,-1*K.1^9,-1*K.1,-1*K.1^12,-1*K.1,K.1^3,K.1^13,K.1^12,K.1^5,K.1^9,-1*K.1^10,-1*K.1^13,-1*K.1^6,K.1^2,K.1^9,K.1^12,K.1^3,-1*K.1^11,-1*K.1^10,-1*K.1^6,K.1,K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,K.1,-1*K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1,-1,-1,1,-1,1,1,1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^4,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,K.1^8,K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^8,K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1,K.1^9,K.1^5,K.1^9,K.1^5,-1*K.1^11,K.1,-1*K.1^9,-1*K.1^9,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1^13,K.1^13,-1*K.1^3,-1*K.1^11,K.1,-1*K.1^3,-1*K.1^13,K.1^11,-1*K.1^13,K.1^3,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^9,K.1^3,K.1^11,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^9,K.1^13,K.1,K.1^13,K.1,K.1^9,K.1^5,-1*K.1^11,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^9,-1*K.1,-1*K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^6,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^6,K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^10,K.1^10,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^4,K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^2,K.1^12,K.1^12,K.1^12,K.1^6,K.1^6,K.1^6,K.1^5,K.1^11,K.1^3,K.1,-1*K.1^4,-1*K.1^6,-1*K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^10,K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^9,K.1^11,K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,-1*K.1^5,-1*K.1,K.1^5,K.1^13,K.1^2,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^2,-1*K.1^9,-1*K.1^5,K.1^4,K.1,K.1^8,-1*K.1^12,-1*K.1^5,-1*K.1^2,-1*K.1^11,K.1^3,K.1^4,K.1^8,-1*K.1^13,-1*K.1^10,K.1,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^8,K.1^12,K.1^10,-1*K.1^13,K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,K.1^6,K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,K.1^10,K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^5,K.1^3,K.1^13,K.1^13,K.1^5,K.1,K.1,-1*K.1^3,K.1^9,K.1^11,K.1^11,-1*K.1^9,-1*K.1^5,K.1^3,-1*K.1^9,-1*K.1^11,K.1^5,-1*K.1^11,K.1^9,K.1^11,K.1,K.1^11,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^9,K.1^5,K.1^9,K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^13,K.1,K.1^5,K.1^3,-1*K.1^5,-1*K.1,-1*K.1^13,K.1^3,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,K.1^8,K.1^4,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^12,K.1^10,-1*K.1^12,K.1^8,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,K.1^12,K.1^8,-1*K.1^10,-1*K.1^6,K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^8,K.1^12,-1*K.1^2,K.1^12,-1*K.1^10,-1*K.1^6,K.1^2,-1*K.1^2,K.1^12,K.1^4,-1*K.1^6,-1*K.1^10,K.1^8,K.1^10,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^6,K.1^10,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1,K.1^5,K.1^9,K.1^3,-1*K.1^12,K.1^4,-1*K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^2,-1*K.1^13,-1*K.1^12,-1*K.1^9,-1*K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^11,-1*K.1^11,K.1^13,K.1^5,K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^11,K.1^6,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^6,K.1^13,K.1,K.1^12,K.1^3,-1*K.1^10,-1*K.1^8,K.1,-1*K.1^6,-1*K.1^5,K.1^9,K.1^12,-1*K.1^10,-1*K.1^11,-1*K.1^2,K.1^3,K.1^5,-1*K.1^9,-1*K.1^5,K.1^10,K.1^8,K.1^2,-1*K.1^11,K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^6,K.1^4,K.1^10,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^12,K.1^4,-1*K.1^2,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^11,K.1,K.1^13,K.1,K.1^13,K.1^9,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,K.1^9,-1*K.1^11,K.1^5,K.1^3,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^3,K.1,K.1^5,K.1^9,K.1^5,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1,K.1^3,K.1^11,K.1^3,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1^9,K.1^13,K.1,-1*K.1^11,-1*K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^6,K.1^12,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^12,K.1^12,-1*K.1^2,-1*K.1^10,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^6,K.1^2,K.1^2,K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,K.1^2,-1*K.1^10,K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^12,K.1,K.1^2,K.1^5,K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^11,K.1^13,-1*K.1^3,-1*K.1^8,-1*K.1^3,K.1^9,K.1^11,K.1^8,-1*K.1,-1*K.1^13,-1*K.1^2,-1*K.1^11,K.1^4,K.1^6,-1*K.1^13,K.1^8,K.1^9,-1*K.1^5,-1*K.1^2,K.1^4,K.1^3,K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^3,-1*K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^6,K.1^4,K.1^10,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^12,K.1^4,-1*K.1^2,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^11,K.1,K.1,K.1^9,K.1^13,K.1^13,-1*K.1^11,K.1^5,K.1^3,K.1^3,-1*K.1^5,-1*K.1^9,K.1^11,-1*K.1^5,-1*K.1^3,K.1^9,-1*K.1^3,K.1^5,K.1^3,K.1^13,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^5,K.1^9,K.1^5,K.1,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1,K.1^13,K.1^9,K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^6,K.1^12,K.1^8,K.1^6,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^12,K.1^12,-1*K.1^2,-1*K.1^10,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^6,K.1^2,K.1^2,K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^13,K.1^9,K.1^5,K.1^11,K.1^2,-1*K.1^10,-1*K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1,K.1^2,-1*K.1^5,K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,K.1^3,-1*K.1^3,K.1,K.1^9,K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,K.1^13,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^8,K.1^3,-1*K.1^9,-1*K.1^11,K.1^8,K.1,K.1^13,-1*K.1^2,K.1^11,K.1^4,K.1^6,K.1^13,K.1^8,-1*K.1^9,K.1^5,-1*K.1^2,K.1^4,-1*K.1^3,K.1^12,K.1^11,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^3,-1*K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,K.1^6,K.1^8,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,K.1^10,K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^3,K.1^13,K.1,K.1^13,K.1,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,K.1^5,-1*K.1^3,K.1^9,K.1^11,-1*K.1^5,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1,-1*K.1^11,K.1^13,K.1^9,K.1^5,K.1^9,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^13,K.1^11,K.1^3,K.1^11,K.1^3,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^5,K.1,K.1^13,-1*K.1^3,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,K.1^8,K.1^4,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^12,K.1^10,-1*K.1^12,K.1^8,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,K.1^12,K.1^8,-1*K.1^10,-1*K.1^6,K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^8,K.1^12,-1*K.1^2,K.1^12,-1*K.1^10,-1*K.1^6,K.1^2,-1*K.1^2,K.1^12,K.1^4,-1*K.1^6,-1*K.1^10,K.1^8,K.1^10,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^6,K.1^10,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^12,K.1^4,K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^2,K.1^13,-1*K.1^12,K.1^9,-1*K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,-1*K.1^11,K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^11,K.1^6,-1*K.1^11,K.1^5,K.1^3,-1*K.1^6,-1*K.1^13,-1*K.1,K.1^12,-1*K.1^3,-1*K.1^10,-1*K.1^8,-1*K.1,-1*K.1^6,K.1^5,-1*K.1^9,K.1^12,-1*K.1^10,K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,K.1^5,K.1^10,K.1^8,K.1^2,K.1^11,K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^10,K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^9,K.1^11,K.1^3,K.1^11,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1^11,K.1,-1*K.1^3,-1*K.1^3,K.1^9,K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^13,-1*K.1,-1*K.1^9,-1*K.1^13,K.1^5,K.1,K.1^5,K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^11,-1*K.1^13,-1*K.1,-1*K.1^13,K.1^3,K.1^13,K.1,K.1^13,-1*K.1^11,K.1^5,K.1^9,K.1^5,K.1^9,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^9,-1*K.1,K.1^3,K.1^11,-1*K.1^9,K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,K.1^12,K.1^6,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^4,K.1^10,K.1^8,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^8,-1*K.1^10,-1*K.1^2,K.1^4,K.1^6,K.1^6,K.1^6,K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^6,-1*K.1^6,K.1^8,K.1^12,K.1^4,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^8,-1*K.1^8,K.1^4,K.1^10,K.1^10,K.1^10,K.1^12,K.1^12,-1*K.1^12,K.1^3,K.1,K.1^13,-1*K.1^9,-1*K.1^8,K.1^12,K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^6,K.1^11,-1*K.1^8,-1*K.1^13,K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,-1*K.1^5,K.1^5,-1*K.1^11,K.1,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,-1*K.1^3,K.1^9,K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^5,-1*K.1,K.1^9,K.1^4,-1*K.1^11,-1*K.1^3,K.1^8,-1*K.1^9,-1*K.1^2,K.1^10,-1*K.1^3,K.1^4,-1*K.1,K.1^13,K.1^8,-1*K.1^2,K.1^5,-1*K.1^6,-1*K.1^9,K.1,-1*K.1^13,-1*K.1,K.1^2,-1*K.1^10,K.1^6,K.1^5,-1*K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,K.1^6,K.1^8,K.1^12,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^13,K.1^5,K.1^3,K.1^3,-1*K.1^13,K.1^11,K.1^11,-1*K.1^5,-1*K.1,K.1^9,K.1^9,K.1,K.1^13,K.1^5,K.1,-1*K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1,K.1^9,K.1^11,K.1^9,-1*K.1^3,K.1,K.1^13,K.1,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^5,K.1^3,K.1^11,-1*K.1^13,K.1^5,K.1^13,-1*K.1^11,-1*K.1^3,K.1^5,-1*K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^6,K.1^4,K.1^4,K.1^6,K.1^12,-1*K.1^12,K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^6,K.1^4,K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^12,-1*K.1^10,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^10,K.1^12,K.1^4,-1*K.1^12,K.1^10,K.1^12,K.1^2,K.1^8,K.1^10,K.1^10,K.1^10,-1*K.1^12,-1*K.1^12,K.1^6,K.1^8,K.1^2,-1*K.1^12,K.1^4,K.1^6,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^5,K.1^6,-1*K.1^2,-1*K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^8,-1*K.1^3,K.1^6,K.1,-1*K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,K.1^3,-1*K.1^13,-1*K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^11,K.1^9,K.1^10,K.1^9,K.1^13,-1*K.1^5,-1*K.1^10,K.1^3,K.1^11,-1*K.1^6,K.1^5,K.1^12,-1*K.1^4,K.1^11,-1*K.1^10,K.1^13,-1*K.1,-1*K.1^6,K.1^12,-1*K.1^9,K.1^8,K.1^5,-1*K.1^13,K.1,K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^9,K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^10,K.1^6,K.1^8,K.1^12,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^2,K.1^5,K.1^3,K.1^11,K.1^3,K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^11,-1*K.1^11,K.1^5,K.1,-1*K.1^9,-1*K.1^9,-1*K.1,-1*K.1^13,-1*K.1^5,-1*K.1,K.1^9,K.1^13,K.1^9,K.1,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^13,-1*K.1,K.1^11,K.1,K.1^13,K.1,-1*K.1^3,K.1^9,K.1^5,K.1^9,K.1^5,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^5,-1*K.1^13,K.1^11,K.1^3,-1*K.1^5,-1*K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,K.1^10,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^6,K.1^4,K.1^4,K.1^6,K.1^12,-1*K.1^12,K.1^6,K.1^2,K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^6,K.1^4,K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^12,-1*K.1^10,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^10,K.1^12,K.1^4,-1*K.1^12,K.1^10,K.1^12,K.1^2,K.1^8,K.1^10,K.1^10,K.1^10,-1*K.1^12,-1*K.1^12,K.1^6,K.1^8,K.1^2,-1*K.1^12,K.1^4,K.1^6,K.1^6,-1*K.1^10,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^11,K.1^13,K.1,-1*K.1^5,K.1^6,-1*K.1^2,K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^8,K.1^3,K.1^6,-1*K.1,-1*K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,-1*K.1^9,K.1^9,-1*K.1^3,K.1^13,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,-1*K.1^11,K.1^5,K.1^11,-1*K.1^9,K.1^10,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1^10,-1*K.1^3,-1*K.1^11,-1*K.1^6,-1*K.1^5,K.1^12,-1*K.1^4,-1*K.1^11,-1*K.1^10,-1*K.1^13,K.1,-1*K.1^6,K.1^12,K.1^9,K.1^8,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,K.1^9,K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^10,K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^8,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1,K.1^9,K.1^11,K.1^11,-1*K.1,K.1^3,K.1^3,-1*K.1^9,-1*K.1^13,K.1^5,K.1^5,K.1^13,K.1,K.1^9,K.1^13,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^5,K.1^3,K.1^5,-1*K.1^11,K.1^13,K.1,K.1^13,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^9,K.1^11,K.1^3,-1*K.1,K.1^9,K.1,-1*K.1^3,-1*K.1^11,K.1^9,K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,K.1^12,K.1^6,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^4,K.1^10,K.1^8,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^8,-1*K.1^10,-1*K.1^2,K.1^4,K.1^6,K.1^6,K.1^6,K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^6,-1*K.1^6,K.1^8,K.1^12,K.1^4,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^8,-1*K.1^8,K.1^4,K.1^10,K.1^10,K.1^10,K.1^12,K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^8,K.1^12,-1*K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^6,-1*K.1^11,-1*K.1^8,K.1^13,K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,K.1^5,-1*K.1^5,K.1^11,-1*K.1,-1*K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^3,K.1^5,-1*K.1^4,K.1^5,K.1,-1*K.1^9,K.1^4,K.1^11,K.1^3,K.1^8,K.1^9,-1*K.1^2,K.1^10,K.1^3,K.1^4,K.1,-1*K.1^13,K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^6,K.1^9,-1*K.1,K.1^13,K.1,K.1^2,-1*K.1^10,K.1^6,-1*K.1^5,-1*K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,-1*K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^4,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,K.1^8,K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^8,K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^5,K.1^11,-1*K.1,K.1^9,K.1^9,-1*K.1^11,K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,K.1^11,-1*K.1,K.1^3,K.1^13,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^9,K.1^3,K.1^11,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^9,K.1^13,K.1,K.1^13,K.1,K.1^9,K.1^5,-1*K.1^11,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^9,-1*K.1,-1*K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^6,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,K.1^4,K.1^12,K.1^8,-1*K.1^2,K.1^10,K.1^10,K.1^10,-1*K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^12,K.1^4,-1*K.1^10,K.1^4,K.1^8,-1*K.1^2,K.1^10,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^12,-1*K.1^8,K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^6,K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^9,-1*K.1^4,K.1^3,-1*K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,-1*K.1^13,K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^5,K.1,-1*K.1^5,-1*K.1^13,K.1^2,-1*K.1^13,K.1^11,K.1,-1*K.1^2,K.1^9,K.1^5,K.1^4,-1*K.1,K.1^8,-1*K.1^12,K.1^5,-1*K.1^2,K.1^11,-1*K.1^3,K.1^4,K.1^8,K.1^13,-1*K.1^10,-1*K.1,-1*K.1^11,K.1^3,K.1^11,-1*K.1^8,K.1^12,K.1^10,K.1^13,K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,-1*K.1^12,-1*K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,K.1^12,K.1^12,-1*K.1^12,K.1^10,K.1^4,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^10,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^13,K.1^5,K.1^9,K.1^5,K.1^9,-1*K.1^3,K.1^13,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^13,K.1^11,K.1,K.1,-1*K.1^11,-1*K.1^3,K.1^13,-1*K.1^11,-1*K.1,K.1^3,-1*K.1,K.1^11,K.1,-1*K.1^9,K.1,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^9,K.1^11,K.1^3,K.1^11,-1*K.1^5,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1^5,-1*K.1^9,K.1^3,K.1^13,-1*K.1^3,K.1^9,K.1^5,K.1^13,K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,K.1^4,K.1^12,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^2,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^12,-1*K.1^4,K.1^4,-1*K.1^10,K.1^8,K.1^12,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^6,K.1^10,K.1^4,-1*K.1^8,K.1^6,-1*K.1^2,K.1^10,K.1^10,K.1^12,K.1^2,K.1^2,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^9,K.1^3,K.1^11,K.1^13,K.1^10,K.1^8,-1*K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^4,K.1^5,K.1^10,-1*K.1^11,K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,K.1,-1*K.1,-1*K.1^5,K.1^3,K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,-1*K.1^9,-1*K.1^13,K.1^9,K.1,-1*K.1^12,K.1,-1*K.1^3,-1*K.1^13,K.1^12,-1*K.1^5,-1*K.1^9,-1*K.1^10,K.1^13,-1*K.1^6,K.1^2,-1*K.1^9,K.1^12,-1*K.1^3,K.1^11,-1*K.1^10,-1*K.1^6,-1*K.1,K.1^4,K.1^13,K.1^3,-1*K.1^11,-1*K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1,-1*K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,-1,1,-1,1,-1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,1,1,1,-1,1,-1,-1,-1,-1*K.1^7,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,K.1^7,K.1^7,1,K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,-1*K.1^12,-1*K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,K.1^12,K.1^12,-1*K.1^12,K.1^10,K.1^4,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^4,K.1^10,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^9,K.1^3,-1*K.1^13,K.1^5,K.1^5,-1*K.1^3,K.1^9,K.1^9,K.1^13,-1*K.1^11,-1*K.1,-1*K.1,K.1^11,K.1^3,-1*K.1^13,K.1^11,K.1,-1*K.1^3,K.1,-1*K.1^11,-1*K.1,K.1^9,-1*K.1,-1*K.1^5,K.1^11,K.1^3,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^11,K.1^5,K.1,K.1^13,K.1,K.1^13,K.1^5,K.1^9,-1*K.1^3,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^8,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,K.1^4,K.1^12,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^2,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^12,-1*K.1^4,K.1^4,-1*K.1^10,K.1^8,K.1^12,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^6,K.1^6,K.1^10,K.1^4,-1*K.1^8,K.1^6,-1*K.1^2,K.1^10,K.1^10,K.1^12,K.1^2,K.1^2,K.1^2,K.1^8,K.1^8,-1*K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^10,K.1^8,K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^4,-1*K.1^5,K.1^10,K.1^11,K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,-1*K.1,K.1,K.1^5,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,K.1^9,K.1^13,-1*K.1^9,-1*K.1,-1*K.1^12,-1*K.1,K.1^3,K.1^13,K.1^12,K.1^5,K.1^9,-1*K.1^10,-1*K.1^13,-1*K.1^6,K.1^2,K.1^9,K.1^12,K.1^3,-1*K.1^11,-1*K.1^10,-1*K.1^6,K.1,K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,K.1,-1*K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,-1,1,-1,1,-1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,1,1,1,-1,1,-1,-1,-1,K.1^7,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1*K.1^7,-1*K.1^7,1,-1*K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^4,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,K.1^8,K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^8,K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1,K.1^9,K.1^5,K.1^9,K.1^5,-1*K.1^11,K.1,-1*K.1^9,-1*K.1^9,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1^13,K.1^13,-1*K.1^3,-1*K.1^11,K.1,-1*K.1^3,-1*K.1^13,K.1^11,-1*K.1^13,K.1^3,K.1^13,-1*K.1^5,K.1^13,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1^5,K.1^3,K.1^11,K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1,-1*K.1^13,-1*K.1,-1*K.1^9,-1*K.1^5,K.1^11,K.1,-1*K.1^11,K.1^5,K.1^9,K.1,-1*K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^6,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,K.1^4,K.1^12,K.1^8,-1*K.1^2,K.1^10,K.1^10,K.1^10,-1*K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^12,K.1^4,-1*K.1^10,K.1^4,K.1^8,-1*K.1^2,K.1^10,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^12,-1*K.1^8,K.1^2,K.1^8,K.1^6,-1*K.1^10,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^6,K.1^5,K.1^11,K.1^3,K.1,-1*K.1^4,-1*K.1^6,-1*K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^10,K.1^10,K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^9,K.1^11,K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,-1*K.1^5,-1*K.1,K.1^5,K.1^13,K.1^2,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^2,-1*K.1^9,-1*K.1^5,K.1^4,K.1,K.1^8,-1*K.1^12,-1*K.1^5,-1*K.1^2,-1*K.1^11,K.1^3,K.1^4,K.1^8,-1*K.1^13,-1*K.1^10,K.1,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^8,K.1^12,K.1^10,-1*K.1^13,K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^6,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,K.1^12,-1*K.1^8,K.1^10,K.1^4,-1*K.1^12,K.1^6,K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,K.1^6,K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^8,K.1^6,K.1^8,K.1^12,K.1^10,-1*K.1^6,K.1^6,K.1^12,-1*K.1^8,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^12,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,-1*K.1^11,K.1,K.1^11,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,K.1,K.1^9,-1*K.1^5,-1*K.1^9,K.1^13,K.1^11,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^5,K.1^3,K.1^5,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^11,K.1^5,-1*K.1,K.1^3,-1*K.1^13,K.1^9,-1*K.1^9,K.1^9,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^5,K.1^11,K.1^13,K.1^3,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^3,K.1^11,K.1^9,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^5,K.1^9,K.1^11,-1*K.1^3,K.1,K.1^5,-1*K.1^5,-1*K.1^13,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,-1*K.1^4,K.1^8,-1*K.1^12,K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,K.1^6,K.1^12,K.1^2,K.1^8,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^10,K.1^4,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^12,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,K.1^4,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^8,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,K.1^12,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^8,K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^12,K.1^2,K.1^6,K.1^4,K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^4,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^2,K.1^10,-1*K.1^12,K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1,K.1^5,K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^5,K.1^9,K.1^5,-1*K.1,-1*K.1^3,-1*K.1^11,K.1^3,K.1^11,K.1,K.1^13,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,K.1,K.1^11,-1*K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,K.1^3,-1*K.1^9,K.1^13,-1*K.1^11,K.1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^3,K.1^13,K.1^3,K.1^9,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,K.1^11,-1*K.1,K.1^5,K.1^5,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^11,K.1^13,-1*K.1^11,K.1,K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^3,K.1^11,-1*K.1^13,-1*K.1^9,K.1^9,K.1,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,K.1^10,-1*K.1^6,K.1^2,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^10,K.1^8,-1*K.1^2,K.1^12,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^12,-1*K.1^2,K.1^4,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^12,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,K.1^10,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^12,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^8,K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^12,K.1^2,K.1^6,K.1^4,K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^4,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^2,K.1^10,-1*K.1^12,-1*K.1^3,K.1^13,K.1^3,K.1,-1*K.1^5,-1*K.1^9,K.1^5,K.1^13,K.1^5,-1*K.1^9,-1*K.1^5,K.1,K.1^3,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^9,K.1^11,K.1^9,-1*K.1^13,-1*K.1,-1*K.1^11,-1*K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,-1*K.1^3,K.1^9,-1*K.1^13,K.1^11,-1*K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^9,K.1^3,K.1,K.1^11,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^11,K.1^3,K.1^5,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,K.1^9,K.1^5,K.1^3,-1*K.1^11,K.1^13,K.1^9,-1*K.1^9,-1*K.1,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^10,-1*K.1^6,K.1^2,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^10,K.1^8,-1*K.1^2,K.1^12,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^12,-1*K.1^2,K.1^4,-1*K.1^10,K.1^12,K.1^4,-1*K.1^2,K.1^12,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,K.1^10,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^12,-1*K.1^6,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^6,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,K.1^12,-1*K.1^8,K.1^10,K.1^4,-1*K.1^12,K.1^6,K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,K.1^6,K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^8,K.1^6,K.1^8,K.1^12,K.1^10,-1*K.1^6,K.1^6,K.1^12,-1*K.1^8,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^12,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^5,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^3,K.1^11,K.1^3,K.1^13,K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1,K.1^13,K.1^3,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,K.1^11,-1*K.1^5,K.1,-1*K.1^3,K.1^13,-1*K.1^9,K.1^9,-1*K.1^9,K.1^11,K.1,K.1^11,K.1^5,-1*K.1,K.1^5,K.1^9,-1*K.1^5,K.1^3,-1*K.1^13,K.1^9,K.1^9,K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1^3,K.1,-1*K.1^3,K.1^13,K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^5,K.1^5,K.1^13,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^4,K.1^8,-1*K.1^12,K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,K.1^6,K.1^12,K.1^2,K.1^8,-1*K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^10,K.1^4,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^12,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,K.1^4,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^8,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,K.1^12,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^8,K.1^10,K.1^2,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^12,-1*K.1^2,K.1^4,K.1^10,-1*K.1^4,-1*K.1^10,K.1^8,K.1^2,K.1^4,-1*K.1^4,K.1^8,K.1^10,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,K.1^6,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,-1*K.1^3,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^9,K.1^5,K.1^9,K.1^11,K.1^3,K.1,-1*K.1^9,K.1,K.1^3,K.1^11,K.1^9,K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^6,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^5,K.1,K.1^3,-1*K.1^9,K.1^11,K.1^13,-1*K.1^13,K.1^13,K.1^5,K.1^3,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^11,-1*K.1^9,K.1^3,-1*K.1^9,K.1^11,K.1^9,-1*K.1^5,K.1^13,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^5,K.1^9,-1*K.1^3,K.1,-1*K.1,K.1^11,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^12,-1*K.1^10,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^8,K.1^6,-1*K.1^10,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^2,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,K.1^12,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^12,-1*K.1^10,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^2,K.1^12,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^6,K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^6,K.1^2,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^12,-1*K.1^10,-1*K.1^4,K.1^10,K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^12,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,K.1^6,K.1^12,K.1^8,-1*K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^9,K.1^11,K.1^9,K.1^3,K.1,K.1^13,-1*K.1,K.1^11,-1*K.1,K.1^13,K.1,K.1^3,K.1^9,K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,-1*K.1^9,-1*K.1^13,-1*K.1^11,K.1^5,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,K.1^11,K.1^13,K.1,-1*K.1^13,-1*K.1^5,K.1^3,K.1,K.1,K.1^13,K.1^9,K.1^3,K.1^5,-1*K.1^11,K.1^5,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^5,K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^12,K.1^6,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^8,K.1^8,K.1^10,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,K.1^8,K.1^10,K.1^2,K.1^10,K.1^10,K.1^6,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,-1*K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,K.1^8,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^4,K.1^12,-1*K.1^10,-1*K.1^10,K.1^8,K.1^4,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^2,K.1^12,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^6,K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^6,K.1^2,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^12,-1*K.1^10,-1*K.1^4,K.1^10,K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^12,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,K.1^6,K.1^12,K.1^8,-1*K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,-1*K.1^11,K.1,-1*K.1^13,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^5,K.1^9,K.1^5,K.1^3,K.1^11,K.1^13,-1*K.1^5,K.1^13,K.1^11,K.1^3,K.1^5,-1*K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,K.1^9,K.1^13,K.1^11,-1*K.1^5,K.1^3,K.1,-1*K.1,K.1,K.1^9,K.1^11,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,K.1^5,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^11,-1*K.1^5,K.1^3,K.1^5,-1*K.1^9,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1^9,K.1^5,-1*K.1^11,K.1^13,-1*K.1^13,K.1^3,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^12,K.1^6,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^8,K.1^8,K.1^10,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,K.1^8,K.1^10,K.1^2,K.1^10,K.1^10,K.1^6,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,-1*K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^10,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,K.1^8,K.1^12,-1*K.1^6,K.1^8,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^4,K.1^12,-1*K.1^10,-1*K.1^10,K.1^8,K.1^4,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^8,K.1^10,K.1^2,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^12,-1*K.1^2,K.1^4,K.1^10,-1*K.1^4,-1*K.1^10,K.1^8,K.1^2,K.1^4,-1*K.1^4,K.1^8,K.1^10,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^8,-1*K.1^12,K.1^6,-1*K.1^5,K.1^3,K.1^5,K.1^11,K.1^13,K.1,-1*K.1^13,K.1^3,-1*K.1^13,K.1,K.1^13,K.1^11,K.1^5,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^11,-1*K.1^9,K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^6,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^5,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1,K.1^3,K.1,K.1^13,-1*K.1,-1*K.1^9,K.1^11,K.1^13,K.1^13,K.1,K.1^5,K.1^11,K.1^9,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^13,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^5,-1*K.1^9,K.1^3,-1*K.1,K.1,-1*K.1^11,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^12,-1*K.1^10,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^8,K.1^6,-1*K.1^10,-1*K.1^8,K.1^10,K.1^6,K.1^2,K.1^2,K.1^12,-1*K.1^12,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,K.1^12,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^12,-1*K.1^10,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^10,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,K.1^2,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,-1*K.1^12,K.1^2,K.1^12,K.1^4,-1*K.1^8,-1*K.1^2,K.1^2,K.1^4,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^10,K.1^13,K.1^5,-1*K.1^13,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^5,-1*K.1^3,K.1^11,K.1^3,K.1^9,-1*K.1^13,-1*K.1,K.1^13,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^3,K.1^13,-1*K.1^5,K.1^13,K.1^11,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1,K.1^9,K.1^3,K.1^3,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1,K.1^5,-1*K.1^11,K.1^11,-1*K.1^9,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,K.1^6,K.1^12,-1*K.1^4,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^10,-1*K.1^10,K.1^2,K.1^4,K.1^10,K.1^12,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^10,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^6,K.1^2,K.1^6,K.1^4,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^2,K.1^4,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^6,K.1^12,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,K.1^12,K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^6,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^8,-1*K.1^6,K.1^12,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^6,K.1^12,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^10,-1*K.1^6,K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^4,-1*K.1,-1*K.1^9,K.1,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^9,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1,K.1^13,-1*K.1,-1*K.1^13,K.1^5,K.1^9,K.1^3,K.1^13,K.1^3,K.1^9,K.1^5,-1*K.1^13,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1,K.1^3,K.1^9,K.1^13,K.1^5,K.1^11,-1*K.1^11,K.1^11,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^5,K.1^13,K.1^9,K.1^13,K.1^5,-1*K.1^13,K.1,K.1^11,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^3,K.1^11,K.1,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^3,K.1^5,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,K.1^8,K.1^12,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^12,-1*K.1^10,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,K.1^10,K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^12,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^4,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^12,K.1^12,K.1^4,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,K.1^12,K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^6,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^8,-1*K.1^6,K.1^12,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^6,K.1^12,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^10,-1*K.1^6,K.1^4,K.1^8,K.1^10,-1*K.1^8,-1*K.1^4,K.1,K.1^9,-1*K.1,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1^9,-1*K.1^11,K.1^3,K.1^11,K.1^5,-1*K.1,-1*K.1^13,K.1,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^5,K.1^13,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^5,-1*K.1^11,K.1^11,-1*K.1^11,K.1,-1*K.1^9,K.1,K.1^3,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^13,K.1^5,K.1^11,K.1^11,K.1^3,-1*K.1,K.1^5,-1*K.1^13,-1*K.1^9,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^13,K.1^9,-1*K.1^3,K.1^3,-1*K.1^5,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,K.1^8,K.1^12,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^10,K.1^2,-1*K.1^4,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^12,-1*K.1^10,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^2,K.1^10,K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^12,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^10,K.1^4,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^12,K.1^12,K.1^4,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,K.1^2,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,-1*K.1^12,K.1^2,K.1^12,K.1^4,-1*K.1^8,-1*K.1^2,K.1^2,K.1^4,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^4,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^4,K.1^6,K.1^10,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^5,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^13,K.1,-1*K.1^13,-1*K.1,K.1^9,K.1^5,K.1^11,K.1,K.1^11,K.1^5,K.1^9,-1*K.1,-1*K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,-1*K.1^13,K.1^11,K.1^5,K.1,K.1^9,K.1^3,-1*K.1^3,K.1^3,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^9,K.1,K.1^5,K.1,K.1^9,-1*K.1,K.1^13,K.1^3,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,K.1^11,K.1^3,K.1^13,-1*K.1,-1*K.1^5,K.1^11,-1*K.1^11,K.1^9,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^6,K.1^12,-1*K.1^4,K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^10,-1*K.1^10,K.1^2,K.1^4,K.1^10,K.1^12,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^10,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^6,K.1^2,K.1^6,K.1^4,K.1^8,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^2,K.1^4,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^10,K.1^8,K.1^4,-1*K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^6,K.1^12,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^6,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,K.1^12,-1*K.1^8,K.1^10,K.1^4,-1*K.1^12,K.1^6,K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,K.1^6,K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^10,K.1^6,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^12,K.1^8,-1*K.1^8,-1*K.1^10,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^12,K.1^10,K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^2,-1*K.1^11,K.1,K.1^11,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,K.1,K.1^9,-1*K.1^5,-1*K.1^9,K.1^13,K.1^11,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^5,K.1^3,K.1^5,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,K.1^11,-1*K.1^5,K.1,-1*K.1^3,K.1^13,-1*K.1^9,K.1^9,-1*K.1^9,K.1^11,K.1,K.1^11,K.1^5,-1*K.1,K.1^5,K.1^9,-1*K.1^5,K.1^3,-1*K.1^13,K.1^9,K.1^9,K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1^3,K.1,-1*K.1^3,K.1^13,K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^5,K.1^5,K.1^13,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,K.1^8,K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^8,K.1^10,K.1^8,-1*K.1^4,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^6,K.1^6,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,K.1^12,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^12,K.1^2,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^4,K.1^8,K.1^10,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^8,K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^12,K.1^2,K.1^6,K.1^4,K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^6,K.1^6,K.1^4,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^12,K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1,K.1^5,K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^5,K.1^9,K.1^5,-1*K.1,-1*K.1^3,-1*K.1^11,K.1^3,K.1^11,K.1,K.1^13,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,K.1,K.1^11,-1*K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,-1*K.1^3,K.1^9,-1*K.1^13,K.1^11,-1*K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^9,K.1^3,K.1,K.1^11,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^11,K.1^3,K.1^5,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,K.1^9,K.1^5,K.1^3,-1*K.1^11,K.1^13,K.1^9,-1*K.1^9,-1*K.1,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^10,K.1^6,-1*K.1^2,K.1^12,K.1^4,K.1^2,K.1^10,K.1^10,K.1^8,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^12,K.1^12,K.1^8,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^12,K.1^4,K.1^4,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^2,K.1^12,K.1^6,-1*K.1^4,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^8,K.1^2,-1*K.1^12,-1*K.1^2,K.1^4,K.1^10,K.1^12,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^10,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^12,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^4,-1*K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,K.1^8,K.1^8,K.1^6,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^12,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,K.1^2,K.1^10,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^6,-1*K.1^12,K.1^2,K.1^6,K.1^4,K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^6,K.1^6,K.1^4,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^2,-1*K.1^10,K.1^12,-1*K.1^3,K.1^13,K.1^3,K.1,-1*K.1^5,-1*K.1^9,K.1^5,K.1^13,K.1^5,-1*K.1^9,-1*K.1^5,K.1,K.1^3,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^9,K.1^11,K.1^9,-1*K.1^13,-1*K.1,-1*K.1^11,-1*K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,K.1^3,-1*K.1^9,K.1^13,-1*K.1^11,K.1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^3,K.1^13,K.1^3,K.1^9,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,K.1^11,-1*K.1,K.1^5,K.1^5,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^11,K.1^13,-1*K.1^11,K.1,K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^3,K.1^11,-1*K.1^13,-1*K.1^9,K.1^9,K.1,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,K.1^10,K.1^6,-1*K.1^2,K.1^12,K.1^4,K.1^2,K.1^10,K.1^10,K.1^8,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^12,K.1^12,K.1^8,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^12,K.1^4,K.1^4,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^2,K.1^12,K.1^6,-1*K.1^4,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^8,K.1^2,-1*K.1^12,-1*K.1^2,K.1^4,K.1^10,K.1^12,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^10,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^12,K.1^6,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^2,K.1^4,-1*K.1^10,K.1^8,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,K.1^6,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,K.1^12,-1*K.1^8,K.1^10,K.1^4,-1*K.1^12,K.1^6,K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,K.1^6,K.1^6,K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,K.1^10,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^10,K.1^6,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^12,K.1^8,-1*K.1^8,-1*K.1^10,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^12,K.1^10,K.1^2,-1*K.1^4,K.1^12,K.1^4,-1*K.1^2,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^5,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^3,K.1^11,K.1^3,K.1^13,K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1,K.1^13,K.1^3,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^11,K.1^5,-1*K.1,K.1^3,-1*K.1^13,K.1^9,-1*K.1^9,K.1^9,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^5,K.1^11,K.1^13,K.1^3,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^3,K.1^11,K.1^9,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^5,K.1^9,K.1^11,-1*K.1^3,K.1,K.1^5,-1*K.1^5,-1*K.1^13,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,K.1^8,K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^8,K.1^10,K.1^8,-1*K.1^4,K.1^6,K.1^4,-1*K.1^12,K.1^10,K.1^6,K.1^6,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,K.1^12,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^10,-1*K.1^12,K.1^2,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^4,K.1^8,K.1^10,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^8,K.1^10,K.1^2,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^2,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^6,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,-1*K.1^3,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^9,K.1^5,K.1^9,K.1^11,K.1^3,K.1,-1*K.1^9,K.1,K.1^3,K.1^11,K.1^9,K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^6,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^5,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1,K.1^3,K.1,K.1^13,-1*K.1,-1*K.1^9,K.1^11,K.1^13,K.1^13,K.1,K.1^5,K.1^11,K.1^9,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^13,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^5,-1*K.1^9,K.1^3,-1*K.1,K.1,-1*K.1^11,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^12,K.1^10,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^10,K.1^2,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^10,K.1^10,K.1^4,-1*K.1^8,K.1^6,K.1^8,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^8,K.1^2,K.1^10,K.1^6,K.1^12,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^10,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^2,K.1^12,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^6,K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^6,K.1^2,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^12,K.1^10,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,K.1^10,-1*K.1^10,K.1^6,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^9,K.1^11,K.1^9,K.1^3,K.1,K.1^13,-1*K.1,K.1^11,-1*K.1,K.1^13,K.1,K.1^3,K.1^9,K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,K.1^9,K.1^13,K.1^11,-1*K.1^5,K.1^3,K.1,-1*K.1,K.1,K.1^9,K.1^11,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,K.1^5,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^11,-1*K.1^5,K.1^3,K.1^5,-1*K.1^9,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1^9,K.1^5,-1*K.1^11,K.1^13,-1*K.1^13,K.1^3,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^8,K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^12,K.1^12,K.1^2,-1*K.1^2,K.1^10,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^12,K.1^4,K.1^2,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^10,K.1^10,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,-1*K.1^6,K.1^12,K.1^2,K.1^8,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^12,K.1^10,K.1^10,-1*K.1^8,-1*K.1^4,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^12,-1*K.1^8,-1*K.1^2,K.1^12,K.1^4,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^4,K.1^2,K.1^12,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^6,K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^6,K.1^2,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,K.1^10,K.1^10,K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^12,K.1^10,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,K.1^10,-1*K.1^10,K.1^6,K.1^4,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,-1*K.1^11,K.1,-1*K.1^13,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^5,K.1^9,K.1^5,K.1^3,K.1^11,K.1^13,-1*K.1^5,K.1^13,K.1^11,K.1^3,K.1^5,-1*K.1^2,K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,-1*K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,-1*K.1^9,-1*K.1^13,-1*K.1^11,K.1^5,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,K.1^11,K.1^13,K.1,-1*K.1^13,-1*K.1^5,K.1^3,K.1,K.1,K.1^13,K.1^9,K.1^3,K.1^5,-1*K.1^11,K.1^5,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^5,K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^12,-1*K.1^8,K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^12,K.1^12,K.1^2,-1*K.1^2,K.1^10,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^12,K.1^4,K.1^2,K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,K.1^10,K.1^10,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,-1*K.1^6,K.1^12,K.1^2,K.1^8,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^12,K.1^10,K.1^10,-1*K.1^8,-1*K.1^4,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,-1*K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^10,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^8,K.1^10,K.1^2,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,K.1^2,K.1^10,K.1^6,-1*K.1^8,K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^2,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^12,K.1^8,K.1^12,-1*K.1^6,-1*K.1^5,K.1^3,K.1^5,K.1^11,K.1^13,K.1,-1*K.1^13,K.1^3,-1*K.1^13,K.1,K.1^13,K.1^11,K.1^5,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^11,-1*K.1^9,K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^6,K.1^4,K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^5,K.1,K.1^3,-1*K.1^9,K.1^11,K.1^13,-1*K.1^13,K.1^13,K.1^5,K.1^3,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^11,-1*K.1^9,K.1^3,-1*K.1^9,K.1^11,K.1^9,-1*K.1^5,K.1^13,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^5,K.1^9,-1*K.1^3,K.1,-1*K.1,K.1^11,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^12,K.1^10,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^10,K.1^2,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^10,K.1^10,K.1^4,-1*K.1^8,K.1^6,K.1^8,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^8,K.1^2,K.1^10,K.1^6,K.1^12,-1*K.1^10,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^10,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,K.1^2,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^2,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,K.1^4,-1*K.1^8,K.1^10,K.1^6,K.1^4,-1*K.1^6,-1*K.1^10,K.1^13,K.1^5,-1*K.1^13,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^5,-1*K.1^3,K.1^11,K.1^3,K.1^9,-1*K.1^13,-1*K.1,K.1^13,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,-1*K.1^13,K.1^11,K.1^5,K.1,K.1^9,K.1^3,-1*K.1^3,K.1^3,-1*K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^9,K.1,K.1^5,K.1,K.1^9,-1*K.1,K.1^13,K.1^3,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,K.1^11,K.1^3,K.1^13,-1*K.1,-1*K.1^5,K.1^11,-1*K.1^11,K.1^9,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^6,-1*K.1^12,K.1^4,-1*K.1^10,K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^10,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^12,K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^8,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^8,K.1^12,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^4,K.1^8,K.1^6,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^10,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^6,K.1^12,-1*K.1^8,K.1^2,K.1^2,K.1^10,-1*K.1^12,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,K.1^12,K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^6,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^8,K.1^6,-1*K.1^12,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^10,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,K.1^4,-1*K.1,-1*K.1^9,K.1,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^9,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1,K.1^13,-1*K.1,-1*K.1^13,K.1^5,K.1^9,K.1^3,K.1^13,K.1^3,K.1^9,K.1^5,-1*K.1^13,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^5,-1*K.1^11,K.1^11,-1*K.1^11,K.1,-1*K.1^9,K.1,K.1^3,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^13,K.1^5,K.1^11,K.1^11,K.1^3,-1*K.1,K.1^5,-1*K.1^13,-1*K.1^9,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^13,K.1^9,-1*K.1^3,K.1^3,-1*K.1^5,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^8,K.1^2,-1*K.1^10,K.1^4,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^12,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^2,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,K.1^10,-1*K.1^4,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,1,1,-1,-1,1,-1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^10,K.1^12,K.1^12,K.1^2,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^10,K.1^2,K.1^6,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^6,K.1^10,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^10,K.1^2,-1*K.1^6,K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,-1*K.1^8,K.1^6,-1*K.1^12,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^10,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^8,K.1^4,K.1,K.1^9,-1*K.1,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1^9,-1*K.1^11,K.1^3,K.1^11,K.1^5,-1*K.1,-1*K.1^13,K.1,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^5,K.1^13,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1,K.1^3,K.1^9,K.1^13,K.1^5,K.1^11,-1*K.1^11,K.1^11,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^5,K.1^13,K.1^9,K.1^13,K.1^5,-1*K.1^13,K.1,K.1^11,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^3,K.1^11,K.1,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^3,K.1^5,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,-1*K.1^8,K.1^2,-1*K.1^10,K.1^4,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,K.1^12,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^10,K.1^4,K.1^2,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^12,K.1^8,K.1^10,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,K.1^10,-1*K.1^4,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,1,1,-1,-1,1,-1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,K.1^8,K.1^10,-1*K.1^6,K.1^8,K.1^12,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^12,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^10,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,K.1^2,K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^6,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^2,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,K.1^4,-1*K.1^8,K.1^10,K.1^6,K.1^4,-1*K.1^6,-1*K.1^10,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^5,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^13,K.1,-1*K.1^13,-1*K.1,K.1^9,K.1^5,K.1^11,K.1,K.1^11,K.1^5,K.1^9,-1*K.1,-1*K.1^6,K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^3,K.1^13,-1*K.1^5,K.1^13,K.1^11,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1,K.1^9,K.1^3,K.1^3,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1,K.1^5,-1*K.1^11,K.1^11,-1*K.1^9,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,K.1^6,-1*K.1^12,K.1^4,-1*K.1^10,K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^10,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^12,K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^8,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^8,K.1^12,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^4,K.1^8,K.1^6,-1*K.1^10,-1*K.1^8,-1*K.1^4,K.1^10,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^6,K.1^12,-1*K.1^8,K.1^2,K.1^2,K.1^10,-1*K.1^12,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^8,-1*K.1^6,K.1^12,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^12,K.1^8,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,K.1^3,K.1^13,-1*K.1,-1*K.1^13,K.1,K.1^5,K.1^3,-1*K.1^13,K.1^13,-1*K.1^5,K.1,-1*K.1,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^3,K.1^9,K.1^11,K.1^5,-1*K.1^11,K.1^9,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^12,-1*K.1^2,K.1^8,K.1^2,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,K.1^12,-1*K.1^8,K.1^6,-1*K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,K.1^10,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^3,K.1^13,K.1^9,-1*K.1^9,K.1^9,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1,K.1^5,K.1^9,-1*K.1^5,K.1^3,-1*K.1^13,-1*K.1^9,K.1^9,K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1^3,K.1,K.1^3,-1*K.1^13,K.1^3,K.1^11,-1*K.1^9,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^5,-1*K.1^9,K.1^11,-1*K.1^3,-1*K.1,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1,K.1,K.1^11,-1*K.1^11,K.1^4,K.1,K.1^5,K.1^9,K.1^3,K.1^12,-1*K.1^4,K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,K.1^2,K.1^2,-1*K.1^13,-1*K.1^12,-1*K.1^9,-1*K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,-1*K.1,K.1^3,-1*K.1,-1*K.1^11,-1*K.1^6,K.1^11,K.1^5,K.1^3,K.1^6,-1*K.1^13,K.1,-1*K.1^12,K.1^3,K.1^10,K.1^8,-1*K.1,-1*K.1^6,K.1^5,-1*K.1^9,K.1^12,-1*K.1^10,K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^11,K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,K.1^2,K.1^10,K.1^6,K.1^6,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^11,-1*K.1,K.1^13,K.1,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1,-1*K.1,K.1^9,-1*K.1^13,K.1^13,K.1^11,K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^9,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^10,K.1^6,K.1^10,K.1^8,-1*K.1^12,K.1^2,K.1^12,-1*K.1^6,-1*K.1^12,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^2,K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^4,K.1^3,K.1^9,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^3,K.1^13,K.1^3,K.1^9,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^11,K.1,K.1^5,-1*K.1^5,-1*K.1^9,K.1^3,K.1,K.1^11,-1*K.1^13,-1*K.1^11,K.1,-1*K.1^11,-1*K.1^3,K.1^5,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^3,K.1^11,K.1^13,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^13,-1*K.1^13,-1*K.1^3,K.1^3,-1*K.1^10,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^2,K.1^10,-1*K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1,K.1^2,K.1^5,K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,K.1^3,K.1^3,K.1,K.1^9,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,K.1^13,-1*K.1^11,K.1^13,K.1^3,K.1^8,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^8,K.1,-1*K.1^13,K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^6,K.1^13,K.1^8,-1*K.1^9,K.1^5,-1*K.1^2,K.1^4,-1*K.1^3,K.1^12,K.1^11,K.1^9,-1*K.1^5,K.1^9,K.1^4,K.1^6,K.1^12,K.1^3,-1*K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,K.1^2,K.1^10,K.1^6,K.1^6,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^11,K.1,-1*K.1^13,-1*K.1,K.1^13,K.1^9,K.1^11,-1*K.1,K.1,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1^11,K.1^5,K.1^3,K.1^9,-1*K.1^3,K.1^5,-1*K.1^10,K.1^6,K.1^10,K.1^8,-1*K.1^12,K.1^2,K.1^12,-1*K.1^6,-1*K.1^12,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^4,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^2,K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^11,K.1,K.1^5,-1*K.1^5,K.1^5,K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,K.1^11,-1*K.1,-1*K.1^5,K.1^5,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^11,K.1^13,K.1^11,-1*K.1,K.1^11,K.1^3,-1*K.1^5,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,K.1^9,-1*K.1^5,K.1^3,-1*K.1^11,-1*K.1^13,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^13,K.1^13,K.1^3,-1*K.1^3,-1*K.1^10,K.1^13,K.1^9,K.1^5,K.1^11,-1*K.1^2,K.1^10,K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1,K.1^2,-1*K.1^5,K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,-1*K.1^13,K.1^11,-1*K.1^13,-1*K.1^3,K.1^8,K.1^3,K.1^9,K.1^11,-1*K.1^8,-1*K.1,K.1^13,K.1^2,K.1^11,-1*K.1^4,-1*K.1^6,-1*K.1^13,K.1^8,K.1^9,-1*K.1^5,-1*K.1^2,K.1^4,K.1^3,K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^9,K.1^4,K.1^6,K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^8,-1*K.1^6,K.1^12,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^12,K.1^8,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^3,-1*K.1^13,K.1,K.1^13,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^13,-1*K.1^13,K.1^5,-1*K.1,K.1,K.1^3,K.1^9,-1*K.1^11,K.1^11,K.1^9,K.1^5,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^5,K.1^11,-1*K.1^9,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^12,-1*K.1^2,K.1^8,K.1^2,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^10,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,K.1^12,-1*K.1^8,K.1^6,-1*K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,K.1^10,K.1^11,K.1^5,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^11,K.1,K.1^11,K.1^5,K.1,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^3,K.1^13,K.1^9,-1*K.1^9,-1*K.1^5,K.1^11,K.1^13,K.1^3,-1*K.1,-1*K.1^3,K.1^13,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1^11,K.1^3,K.1,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1,-1*K.1,-1*K.1^11,K.1^11,K.1^4,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,K.1^12,-1*K.1^4,-1*K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,K.1^2,K.1^2,K.1^13,-1*K.1^12,K.1^9,-1*K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,K.1^11,K.1^11,K.1^13,K.1^5,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^3,K.1,K.1^11,-1*K.1^6,-1*K.1^11,-1*K.1^5,-1*K.1^3,K.1^6,K.1^13,-1*K.1,-1*K.1^12,-1*K.1^3,K.1^10,K.1^8,K.1,-1*K.1^6,-1*K.1^5,K.1^9,K.1^12,-1*K.1^10,-1*K.1^11,-1*K.1^2,K.1^3,K.1^5,-1*K.1^9,K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^11,K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,K.1^4,-1*K.1^4,K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^9,-1*K.1^11,K.1^3,K.1^11,-1*K.1^3,K.1,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1^13,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1^9,K.1^13,-1*K.1^5,K.1,K.1^5,K.1^13,K.1^12,K.1^10,-1*K.1^12,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^10,K.1^6,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,K.1^8,K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,K.1^2,K.1^5,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,K.1^13,-1*K.1^5,K.1^3,K.1^5,-1*K.1,K.1^3,K.1,K.1^13,-1*K.1,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,K.1,K.1^5,K.1^11,K.1^9,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^5,K.1^9,K.1^3,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^12,-1*K.1^3,K.1,K.1^13,-1*K.1^9,K.1^8,-1*K.1^12,-1*K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,K.1^6,K.1^6,K.1^11,-1*K.1^8,-1*K.1^13,K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,K.1^5,K.1^5,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,K.1^3,-1*K.1^9,K.1^3,K.1^5,K.1^4,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^4,K.1^11,-1*K.1^3,-1*K.1^8,-1*K.1^9,K.1^2,-1*K.1^10,K.1^3,K.1^4,K.1,-1*K.1^13,K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^6,K.1^9,-1*K.1,K.1^13,-1*K.1,-1*K.1^2,K.1^10,-1*K.1^6,K.1^5,-1*K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^12,K.1^8,-1*K.1^2,K.1^12,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^6,K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^10,K.1^10,K.1^10,K.1^6,K.1^8,-1*K.1^12,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^5,K.1^3,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^13,K.1^5,-1*K.1^3,K.1^3,K.1^13,K.1^11,-1*K.1^11,-1*K.1^5,K.1,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^5,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^10,-1*K.1^8,K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^2,-1*K.1^12,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^9,K.1^13,K.1^11,-1*K.1^5,K.1^3,-1*K.1,K.1,-1*K.1,K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,K.1^5,-1*K.1^3,K.1,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^11,K.1^5,-1*K.1^3,K.1^5,K.1^9,K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^13,K.1,K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^13,K.1^13,K.1^3,K.1^11,-1*K.1^11,K.1^11,K.1^9,-1*K.1^9,-1*K.1^2,K.1^11,-1*K.1^13,-1*K.1,K.1^5,-1*K.1^6,K.1^2,K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^3,K.1^6,K.1,-1*K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^13,K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^11,-1*K.1^9,-1*K.1^10,K.1^9,-1*K.1^13,K.1^5,K.1^10,-1*K.1^3,K.1^11,K.1^6,K.1^5,-1*K.1^12,K.1^4,-1*K.1^11,-1*K.1^10,-1*K.1^13,K.1,-1*K.1^6,K.1^12,K.1^9,K.1^8,-1*K.1^5,K.1^13,-1*K.1,K.1^13,K.1^12,-1*K.1^4,K.1^8,-1*K.1^9,K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^12,K.1^8,-1*K.1^2,K.1^12,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^6,K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^10,K.1^10,K.1^10,K.1^6,K.1^8,-1*K.1^12,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^3,K.1^11,K.1^3,-1*K.1^11,K.1^13,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^11,K.1^11,K.1^5,-1*K.1,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^5,K.1,-1*K.1^9,K.1^13,K.1^9,K.1,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^10,-1*K.1^8,K.1^6,K.1^8,K.1^4,-1*K.1^8,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,K.1^12,K.1^2,-1*K.1^12,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^9,-1*K.1^13,-1*K.1^11,K.1^5,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^9,K.1^11,K.1^9,-1*K.1^13,K.1^11,K.1^13,K.1,-1*K.1^13,-1*K.1^5,K.1^3,-1*K.1,K.1,K.1^13,K.1^9,K.1^3,K.1^5,-1*K.1^11,-1*K.1^5,K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^9,K.1^5,K.1^11,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^11,-1*K.1^9,K.1^9,-1*K.1^2,-1*K.1^11,K.1^13,K.1,-1*K.1^5,-1*K.1^6,K.1^2,-1*K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^8,K.1^3,K.1^6,-1*K.1,-1*K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,K.1^9,K.1^9,K.1^3,-1*K.1^13,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,K.1^11,-1*K.1^5,K.1^11,K.1^9,-1*K.1^10,-1*K.1^9,K.1^13,-1*K.1^5,K.1^10,K.1^3,-1*K.1^11,K.1^6,-1*K.1^5,-1*K.1^12,K.1^4,K.1^11,-1*K.1^10,K.1^13,-1*K.1,-1*K.1^6,K.1^12,-1*K.1^9,K.1^8,K.1^5,-1*K.1^13,K.1,-1*K.1^13,K.1^12,-1*K.1^4,K.1^8,K.1^9,K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,K.1^4,-1*K.1^4,K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^12,K.1^12,K.1^9,K.1^11,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1,K.1^9,-1*K.1^11,K.1^11,K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1^13,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^12,K.1^10,-1*K.1^12,K.1^4,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^10,K.1^6,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,K.1^2,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,K.1^8,K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,K.1^2,-1*K.1^5,K.1,K.1^3,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,-1*K.1^13,K.1^5,-1*K.1^3,-1*K.1^5,K.1,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^11,-1*K.1^9,K.1^3,K.1^9,-1*K.1^11,K.1^9,K.1^5,K.1^13,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,-1*K.1,K.1^13,K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1,K.1,K.1^11,K.1^3,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^12,K.1^3,-1*K.1,-1*K.1^13,K.1^9,K.1^8,-1*K.1^12,K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,K.1^6,K.1^6,-1*K.1^11,-1*K.1^8,K.1^13,K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^11,K.1,K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^5,K.1^4,K.1^5,-1*K.1,K.1^9,-1*K.1^4,-1*K.1^11,K.1^3,-1*K.1^8,K.1^9,K.1^2,-1*K.1^10,-1*K.1^3,K.1^4,-1*K.1,K.1^13,K.1^8,-1*K.1^2,K.1^5,-1*K.1^6,-1*K.1^9,K.1,-1*K.1^13,K.1,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^5,-1*K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^12,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,K.1^10,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,K.1^6,K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^10,K.1^4,K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1,K.1^9,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^11,-1*K.1,-1*K.1^9,K.1^9,K.1^11,K.1^5,-1*K.1^5,K.1,K.1^3,-1*K.1^13,K.1^13,K.1^3,K.1^11,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^6,-1*K.1^12,K.1^6,-1*K.1^2,K.1^10,-1*K.1^4,-1*K.1^10,K.1^12,K.1^10,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^13,K.1^11,K.1^5,K.1,K.1^9,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^5,K.1^13,K.1^11,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^9,K.1,K.1^5,-1*K.1,-1*K.1^9,-1*K.1,-1*K.1^13,K.1^3,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^13,K.1,-1*K.1^5,-1*K.1^11,K.1^11,K.1^9,K.1^5,-1*K.1^5,K.1^5,-1*K.1^13,K.1^13,-1*K.1^6,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^4,K.1^6,-1*K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^10,K.1^10,-1*K.1^9,-1*K.1^4,K.1^3,-1*K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,K.1^13,K.1^13,-1*K.1^9,K.1^11,K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^13,-1*K.1^2,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^2,-1*K.1^9,K.1^5,-1*K.1^4,-1*K.1,-1*K.1^8,K.1^12,-1*K.1^5,-1*K.1^2,-1*K.1^11,K.1^3,K.1^4,K.1^8,-1*K.1^13,-1*K.1^10,K.1,K.1^11,-1*K.1^3,K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,K.1^13,K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^10,K.1^4,K.1^6,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,K.1^12,-1*K.1^12,K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,-1*K.1^8,K.1^8,K.1^13,-1*K.1^5,K.1^9,K.1^5,-1*K.1^9,K.1^3,K.1^13,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^13,-1*K.1^11,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1^11,K.1,K.1^3,-1*K.1,K.1^11,K.1^8,K.1^2,-1*K.1^8,K.1^12,-1*K.1^4,K.1^10,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,K.1^6,K.1^12,-1*K.1^2,K.1^10,K.1^6,-1*K.1^10,K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^12,-1*K.1^2,K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,K.1^6,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^11,K.1^11,K.1,K.1^9,-1*K.1,-1*K.1^3,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^13,K.1^5,-1*K.1^11,K.1^11,K.1^3,-1*K.1,K.1^5,-1*K.1^13,-1*K.1^9,K.1^13,K.1^5,K.1^13,K.1,-1*K.1^11,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^3,-1*K.1^11,K.1,-1*K.1^13,K.1^9,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,K.1^9,-1*K.1^9,K.1,-1*K.1,K.1^8,-1*K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1^10,-1*K.1^8,K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^5,K.1^10,-1*K.1^11,K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,K.1^9,K.1^13,K.1^9,-1*K.1,K.1^12,K.1,K.1^3,K.1^13,-1*K.1^12,K.1^5,-1*K.1^9,K.1^10,K.1^13,K.1^6,-1*K.1^2,K.1^9,K.1^12,K.1^3,-1*K.1^11,-1*K.1^10,-1*K.1^6,K.1,K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,-1*K.1^3,-1*K.1^6,K.1^2,K.1^4,-1*K.1,-1*K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^10,K.1^4,K.1^6,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,K.1^12,-1*K.1^12,K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,-1*K.1^8,K.1^8,-1*K.1^13,K.1^5,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^5,K.1^5,K.1^3,K.1^9,-1*K.1^9,K.1^13,K.1^11,-1*K.1,K.1,K.1^11,K.1^3,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^3,K.1,-1*K.1^11,K.1^8,K.1^2,-1*K.1^8,K.1^12,-1*K.1^4,K.1^10,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,K.1^6,K.1^12,-1*K.1^2,K.1^10,K.1^6,-1*K.1^10,K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^12,-1*K.1^2,K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,K.1^6,K.1,K.1^3,K.1^9,K.1^13,K.1^5,-1*K.1^11,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^9,K.1,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^5,K.1^13,K.1^9,-1*K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1,K.1^11,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,-1*K.1^3,K.1^11,-1*K.1,K.1^13,-1*K.1^9,-1*K.1^3,K.1^3,K.1^5,K.1^9,-1*K.1^9,K.1^9,-1*K.1,K.1,K.1^8,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,-1*K.1^10,-1*K.1^8,-1*K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^5,K.1^10,K.1^11,K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,K.1,K.1,-1*K.1^5,K.1^3,K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^9,K.1,K.1^12,-1*K.1,-1*K.1^3,-1*K.1^13,-1*K.1^12,-1*K.1^5,K.1^9,K.1^10,-1*K.1^13,K.1^6,-1*K.1^2,-1*K.1^9,K.1^12,-1*K.1^3,K.1^11,-1*K.1^10,-1*K.1^6,-1*K.1,K.1^4,K.1^13,K.1^3,-1*K.1^11,K.1^3,-1*K.1^6,K.1^2,K.1^4,K.1,-1*K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^12,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,K.1^10,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,K.1^6,K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^10,K.1^4,K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^4,K.1^6,-1*K.1^6,K.1,-1*K.1^9,K.1^5,K.1^9,-1*K.1^5,K.1^11,K.1,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^3,K.1^13,K.1^11,-1*K.1^13,K.1^3,-1*K.1^6,-1*K.1^12,K.1^6,-1*K.1^2,K.1^10,-1*K.1^4,-1*K.1^10,K.1^12,K.1^10,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^9,K.1^3,-1*K.1^3,K.1^3,K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1,K.1^9,-1*K.1^3,K.1^3,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^5,K.1,K.1^9,K.1,K.1^13,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,K.1^11,-1*K.1^3,K.1^13,-1*K.1,K.1^5,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,K.1^5,-1*K.1^5,K.1^13,-1*K.1^13,-1*K.1^6,-1*K.1^5,K.1^11,K.1^3,K.1,K.1^4,K.1^6,K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^10,K.1^10,K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,K.1^5,K.1,K.1^5,-1*K.1^13,-1*K.1^2,K.1^13,K.1^11,K.1,K.1^2,K.1^9,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^8,K.1^12,K.1^5,-1*K.1^2,K.1^11,-1*K.1^3,K.1^4,K.1^8,K.1^13,-1*K.1^10,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^13,K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^8,-1*K.1^6,K.1^12,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^12,K.1^8,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,K.1^3,K.1^13,-1*K.1,-1*K.1^13,K.1,K.1^5,K.1^3,-1*K.1^13,K.1^13,-1*K.1^5,K.1,-1*K.1,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^3,K.1^9,K.1^11,K.1^5,-1*K.1^11,K.1^9,-1*K.1^4,K.1^8,K.1^4,K.1^6,-1*K.1^2,K.1^12,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,K.1^12,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^6,K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,K.1^10,K.1^11,K.1^5,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^11,K.1,K.1^11,K.1^5,K.1,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^3,K.1^13,K.1^9,-1*K.1^9,-1*K.1^5,K.1^11,K.1^13,K.1^3,-1*K.1,-1*K.1^3,K.1^13,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^13,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1^11,K.1^3,K.1,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1,-1*K.1,-1*K.1^11,K.1^11,K.1^4,K.1,K.1^5,K.1^9,K.1^3,K.1^12,-1*K.1^4,K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,K.1^2,K.1^2,-1*K.1^13,-1*K.1^12,-1*K.1^9,-1*K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,-1*K.1,K.1^3,-1*K.1,-1*K.1^11,-1*K.1^6,K.1^11,K.1^5,K.1^3,K.1^6,-1*K.1^13,K.1,-1*K.1^12,K.1^3,K.1^10,K.1^8,-1*K.1,-1*K.1^6,K.1^5,-1*K.1^9,K.1^12,-1*K.1^10,K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^11,K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,K.1^2,K.1^10,K.1^6,K.1^6,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^11,-1*K.1,K.1^13,K.1,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1,-1*K.1,K.1^9,-1*K.1^13,K.1^13,K.1^11,K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^9,K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^5,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^12,-1*K.1^2,-1*K.1^12,K.1^6,K.1^12,K.1^2,-1*K.1^12,K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^4,-1*K.1^8,K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^11,K.1,K.1^5,-1*K.1^5,K.1^5,K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^13,K.1^9,K.1^5,-1*K.1^9,K.1^11,-1*K.1,-1*K.1^5,K.1^5,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^11,K.1^13,K.1^11,-1*K.1,K.1^11,K.1^3,-1*K.1^5,K.1,-1*K.1,K.1,-1*K.1^11,K.1^11,K.1^9,-1*K.1^5,K.1^3,-1*K.1^11,-1*K.1^13,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^13,K.1^13,K.1^3,-1*K.1^3,-1*K.1^10,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^2,K.1^10,-1*K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1,K.1^2,K.1^5,K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,K.1^3,K.1^3,K.1,K.1^9,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,K.1^13,-1*K.1^11,K.1^13,K.1^3,K.1^8,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^8,K.1,-1*K.1^13,K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^6,K.1^13,K.1^8,-1*K.1^9,K.1^5,-1*K.1^2,K.1^4,-1*K.1^3,K.1^12,K.1^11,K.1^9,-1*K.1^5,K.1^9,K.1^4,K.1^6,K.1^12,K.1^3,-1*K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^12,K.1^8,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^4,K.1^12,-1*K.1^10,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,-1*K.1^12,K.1^8,K.1^2,K.1^10,K.1^6,K.1^6,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^6,K.1^12,K.1^8,-1*K.1^10,K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^2,K.1^8,-1*K.1^12,-1*K.1^6,K.1^4,K.1^6,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^11,K.1,-1*K.1^13,-1*K.1,K.1^13,K.1^9,K.1^11,-1*K.1,K.1,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1^11,K.1^5,K.1^3,K.1^9,-1*K.1^3,K.1^5,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^8,K.1^12,-1*K.1^2,-1*K.1^12,K.1^6,K.1^12,K.1^2,-1*K.1^12,K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^4,-1*K.1^8,K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^4,K.1^4,K.1^6,-1*K.1^12,K.1^8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,-1*K.1^4,K.1^3,K.1^9,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^3,K.1^13,K.1^3,K.1^9,K.1^13,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^11,K.1,K.1^5,-1*K.1^5,-1*K.1^9,K.1^3,K.1,K.1^11,-1*K.1^13,-1*K.1^11,K.1,-1*K.1^11,-1*K.1^3,K.1^5,-1*K.1,K.1,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^3,K.1^11,K.1^13,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^13,-1*K.1^13,-1*K.1^3,K.1^3,-1*K.1^10,K.1^13,K.1^9,K.1^5,K.1^11,-1*K.1^2,K.1^10,K.1^3,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1,K.1^2,-1*K.1^5,K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,-1*K.1^13,K.1^11,-1*K.1^13,-1*K.1^3,K.1^8,K.1^3,K.1^9,K.1^11,-1*K.1^8,-1*K.1,K.1^13,K.1^2,K.1^11,-1*K.1^4,-1*K.1^6,-1*K.1^13,K.1^8,K.1^9,-1*K.1^5,-1*K.1^2,K.1^4,K.1^3,K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^9,K.1^4,K.1^6,K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^4,K.1^8,K.1^12,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^10,-1*K.1^2,K.1^4,-1*K.1^10,K.1^8,-1*K.1^6,K.1^12,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^10,-1*K.1^4,K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^10,K.1^2,K.1^12,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^8,K.1^10,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^12,-1*K.1^6,K.1^2,K.1^8,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^12,K.1^8,K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^3,-1*K.1^13,K.1,K.1^13,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^13,-1*K.1^13,K.1^5,-1*K.1,K.1,K.1^3,K.1^9,-1*K.1^11,K.1^11,K.1^9,K.1^5,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^5,K.1^11,-1*K.1^9,-1*K.1^4,K.1^8,K.1^4,K.1^6,-1*K.1^2,K.1^12,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^10,K.1^6,-1*K.1^8,K.1^12,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^6,K.1^10,K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^12,K.1^10,-1*K.1^12,-1*K.1^8,K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,K.1^10,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^3,K.1^13,K.1^9,-1*K.1^9,K.1^9,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1,K.1^5,K.1^9,-1*K.1^5,K.1^3,-1*K.1^13,-1*K.1^9,K.1^9,K.1^5,-1*K.1^11,-1*K.1^13,-1*K.1^3,K.1,K.1^3,-1*K.1^13,K.1^3,K.1^11,-1*K.1^9,K.1^13,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^5,-1*K.1^9,K.1^11,-1*K.1^3,-1*K.1,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1,K.1,K.1^11,-1*K.1^11,K.1^4,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,K.1^12,-1*K.1^4,-1*K.1^11,K.1^6,-1*K.1^4,K.1^4,K.1^10,K.1^2,K.1^2,K.1^13,-1*K.1^12,K.1^9,-1*K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,K.1^11,K.1^11,K.1^13,K.1^5,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^3,K.1,K.1^11,-1*K.1^6,-1*K.1^11,-1*K.1^5,-1*K.1^3,K.1^6,K.1^13,-1*K.1,-1*K.1^12,-1*K.1^3,K.1^10,K.1^8,K.1,-1*K.1^6,-1*K.1^5,K.1^9,K.1^12,-1*K.1^10,-1*K.1^11,-1*K.1^2,K.1^3,K.1^5,-1*K.1^9,K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^11,K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,K.1^4,-1*K.1^4,K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^12,K.1^12,-1*K.1^9,-1*K.1^11,K.1^3,K.1^11,-1*K.1^3,K.1,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1^13,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1,K.1^9,K.1^13,-1*K.1^5,K.1,K.1^5,K.1^13,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,K.1^10,-1*K.1^6,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,K.1^2,-1*K.1^5,K.1,K.1^3,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,-1*K.1^13,K.1^5,-1*K.1^3,-1*K.1^5,K.1,-1*K.1^3,-1*K.1,-1*K.1^13,K.1,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^11,-1*K.1^9,K.1^3,K.1^9,-1*K.1^11,K.1^9,K.1^5,K.1^13,K.1^11,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,-1*K.1,K.1^13,K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1,K.1,K.1^11,K.1^3,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^12,-1*K.1^3,K.1,K.1^13,-1*K.1^9,K.1^8,-1*K.1^12,-1*K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,K.1^6,K.1^6,K.1^11,-1*K.1^8,-1*K.1^13,K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,K.1^5,K.1^5,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,K.1^3,-1*K.1^9,K.1^3,K.1^5,K.1^4,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^4,K.1^11,-1*K.1^3,-1*K.1^8,-1*K.1^9,K.1^2,-1*K.1^10,K.1^3,K.1^4,K.1,-1*K.1^13,K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^6,K.1^9,-1*K.1,K.1^13,-1*K.1,-1*K.1^2,K.1^10,-1*K.1^6,K.1^5,-1*K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^12,K.1^8,-1*K.1^2,K.1^12,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^6,K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^10,K.1^10,K.1^10,K.1^6,K.1^8,-1*K.1^12,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^5,K.1^3,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^13,K.1^5,-1*K.1^3,K.1^3,K.1^13,K.1^11,-1*K.1^11,-1*K.1^5,K.1,K.1^9,-1*K.1^9,K.1,K.1^13,-1*K.1^5,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1,K.1^2,K.1^4,-1*K.1^2,K.1^10,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^6,K.1^12,K.1^6,K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^12,K.1^9,-1*K.1^13,-1*K.1^11,K.1^5,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^9,K.1^11,K.1^9,-1*K.1^13,K.1^11,K.1^13,K.1,-1*K.1^13,-1*K.1^5,K.1^3,-1*K.1,K.1,K.1^13,K.1^9,K.1^3,K.1^5,-1*K.1^11,-1*K.1^5,K.1^3,-1*K.1^5,-1*K.1^9,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^9,K.1^5,K.1^11,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^11,-1*K.1^9,K.1^9,-1*K.1^2,K.1^11,-1*K.1^13,-1*K.1,K.1^5,-1*K.1^6,K.1^2,K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^3,K.1^6,K.1,-1*K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^13,K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^11,-1*K.1^9,-1*K.1^10,K.1^9,-1*K.1^13,K.1^5,K.1^10,-1*K.1^3,K.1^11,K.1^6,K.1^5,-1*K.1^12,K.1^4,-1*K.1^11,-1*K.1^10,-1*K.1^13,K.1,-1*K.1^6,K.1^12,K.1^9,K.1^8,-1*K.1^5,K.1^13,-1*K.1,K.1^13,K.1^12,-1*K.1^4,K.1^8,-1*K.1^9,K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^8,-1*K.1^10,K.1^12,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^12,K.1^8,-1*K.1^2,K.1^12,K.1^4,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^4,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^10,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^6,K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^10,K.1^10,K.1^10,K.1^6,K.1^8,-1*K.1^12,K.1^6,-1*K.1^2,-1*K.1^4,K.1^12,-1*K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^3,K.1^11,K.1^3,-1*K.1^11,K.1^13,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^11,K.1^11,K.1^5,-1*K.1,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^13,K.1^5,K.1,-1*K.1^9,K.1^13,K.1^9,K.1,K.1^2,K.1^4,-1*K.1^2,K.1^10,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,K.1^12,K.1^10,-1*K.1^4,-1*K.1^6,K.1^12,K.1^6,K.1^4,-1*K.1^10,-1*K.1^12,-1*K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,K.1^10,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^10,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,K.1^12,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^10,K.1^4,K.1^6,-1*K.1^12,K.1^6,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^9,K.1^13,K.1^11,-1*K.1^5,K.1^3,-1*K.1,K.1,-1*K.1,K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^13,K.1^5,-1*K.1^3,K.1,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^11,K.1^5,-1*K.1^3,K.1^5,K.1^9,K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^13,K.1,K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^13,K.1^13,K.1^3,K.1^11,-1*K.1^11,K.1^11,K.1^9,-1*K.1^9,-1*K.1^2,-1*K.1^11,K.1^13,K.1,-1*K.1^5,-1*K.1^6,K.1^2,-1*K.1^9,K.1^10,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^8,K.1^3,K.1^6,-1*K.1,-1*K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,K.1^9,K.1^9,K.1^3,-1*K.1^13,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,K.1^11,-1*K.1^5,K.1^11,K.1^9,-1*K.1^10,-1*K.1^9,K.1^13,-1*K.1^5,K.1^10,K.1^3,-1*K.1^11,K.1^6,-1*K.1^5,-1*K.1^12,K.1^4,K.1^11,-1*K.1^10,K.1^13,-1*K.1,-1*K.1^6,K.1^12,-1*K.1^9,K.1^8,K.1^5,-1*K.1^13,K.1,-1*K.1^13,K.1^12,-1*K.1^4,K.1^8,K.1^9,K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^12,-1*K.1^10,K.1^8,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^2,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,-1*K.1^12,K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^8,K.1^12,K.1^10,-1*K.1^2,K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,K.1^4,K.1^12,-1*K.1^2,K.1^4,-1*K.1^4,K.1^10,K.1^2,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^6,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^8,-1*K.1^10,K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^12,K.1^12,K.1^9,K.1^11,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1,K.1^9,-1*K.1^11,K.1^11,K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1^13,K.1^5,-1*K.1^5,K.1^13,K.1,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^13,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,K.1^10,-1*K.1^6,-1*K.1^8,K.1^6,K.1^4,-1*K.1^12,K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,K.1^10,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^10,K.1^4,K.1^2,K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^10,-1*K.1^12,K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^6,K.1^4,-1*K.1^10,-1*K.1^8,K.1^2,-1*K.1^8,K.1^10,-1*K.1^10,K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,K.1^2,K.1^5,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,K.1^13,-1*K.1^5,K.1^3,K.1^5,-1*K.1,K.1^3,K.1,K.1^13,-1*K.1,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,K.1,K.1^5,K.1^11,K.1^9,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^11,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^5,K.1^9,K.1^3,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^12,K.1^3,-1*K.1,-1*K.1^13,K.1^9,K.1^8,-1*K.1^12,K.1^5,-1*K.1^4,-1*K.1^12,K.1^12,K.1^2,K.1^6,K.1^6,-1*K.1^11,-1*K.1^8,K.1^13,K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^11,K.1,K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^5,K.1^4,K.1^5,-1*K.1,K.1^9,-1*K.1^4,-1*K.1^11,K.1^3,-1*K.1^8,K.1^9,K.1^2,-1*K.1^10,-1*K.1^3,K.1^4,-1*K.1,K.1^13,K.1^8,-1*K.1^2,K.1^5,-1*K.1^6,-1*K.1^9,K.1,-1*K.1^13,K.1,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^5,-1*K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^12,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,K.1^10,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,K.1^6,K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^10,K.1^4,K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1,K.1^9,-1*K.1^5,-1*K.1^9,K.1^5,-1*K.1^11,-1*K.1,-1*K.1^9,K.1^9,K.1^11,K.1^5,-1*K.1^5,K.1,K.1^3,-1*K.1^13,K.1^13,K.1^3,K.1^11,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^3,K.1^6,K.1^12,-1*K.1^6,K.1^2,-1*K.1^10,K.1^4,K.1^10,-1*K.1^12,-1*K.1^10,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^12,K.1^4,K.1^8,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^9,K.1^3,-1*K.1^3,K.1^3,K.1^13,K.1^5,-1*K.1^13,-1*K.1^11,K.1^5,K.1^11,K.1^3,-1*K.1^11,K.1,K.1^9,-1*K.1^3,K.1^3,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^5,K.1,K.1^9,K.1,K.1^13,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1,K.1,K.1^11,-1*K.1^3,K.1^13,-1*K.1,K.1^5,K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^5,K.1^5,-1*K.1^5,K.1^13,-1*K.1^13,-1*K.1^6,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^4,K.1^6,-1*K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^10,K.1^10,-1*K.1^9,-1*K.1^4,K.1^3,-1*K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,K.1^13,K.1^13,-1*K.1^9,K.1^11,K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^13,-1*K.1^2,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^2,-1*K.1^9,K.1^5,-1*K.1^4,-1*K.1,-1*K.1^8,K.1^12,-1*K.1^5,-1*K.1^2,-1*K.1^11,K.1^3,K.1^4,K.1^8,-1*K.1^13,-1*K.1^10,K.1,K.1^11,-1*K.1^3,K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,K.1^13,K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^10,K.1^4,K.1^6,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,K.1^12,-1*K.1^12,K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,-1*K.1^8,K.1^8,K.1^13,-1*K.1^5,K.1^9,K.1^5,-1*K.1^9,K.1^3,K.1^13,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^13,-1*K.1^11,K.1,-1*K.1,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1^11,K.1,K.1^3,-1*K.1,K.1^11,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^12,K.1^4,-1*K.1^10,-1*K.1^4,K.1^2,K.1^4,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^2,K.1^12,K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^12,-1*K.1^2,K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,K.1^6,K.1,K.1^3,K.1^9,K.1^13,K.1^5,-1*K.1^11,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^9,K.1,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^11,-1*K.1^3,K.1,-1*K.1^5,K.1^13,K.1^9,-1*K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1,K.1^11,K.1^5,-1*K.1^5,K.1^5,K.1^13,-1*K.1^13,-1*K.1^3,K.1^11,-1*K.1,K.1^13,-1*K.1^9,-1*K.1^3,K.1^3,K.1^5,K.1^9,-1*K.1^9,K.1^9,-1*K.1,K.1,K.1^8,-1*K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1^10,-1*K.1^8,K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^5,K.1^10,-1*K.1^11,K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,K.1^9,K.1^13,K.1^9,-1*K.1,K.1^12,K.1,K.1^3,K.1^13,-1*K.1^12,K.1^5,-1*K.1^9,K.1^10,K.1^13,K.1^6,-1*K.1^2,K.1^9,K.1^12,K.1^3,-1*K.1^11,-1*K.1^10,-1*K.1^6,K.1,K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,-1*K.1^3,-1*K.1^6,K.1^2,K.1^4,-1*K.1,-1*K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,K.1^4,K.1^12,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^10,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1,-1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,1,K.1^7,-1*K.1^7,1,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^10,K.1^12,-1*K.1^12,K.1^2,-1*K.1^8,K.1^6,K.1^10,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^4,K.1^12,K.1^10,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^10,K.1^4,K.1^6,K.1^10,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^2,K.1^4,K.1^12,K.1^8,-1*K.1^6,K.1^12,-1*K.1^12,K.1^2,K.1^6,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^10,K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,-1*K.1^8,K.1^8,-1*K.1^13,K.1^5,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^5,K.1^5,K.1^3,K.1^9,-1*K.1^9,K.1^13,K.1^11,-1*K.1,K.1,K.1^11,K.1^3,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^3,K.1,-1*K.1^11,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^12,K.1^4,-1*K.1^10,-1*K.1^4,K.1^2,K.1^4,K.1^10,-1*K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^8,-1*K.1^6,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^2,K.1^12,K.1^6,K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,K.1^10,K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,K.1^12,-1*K.1^2,K.1^10,K.1^6,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,K.1^10,-1*K.1^8,-1*K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,K.1^6,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^11,K.1^11,K.1,K.1^9,-1*K.1,-1*K.1^3,K.1^9,K.1^3,K.1^11,-1*K.1^3,K.1^13,K.1^5,-1*K.1^11,K.1^11,K.1^3,-1*K.1,K.1^5,-1*K.1^13,-1*K.1^9,K.1^13,K.1^5,K.1^13,K.1,-1*K.1^11,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^13,K.1^13,K.1^3,-1*K.1^11,K.1,-1*K.1^13,K.1^9,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^9,K.1^9,-1*K.1^9,K.1,-1*K.1,K.1^8,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,-1*K.1^10,-1*K.1^8,-1*K.1,-1*K.1^12,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^5,K.1^10,K.1^11,K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,K.1,K.1,-1*K.1^5,K.1^3,K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^9,K.1,K.1^12,-1*K.1,-1*K.1^3,-1*K.1^13,-1*K.1^12,-1*K.1^5,K.1^9,K.1^10,-1*K.1^13,K.1^6,-1*K.1^2,-1*K.1^9,K.1^12,-1*K.1^3,K.1^11,-1*K.1^10,-1*K.1^6,-1*K.1,K.1^4,K.1^13,K.1^3,-1*K.1^11,K.1^3,-1*K.1^6,K.1^2,K.1^4,K.1,-1*K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,1,1,-1,1,1,-1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^10,-1*K.1^2,K.1^8,-1*K.1^6,K.1^12,K.1^4,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1,-1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,1,-1*K.1^7,K.1^7,1,-1*K.1^8,-1*K.1^10,-1*K.1^6,K.1^8,K.1^12,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^4,K.1^10,K.1^10,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,K.1^10,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^12,-1*K.1^12,K.1^6,K.1^4,K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^8,K.1^10,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^2,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^2,K.1^10,K.1^12,K.1^8,-1*K.1^12,-1*K.1^10,K.1^4,K.1^12,-1*K.1^8,K.1^2,K.1^10,K.1^6,-1*K.1^4,K.1^6,-1*K.1^6,K.1,-1*K.1^9,K.1^5,K.1^9,-1*K.1^5,K.1^11,K.1,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^3,K.1^13,K.1^11,-1*K.1^13,K.1^3,K.1^6,K.1^12,-1*K.1^6,K.1^2,-1*K.1^10,K.1^4,K.1^10,-1*K.1^12,-1*K.1^10,-1*K.1^4,K.1^10,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^12,K.1^4,K.1^8,-1*K.1^4,K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^2,-1*K.1^12,K.1^6,K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,K.1^8,K.1^8,-1*K.1^12,K.1^10,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^13,K.1^11,K.1^5,K.1,K.1^9,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^5,K.1^13,K.1^11,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^9,K.1,K.1^5,-1*K.1,-1*K.1^9,-1*K.1,-1*K.1^13,K.1^3,K.1^9,-1*K.1^9,K.1^9,K.1,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^13,K.1,-1*K.1^5,-1*K.1^11,K.1^11,K.1^9,K.1^5,-1*K.1^5,K.1^5,-1*K.1^13,K.1^13,-1*K.1^6,-1*K.1^5,K.1^11,K.1^3,K.1,K.1^4,K.1^6,K.1^13,K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^10,K.1^10,K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,K.1^5,K.1,K.1^5,-1*K.1^13,-1*K.1^2,K.1^13,K.1^11,K.1,K.1^2,K.1^9,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^8,K.1^12,K.1^5,-1*K.1^2,K.1^11,-1*K.1^3,K.1^4,K.1^8,K.1^13,-1*K.1^10,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^13,K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, -2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, -2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, -2, -2, -2, -2, 2, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, -2, 0, 0, -2, -2, 0, -2, 0, 0, 0, 0, 2, 2, 2, 0, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, -2, 0, 0, -2, -2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, -2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, 2, 0, 2, 2, -2, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 2, -2, 0, -2, 0, 0, -2, -2, 0, -2, 0, 0, 0, 0, -2, 2, -2, 0, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -2, -2, 0, -2, -2, -2, -2, -2, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, -2, 0, -2, -2, 0, -2, 0, 0, -2, -2, 0, -2, 0, 0, 0, 0, -2, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 2, 0, 0, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, 2, -2, 2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, -2, 0, 2, 2, -2, 2, -2, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, -2, 0, -2, 2, 0, -2, 0, 0, -2, -2, 0, -2, 0, 0, 0, 0, 2, -2, 2, 0, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, -2, 2, -1, -2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -1, -1, -1, -1, -1, -1, -2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, -2, 2, -1, -2, 2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -1, -1, -1, -1, -1, -1, -2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2,2,2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2,2,2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,-2,2,2,2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-2,2,2,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,-2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,2,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,2,2,-2,-2,-2,2,2,2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-2,2,2,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2,2,2,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,2,2,2,2,-2,2,-2,2,2,-2,-2,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2,2,2,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,-2,-2,2,2,2,2,-2,2,-2,2,2,-2,-2,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,-1,1,-1,1,-1,1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1,1,-1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-2,2,-2,2,2,2,2,2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,-2,-2,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1,K.1,K.1,-1*K.1,1,-1,K.1,1,1,-1,1,-1,1,-1*K.1,1,-1*K.1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,K.1,-1,-1*K.1,-1,1,K.1,-1,-1*K.1,K.1,-1,-1,K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,1,-1,1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,-1,1,-1,1,-1,1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1*K.1,1,-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-2,2,-2,2,2,2,2,2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,-2,-2,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1*K.1,1,1,-1,1,-1,1,K.1,1,K.1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1,K.1,-1,1,-1*K.1,-1,K.1,-1*K.1,-1,-1,-1*K.1,-1,K.1,-1*K.1,K.1,K.1,1,-1,1,-1*K.1,-1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,1,1,-1,-1,1,1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-1,-1,-1,-1,-1,-1,2,-2,-2,-2,2,2,2,2,-2,2,-2,2,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,2,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,K.1,K.1,K.1,-1*K.1,-1,1,-1*K.1,1,1,-1,1,1,1,-1*K.1,1,-1*K.1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,-1*K.1,K.1,1,-1*K.1,1,-1,-1*K.1,-1,K.1,-1*K.1,-1,-1,-1*K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1,1,-1,K.1,-1,K.1,K.1,K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,1,1,-1,-1,1,1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1*K.1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-1,-1,-1,-1,-1,-1,2,-2,-2,-2,2,2,2,2,-2,2,-2,2,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,1,K.1,1,1,-1,1,1,1,K.1,1,K.1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,K.1,-1*K.1,1,K.1,1,-1,K.1,-1,-1*K.1,K.1,-1,-1,K.1,-1,-1*K.1,K.1,-1*K.1,K.1,-1,1,-1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-1,-1,-1,-1,-1,-1,-2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,K.1+K.1^-1,-1,-1,1,-1,-1,-1,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,-1,1,-1*K.1-K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,1,1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,1,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,K.1+K.1^-1,1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,-1,-1,-1,-1,-1,-1,-2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,-2,2,-2,-2,-2,2,2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,-1*K.1-K.1^-1,-1,-1,1,-1,-1,-1,K.1+K.1^-1,-1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1,K.1+K.1^-1,K.1+K.1^-1,-1,K.1+K.1^-1,-1,1,K.1+K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,1,1,K.1+K.1^-1,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1-2*K.1,1,-1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1,1+2*K.1,1+2*K.1,1,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,2,-2,2,2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,-2,2,-2,2,-1,-1,-1,-1,-1,-1,2,2,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,2,-2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1,-1,1+2*K.1,1,1,1,1,-1,1,1+2*K.1,1,1+2*K.1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1,1+2*K.1,1+2*K.1,-1-2*K.1,-1,-1-2*K.1,-1-2*K.1,-1,1+2*K.1,-1,-1,-1-2*K.1,1,-1-2*K.1,-1-2*K.1,1,1,-1-2*K.1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1,-1,-1,1+2*K.1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1+2*K.1,1,-1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1,-1-2*K.1,-1-2*K.1,1,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,2,-2,2,2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,-2,2,-2,2,-1,-1,-1,-1,-1,-1,2,2,-2,2,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,2,-2,-2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1,-1,-1-2*K.1,1,1,1,1,-1,1,-1-2*K.1,1,-1-2*K.1,1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1,1+2*K.1,1+2*K.1,-1,-1-2*K.1,-1,-1,1+2*K.1,1,1+2*K.1,1+2*K.1,1,1,1+2*K.1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1,-1,-1,-1-2*K.1,1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1-2*K.1,1,1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1,1+2*K.1,-1-2*K.1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1,1,-1-2*K.1,1,1,1,1,1,1,1+2*K.1,1,1+2*K.1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1,1+2*K.1,-1-2*K.1,1+2*K.1,1,1+2*K.1,-1-2*K.1,1,1+2*K.1,1,1,1+2*K.1,1,1+2*K.1,1+2*K.1,1,1,1+2*K.1,1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1,1,1,1+2*K.1,1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1+2*K.1,1,1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1,-1-2*K.1,1+2*K.1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1,1,1+2*K.1,1,1,1,1,1,1,-1-2*K.1,1,-1-2*K.1,1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,1,-1-2*K.1,1+2*K.1,1,-1-2*K.1,1,1,-1-2*K.1,1,-1-2*K.1,-1-2*K.1,1,1,-1-2*K.1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1,1,1,-1-2*K.1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2,2,2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,-2,-2,2,-2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,2,2,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2,2,2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,-2,-2,2,-2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,2,2,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,-2,2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,1,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,1,-1*K.1-K.1^-1,-1,-1,1,-1,1,-1,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,1,-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,1,1,K.1+K.1^-1,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1,-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,1,-2,-2,2,2,2,-2,-2,2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,2,2,2,2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,1,K.1+K.1^-1,-1,-1,1,-1,1,-1,K.1+K.1^-1,-1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,1,K.1+K.1^-1,1,-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,1,1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1,1,-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^3,2*K.1,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,2*K.1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1^-1,-2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^3,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^3,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^-2,2*K.1^-3,-2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^3,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^-2,-2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^3,2*K.1^-1,2*K.1^3,-2*K.1^2,2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-1,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,2*K.1^3,2*K.1,0,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^-3,0,-2*K.1^3,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,0,0,0,2*K.1^-2,0,0,2*K.1^3,0,2*K.1^-1,2*K.1^2,0,-2*K.1^-2,0,0,-2*K.1^3,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^-3,0,-2*K.1^2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1,-2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-3,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-3,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^2,2*K.1^3,-2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,-2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1^2,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1^-3,2*K.1,2*K.1^-3,-2*K.1^-2,2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,0,0,2*K.1^-3,2*K.1^-1,0,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^3,0,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,0,0,2*K.1^2,0,0,2*K.1^-3,0,2*K.1,2*K.1^-2,0,-2*K.1^2,0,0,-2*K.1^-3,-2*K.1,0,-2*K.1^3,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^3,0,-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1^-3,-2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1^3,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^2,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1^3,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1^-3,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-3,2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^2,2*K.1^3,0,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1^-2,0,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,2*K.1,0,0,2*K.1^2,0,2*K.1^-3,2*K.1^-1,0,-2*K.1,0,0,-2*K.1^2,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,2*K.1^-3,2*K.1^-1,2*K.1^-2,0,-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1^3,-2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-2,-2*K.1^-3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-3,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^3,2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,0,0,0,0,2*K.1^-2,2*K.1^-3,0,-2*K.1^-1,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1^2,0,-2*K.1^-2,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,0,2*K.1^-1,0,0,2*K.1^-2,0,2*K.1^3,2*K.1,0,-2*K.1^-1,0,0,-2*K.1^-2,-2*K.1^3,0,-2*K.1^2,0,0,0,0,2*K.1^3,2*K.1,2*K.1^2,0,-2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,-2*K.1^-3,-2*K.1,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^-3,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,-2*K.1^3,-2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1,2*K.1^2,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,0,0,0,0,2*K.1,2*K.1^-2,0,-2*K.1^-3,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,0,-2*K.1,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,0,0,0,2*K.1^-3,0,0,2*K.1,0,2*K.1^2,2*K.1^3,0,-2*K.1^-3,0,0,-2*K.1,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,2*K.1^2,2*K.1^3,2*K.1^-1,0,-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,2,2,-2,-2,2,-2,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,-2,2,0,0,0,0,0,2,0,0,-2,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,-2*K.1^3,-2*K.1^-1,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^3,-2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,-2*K.1^-3,-2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-3,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^3,-2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,0,0,0,2*K.1^-1,2*K.1^2,0,-2*K.1^3,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,0,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,2*K.1^3,0,0,2*K.1^-1,0,2*K.1^-2,2*K.1^-3,0,-2*K.1^3,0,0,-2*K.1^-1,-2*K.1^-2,0,-2*K.1,0,0,0,0,2*K.1^-2,2*K.1^-3,2*K.1,0,-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^-2,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^-2,2*K.1^-3,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^3,-2*K.1^2,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-1,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,2*K.1^-2,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,-2*K.1^3,2*K.1,0,2*K.1^-2,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-3,0,2*K.1^3,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,0,0,0,2*K.1^-2,0,0,2*K.1^3,0,2*K.1^-1,-2*K.1^2,0,-2*K.1^-2,0,0,-2*K.1^3,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,-2*K.1^-1,2*K.1^2,-2*K.1^-3,0,-2*K.1^2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^2,2*K.1^3,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^3,2*K.1,2*K.1,-2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-3,-2*K.1^-2,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,0,0,-2*K.1^-3,2*K.1^-1,0,2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^3,2*K.1^3,0,2*K.1^-3,0,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,0,0,2*K.1^2,0,0,2*K.1^-3,0,2*K.1,-2*K.1^-2,0,-2*K.1^2,0,0,-2*K.1^-3,-2*K.1,0,-2*K.1^3,0,0,0,0,-2*K.1,2*K.1^-2,-2*K.1^3,0,-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-3,-2*K.1^2,-2*K.1^3,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1,2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^2,2*K.1^3,0,2*K.1,2*K.1^3,-2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-2,0,2*K.1^2,0,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,2*K.1,0,0,2*K.1^2,0,2*K.1^-3,-2*K.1^-1,0,-2*K.1,0,0,-2*K.1^2,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,0,-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1,-2*K.1^-3,2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^-3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^3,-2*K.1^-2,-2*K.1^-3,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,0,0,0,0,-2*K.1^-2,2*K.1^-3,0,2*K.1^-1,2*K.1^-3,-2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^2,0,2*K.1^-2,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,0,2*K.1^-1,0,0,2*K.1^-2,0,2*K.1^3,-2*K.1,0,-2*K.1^-1,0,0,-2*K.1^-2,-2*K.1^3,0,-2*K.1^2,0,0,0,0,-2*K.1^3,2*K.1,-2*K.1^2,0,-2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-3,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-2,2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^-3,-2*K.1^-3,-2*K.1^-3,-2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^3,-2*K.1^2,2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-3,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^-3,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-3,2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,0,0,0,0,-2*K.1,2*K.1^-2,0,2*K.1^-3,2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,0,2*K.1,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,0,0,0,2*K.1^-3,0,0,2*K.1,0,2*K.1^2,-2*K.1^3,0,-2*K.1^-3,0,0,-2*K.1,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,-2*K.1^2,2*K.1^3,-2*K.1^-1,0,-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,-2,-2,2,2,-2,-2,2,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,-2,0,0,-2,-2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^3,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1^-3,-2*K.1^-2,2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-3,-2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-3,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^3,2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,0,0,0,-2*K.1^-1,2*K.1^2,0,2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1,0,2*K.1^-1,0,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,2*K.1^-1,0,2*K.1^-2,-2*K.1^-3,0,-2*K.1^3,0,0,-2*K.1^-1,-2*K.1^-2,0,-2*K.1,0,0,0,0,-2*K.1^-2,2*K.1^-3,-2*K.1,0,-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1,2*K.1,2*K.1^3,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,-2*K.1^3,-2*K.1,0,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-3,0,-2*K.1^3,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,0,0,0,-2*K.1^-2,0,0,-2*K.1^3,0,-2*K.1^-1,-2*K.1^2,0,-2*K.1^-2,0,0,-2*K.1^3,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,0,-2*K.1^2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1^3,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,0,0,-2*K.1^-3,-2*K.1^-1,0,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^3,0,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,0,0,-2*K.1^2,0,0,-2*K.1^-3,0,-2*K.1,-2*K.1^-2,0,-2*K.1^2,0,0,-2*K.1^-3,-2*K.1,0,-2*K.1^3,0,0,0,0,-2*K.1,-2*K.1^-2,-2*K.1^3,0,-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1,2*K.1^3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^2,-2*K.1^3,0,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^-2,0,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,-2*K.1,0,0,-2*K.1^2,0,-2*K.1^-3,-2*K.1^-1,0,-2*K.1,0,0,-2*K.1^2,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,0,-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,0,0,0,0,-2*K.1^-2,-2*K.1^-3,0,-2*K.1^-1,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^2,0,-2*K.1^-2,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,0,0,0,-2*K.1^-1,0,0,-2*K.1^-2,0,-2*K.1^3,-2*K.1,0,-2*K.1^-1,0,0,-2*K.1^-2,-2*K.1^3,0,-2*K.1^2,0,0,0,0,-2*K.1^3,-2*K.1,-2*K.1^2,0,-2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^-1,-2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^2,2*K.1,2*K.1^3,2*K.1^3,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-3,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,0,0,0,0,-2*K.1,-2*K.1^-2,0,-2*K.1^-3,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,0,-2*K.1,0,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,0,0,0,-2*K.1^-3,0,0,-2*K.1,0,-2*K.1^2,-2*K.1^3,0,-2*K.1^-3,0,0,-2*K.1,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,-2*K.1^2,-2*K.1^3,-2*K.1^-1,0,-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,-2,-2,0,0,0,0,0,-2,0,0,-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1,-2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^3,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^3,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,0,0,0,-2*K.1^-1,-2*K.1^2,0,-2*K.1^3,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1,0,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,-2*K.1^3,0,0,-2*K.1^-1,0,-2*K.1^-2,-2*K.1^-3,0,-2*K.1^3,0,0,-2*K.1^-1,-2*K.1^-2,0,-2*K.1,0,0,0,0,-2*K.1^-2,-2*K.1^-3,-2*K.1,0,-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^2,K.1^3,K.1^-3,K.1^-1,-1*K.1^3,-1*K.1,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,K.1^-2,-1*K.1^3,K.1^-3,-1*K.1^2,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^3,K.1^-3,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^3,K.1^-3,K.1^2,K.1^-1,K.1^2,K.1,-1*K.1^-2,K.1,K.1^3,K.1^-1,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^3,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,K.1^3,K.1^-3,-1*K.1^3,-1*K.1^-1,K.1,-1*K.1^-3,K.1^-1,K.1^3,K.1^-3,K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,K.1,-1*K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1^-2,K.1^-3,K.1^3,K.1,-1*K.1^-3,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^2,-1*K.1^-3,K.1^3,-1*K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^3,K.1^-2,K.1,K.1^-2,K.1^-1,-1*K.1^2,K.1^-1,K.1^-3,K.1,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-3,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-3,K.1^3,-1*K.1^-3,-1*K.1,K.1^-1,-1*K.1^3,K.1,K.1^-3,K.1^3,K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-2,K.1,K.1^2,K.1^2,K.1^3,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,2*K.1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^-1,K.1^2,K.1^-2,K.1^-3,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1,K.1^2,K.1^-2,K.1,K.1^3,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-3,K.1^-1,K.1^3,-1*K.1,K.1^3,K.1^2,K.1^-3,-1*K.1,K.1,K.1^-1,-1*K.1^2,K.1^-3,-1*K.1^-3,-1*K.1^-1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-3,K.1^3,-1*K.1^-2,K.1^-3,K.1^2,K.1^-2,K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^-1,K.1^-3,K.1,K.1,K.1^-2,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1,K.1^-2,K.1^2,K.1^3,-1*K.1^-2,-1*K.1^-3,K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^3,K.1,K.1^-3,-1*K.1^-1,K.1^-3,K.1^-2,K.1^3,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-2,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^3,K.1^-3,-1*K.1^2,K.1^3,K.1^-2,K.1^2,K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^2,K.1^-3,-1*K.1,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-3,2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^3,K.1,K.1^-1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-3,-1*K.1,K.1^-1,-1*K.1^3,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1,K.1^-1,K.1^3,K.1^2,K.1^3,K.1^-2,-1*K.1^-3,K.1^-2,K.1,K.1^2,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^-3,K.1,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1,K.1^-1,K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-1,K.1^-2,-1*K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,1,1,-1,1,1,-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^3,2*K.1,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^-3,K.1^-1,K.1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^3,-1*K.1^-1,K.1,-1*K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-1,K.1,K.1^-3,K.1^-2,K.1^-3,K.1^2,-1*K.1^3,K.1^2,K.1^-1,K.1^-2,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-3,K.1^-3,-1*K.1^3,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1,K.1^2,-1*K.1^-3,K.1^-2,K.1^3,K.1^3,K.1,K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1^-1,-2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^3,2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^3,2*K.1^-3,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1^3,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^3,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,-2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^-3,2*K.1^-2,-2*K.1^2,2*K.1^3,-2*K.1^-1,-2*K.1^3,2*K.1^2,2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,2*K.1^3,-2*K.1,0,2*K.1^-2,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^-3,0,2*K.1^3,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,0,0,0,-2*K.1^-2,0,0,-2*K.1^3,0,-2*K.1^-1,2*K.1^2,0,-2*K.1^-2,0,0,-2*K.1^3,-2*K.1^-1,0,-2*K.1^-3,0,0,0,0,2*K.1^-1,-2*K.1^2,2*K.1^-3,0,-2*K.1^2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1,-2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-3,2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^-3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-3,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^-3,2*K.1^3,2*K.1,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1^3,-2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^3,2*K.1^2,-2*K.1^-2,2*K.1^-3,-2*K.1,-2*K.1^-3,2*K.1^-2,2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,0,0,2*K.1^-3,-2*K.1^-1,0,2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^3,0,2*K.1^-3,0,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,0,0,-2*K.1^2,0,0,-2*K.1^-3,0,-2*K.1,2*K.1^-2,0,-2*K.1^2,0,0,-2*K.1^-3,-2*K.1,0,-2*K.1^3,0,0,0,0,2*K.1,-2*K.1^-2,2*K.1^3,0,-2*K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1^-3,-2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1,-2*K.1,2*K.1^-1,2*K.1^3,-2*K.1^-3,2*K.1^2,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-1,-2*K.1^3,2*K.1^2,-2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1,2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-3,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^-3,-2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^-3,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1^-3,-2*K.1^2,2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1^3,-2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^2,-2*K.1^3,0,2*K.1,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^-2,0,2*K.1^2,0,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,-2*K.1,0,0,-2*K.1^2,0,-2*K.1^-3,2*K.1^-1,0,-2*K.1,0,0,-2*K.1^2,-2*K.1^-3,0,-2*K.1^-2,0,0,0,0,2*K.1^-3,-2*K.1^-1,2*K.1^-2,0,-2*K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1^3,-2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-3,-2*K.1^3,2*K.1^-2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1,-2*K.1^-3,2*K.1^-2,-2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^3,-2*K.1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1^3,-2*K.1^-2,2*K.1,2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,-2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,0,0,0,0,2*K.1^-2,-2*K.1^-3,0,2*K.1^-1,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^2,0,2*K.1^-2,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,0,0,0,-2*K.1^-1,0,0,-2*K.1^-2,0,-2*K.1^3,2*K.1,0,-2*K.1^-1,0,0,-2*K.1^-2,-2*K.1^3,0,-2*K.1^2,0,0,0,0,2*K.1^3,-2*K.1,2*K.1^2,0,-2*K.1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,-2*K.1^-3,-2*K.1,2*K.1^-3,-2*K.1^-3,2*K.1^3,2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^3,-2*K.1^-2,2*K.1,-2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^-1,-2*K.1^3,2*K.1^2,-2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-3,2*K.1^3,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^3,2*K.1^-1,2*K.1^-3,-2*K.1^3,2*K.1,-2*K.1^2,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,0,0,0,0,2*K.1,-2*K.1^-2,0,2*K.1^-3,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-1,0,2*K.1,0,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,0,0,0,-2*K.1^-3,0,0,-2*K.1,0,-2*K.1^2,2*K.1^3,0,-2*K.1^-3,0,0,-2*K.1,-2*K.1^2,0,-2*K.1^-1,0,0,0,0,2*K.1^2,-2*K.1^3,2*K.1^-1,0,-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,-2,-2,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,2,0,0,-2,-2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,-2*K.1^3,-2*K.1^-1,2*K.1^3,-2*K.1^3,2*K.1^-3,2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-3,-2*K.1^2,2*K.1^-1,-2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1,-2*K.1^-3,2*K.1^-2,-2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^3,2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^3,2*K.1^-3,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-3,2*K.1,2*K.1^3,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-3,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,0,0,0,2*K.1^-1,-2*K.1^2,0,2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1,0,2*K.1^-1,0,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,-2*K.1^-1,0,-2*K.1^-2,2*K.1^-3,0,-2*K.1^3,0,0,-2*K.1^-1,-2*K.1^-2,0,-2*K.1,0,0,0,0,2*K.1^-2,-2*K.1^-3,2*K.1,0,-2*K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1^-1,-2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^3,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^3,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^3,2*K.1^-2,-2*K.1^-3,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^3,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-3,-2*K.1,2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,K.1^2,K.1,-1*K.1^-3,K.1^3,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^-3,-1*K.1^-2,K.1^2,K.1^3,-1*K.1^-1,-1*K.1^3,K.1^2,-1*K.1^2,K.1^3,K.1^-1,K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^-2,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^2,K.1^3,K.1^-3,K.1^-1,K.1^3,K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-3,-1*K.1^-3,K.1^-2,-1*K.1^3,K.1^-3,-1*K.1^2,K.1^3,K.1^2,K.1^-3,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^3,K.1^-3,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1,-1*K.1^3,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1,-2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-3,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-3,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^-3,2*K.1^2,-2*K.1^3,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1^-3,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^3,-2*K.1^-1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1,2*K.1^3,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^3,K.1^-3,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,-1*K.1,K.1,-1*K.1^-2,K.1^3,-1*K.1^2,K.1^-2,K.1^-3,-1*K.1,-1*K.1^-3,K.1^-2,-1*K.1^-2,K.1^-3,K.1,K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1^-2,K.1^-3,K.1^3,K.1,K.1^-3,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^3,-1*K.1^3,K.1^2,-1*K.1^-3,K.1^3,-1*K.1^-2,K.1^-3,K.1^-2,K.1^3,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-3,K.1^3,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^-3,-1*K.1,K.1^2,-1*K.1^2,K.1^-2,K.1^-3,K.1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^3,K.1^-3,K.1,K.1^-2,K.1^3,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1^-3,-2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1^3,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-3,2*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^-3,2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-3,2*K.1^-2,-2*K.1^3,2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1,K.1^-2,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^3,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,-1*K.1^-3,K.1^-3,-1*K.1^-1,K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-3,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^2,K.1^-3,K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1^2,K.1^3,K.1,K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^-1,K.1^2,K.1^-2,K.1^-3,K.1^2,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-3,K.1^-3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^3,K.1,K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-3,K.1^-1,-1*K.1^3,K.1,K.1^3,-1*K.1^2,-1*K.1^-3,K.1,-1*K.1,K.1^-1,K.1^2,K.1^-3,K.1^-3,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-3,K.1^-1,K.1^-2,K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1^3,-2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^3,2*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^-3,-2*K.1^-3,2*K.1^3,2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1,-2*K.1^3,2*K.1^2,-2*K.1^-3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-3,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,-1*K.1^3,K.1^3,-1*K.1,K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^3,-1*K.1^-2,K.1,-1*K.1,K.1^-2,K.1^3,K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,-1*K.1,K.1^-2,K.1^2,K.1^3,K.1^-2,K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1,K.1^2,K.1^3,K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-3,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^3,K.1,-1*K.1^-3,K.1^-1,K.1^-3,-1*K.1^-2,-1*K.1^3,K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^3,K.1,K.1^2,K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,-2*K.1^-3,-2*K.1,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^2,2*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-3,-2*K.1^-1,2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1^-3,-2*K.1^3,-2*K.1^-3,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,-1*K.1^-3,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^3,K.1^-2,-1*K.1^-1,K.1,-1*K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^3,K.1^-1,-1*K.1^-3,K.1^3,K.1,-1*K.1^2,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,-1*K.1^3,K.1,K.1^-1,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-3,-1*K.1,K.1^-1,-1*K.1^3,K.1,K.1^3,K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-3,K.1,K.1^-1,-1*K.1^3,-1*K.1^2,K.1^3,-1*K.1^-2,K.1^-3,K.1^-2,-1*K.1,-1*K.1^2,K.1^-3,-1*K.1^-3,K.1^3,K.1,K.1^2,K.1^2,K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^2,K.1^3,K.1^-1,K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,-2,2,2,-2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,-2*K.1^3,-2*K.1^-1,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-2,2*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^3,-2*K.1,2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1^3,-2*K.1^-3,-2*K.1^3,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-1,-2*K.1^-3,2*K.1^-3,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^3,K.1,K.1^3,K.1^-3,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^-3,K.1^2,-1*K.1,K.1^-1,-1*K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-3,K.1,-1*K.1^3,K.1^-3,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-3,-1*K.1^-3,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1,K.1^3,-1*K.1^-1,K.1,-1*K.1^-3,K.1^-1,K.1^-3,K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1,K.1^3,K.1^2,K.1^3,K.1^3,K.1^-1,K.1,-1*K.1^-3,-1*K.1^-2,K.1^-3,-1*K.1^2,K.1^3,K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^3,-1*K.1^3,K.1^-3,K.1^-1,K.1^-2,K.1^-2,K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-2,K.1^-3,K.1,K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-3,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-3,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^3,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1^-1,-2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^3,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^3,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^3,2*K.1^-2,-2*K.1^-3,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-3,2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1,2*K.1^3,2*K.1,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^-2,K.1^-3,K.1^-2,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,K.1^2,K.1,-1*K.1^-3,K.1^3,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^-3,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^-3,-1*K.1^-2,K.1^2,K.1^3,-1*K.1^-1,-1*K.1^3,K.1^2,-1*K.1^2,K.1^3,K.1^-1,K.1^-1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^-2,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^2,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,K.1^3,K.1,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-2,K.1^3,K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,K.1^2,K.1^-1,-1*K.1^2,K.1,K.1^-2,-1*K.1,K.1^3,K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^3,K.1^-3,-1*K.1^3,-1*K.1^-1,K.1,-1*K.1^-3,K.1^-1,K.1^3,K.1^-3,-1*K.1^3,K.1^-1,K.1^2,K.1^-3,-1*K.1,-1*K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-3,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^3,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-3,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1,-2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-3,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-3,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^-3,2*K.1^2,-2*K.1^3,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-3,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^3,2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1^2,K.1^3,K.1^2,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^3,K.1^-3,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^3,-1*K.1,K.1,-1*K.1^-2,K.1^3,-1*K.1^2,K.1^-2,K.1^-3,-1*K.1,-1*K.1^-3,K.1^-2,-1*K.1^-2,K.1^-3,K.1,K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,K.1^-3,K.1^-1,K.1^2,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^-2,-1*K.1^-3,-1*K.1^3,-1*K.1,K.1^-3,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^2,K.1^-3,K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^3,K.1^-2,K.1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,K.1^-3,K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-3,K.1^3,-1*K.1^-3,-1*K.1,K.1^-1,-1*K.1^3,K.1,K.1^-3,K.1^3,-1*K.1^-3,K.1,K.1^-2,K.1^3,-1*K.1^-1,-1*K.1^-2,K.1,K.1^2,K.1^2,K.1^3,K.1^-2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-2,2*K.1,2*K.1^-3,2*K.1^3,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1^-3,-2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^3,2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1^3,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-3,2*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^3,-1*K.1^-3,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-3,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1^-3,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-2,2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1,K.1^-2,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^3,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^3,K.1^-3,K.1^-2,-1*K.1^-3,K.1^-3,-1*K.1^-1,K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-3,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^2,K.1^-3,K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1^2,K.1^3,K.1,K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,K.1^2,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,K.1^3,-1*K.1^3,K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-3,-1*K.1^-1,K.1^3,K.1,-1*K.1^3,K.1^2,K.1^-3,K.1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-3,K.1^-3,K.1^-1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-3,K.1^3,-1*K.1^-2,K.1^-3,K.1^2,K.1^-2,-1*K.1^2,K.1^-3,K.1^-1,K.1^-2,-1*K.1^3,-1*K.1^-1,K.1^-3,K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^2,2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1^3,-2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-3,2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^3,2*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^3,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^3,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1,2*K.1^3,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^2,2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1^-1,K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-3,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1^-3,K.1^3,K.1^2,-1*K.1^3,K.1^3,-1*K.1,K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^3,-1*K.1^-2,K.1,-1*K.1,K.1^-2,K.1^3,K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,K.1^-2,K.1^-3,K.1^-1,K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^3,K.1^-2,K.1^-3,K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1^-3,-1*K.1^-3,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,K.1^3,-1*K.1,K.1^-3,K.1^-1,-1*K.1^-3,K.1^-2,K.1^3,K.1^-1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^3,K.1^-3,-1*K.1^2,K.1^3,K.1^-2,K.1^2,-1*K.1^-2,K.1^3,K.1,K.1^2,-1*K.1^-3,-1*K.1,K.1^3,K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-1,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^3,-2*K.1^-3,-2*K.1,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-2,2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^2,2*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-3,-2*K.1^-1,2*K.1^3,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^2,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-3,2*K.1^3,2*K.1^-3,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-3,2*K.1^-3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^-3,K.1^-1,K.1^-3,K.1^3,-1*K.1^-3,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^3,K.1^-2,-1*K.1^-1,K.1,-1*K.1^3,K.1^-3,K.1^-2,K.1^2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^3,K.1^-1,-1*K.1^-3,K.1^3,K.1,-1*K.1^2,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^-3,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,K.1^-2,K.1^-2,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^-3,K.1,K.1^-1,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1^-1,K.1^3,K.1^2,-1*K.1^3,K.1^-2,K.1^-3,-1*K.1^-2,K.1,K.1^2,K.1^-3,K.1^-3,-1*K.1^3,K.1,-1*K.1^2,K.1^2,K.1^3,K.1^3,-1*K.1^-3,K.1,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1,K.1^2,K.1^3,K.1^-1,-1*K.1^-2,-1*K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^-1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,-2,2,-2,2,2,-2,-2,2,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,-1,-1,1,1,1,-1,1,-1,1,-1,1,-1,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-3,-2*K.1^3,-2*K.1^-1,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^3,2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^2,2*K.1^-1,-2*K.1^-3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-2,2*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^3,-2*K.1,2*K.1^-3,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^3,2*K.1^-3,2*K.1^3,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^3,2*K.1^3,-2*K.1^-1,2*K.1^-3,-2*K.1^-3,2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^3,K.1,K.1^3,K.1^-3,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^-3,K.1^2,-1*K.1,K.1^-1,-1*K.1^-3,K.1^3,K.1^2,K.1^-2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-3,K.1,-1*K.1^3,K.1^-3,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-3,-1*K.1^-3,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^3,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,K.1^2,K.1^2,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^3,K.1^-1,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1,K.1^-3,K.1^-2,-1*K.1^-3,K.1^2,K.1^3,-1*K.1^2,K.1^-1,K.1^-2,K.1^3,K.1^3,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-3,K.1^-3,-1*K.1^3,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^-1,K.1,-1*K.1^-1,K.1^-2,K.1^-3,K.1,-1*K.1^2,-1*K.1^-3,K.1^-2,K.1^3,K.1^3,K.1,K.1^-3,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^16,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^12,-2*K.1^4,-2*K.1^12,2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^20,-2*K.1^20,2*K.1^16,-2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^24,-2*K.1^16,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^8,2*K.1^24,-2*K.1^8,2*K.1^12,2*K.1^8,-2*K.1^20,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^15,-1*K.1^3-K.1^17,K.1^9-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1-K.1^15,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1^5+K.1^19,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1+K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^12,2*K.1^20,2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^12,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^16,2*K.1^24,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^20,-2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^8,-2*K.1^12,2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^16,-2*K.1^20,2*K.1^8,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,K.1-K.1^15,K.1^9-K.1^23,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,-1*K.1^9+K.1^23,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1-K.1^15,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^16,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^12,-2*K.1^4,-2*K.1^12,2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^20,-2*K.1^20,2*K.1^16,-2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^24,-2*K.1^16,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^8,2*K.1^24,-2*K.1^8,2*K.1^12,2*K.1^8,-2*K.1^20,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,K.1^9-K.1^23,K.1-K.1^15,K.1^3+K.1^17,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1^5-K.1^19,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,K.1-K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^12,2*K.1^20,2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^12,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^16,2*K.1^24,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^20,-2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^8,-2*K.1^12,2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^16,-2*K.1^20,2*K.1^8,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^15,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,K.1^9-K.1^23,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,K.1^5-K.1^19,-1*K.1+K.1^15,-1*K.1^9+K.1^23,K.1-K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,-2*K.1^8,-2*K.1^16,-2*K.1^8,2*K.1^8,2*K.1^20,-2*K.1^24,-2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^20,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^24,2*K.1^12,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^24,-2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^8,2*K.1^24,-2*K.1^4,K.1^3+K.1^17,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3-K.1^17,K.1^5-K.1^19,K.1-K.1^15,K.1-K.1^15,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,-1*K.1^5+K.1^19,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,K.1-K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,2*K.1^20,2*K.1^12,2*K.1^20,-2*K.1^20,-2*K.1^8,2*K.1^4,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^20,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^20,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^4,-2*K.1^16,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^12,-2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^20,-2*K.1^4,2*K.1^24,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^15,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^15,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1-K.1^15,K.1^5-K.1^19,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,-2*K.1^8,-2*K.1^16,-2*K.1^8,2*K.1^8,2*K.1^20,-2*K.1^24,-2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^20,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^24,2*K.1^12,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^24,-2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^8,2*K.1^24,-2*K.1^4,-1*K.1^3-K.1^17,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^3-K.1^17,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3+K.1^17,-1*K.1^5+K.1^19,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,K.1^5-K.1^19,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,-1*K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,K.1^3+K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,2*K.1^20,2*K.1^12,2*K.1^20,-2*K.1^20,-2*K.1^8,2*K.1^4,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^20,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^20,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^4,-2*K.1^16,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^12,-2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^20,-2*K.1^4,2*K.1^24,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,K.1-K.1^15,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^5-K.1^19,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^24,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^12,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^16,2*K.1^16,2*K.1^24,-2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^8,-2*K.1^24,-2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,2*K.1^16,-1*K.1^5+K.1^19,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,K.1^5-K.1^19,-1*K.1+K.1^15,K.1^3+K.1^17,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^3-K.1^17,K.1-K.1^15,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^3+K.1^17,K.1^5-K.1^19,K.1^5-K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^24,2*K.1^20,-2*K.1^24,2*K.1^24,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^24,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^20,2*K.1^4,2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^12,2*K.1^20,2*K.1^16,-2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^24,2*K.1^16,-2*K.1^12,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,K.1^3+K.1^17,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,K.1-K.1^15,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1^3+K.1^17,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,K.1^3+K.1^17,K.1^5-K.1^19,K.1^9-K.1^23,K.1-K.1^15,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1^3+K.1^17,-1*K.1^5+K.1^19,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^15,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,K.1^9-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^24,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^12,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^16,2*K.1^16,2*K.1^24,-2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^8,-2*K.1^24,-2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,2*K.1^16,K.1^5-K.1^19,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,-1*K.1^5+K.1^19,K.1-K.1^15,-1*K.1^3-K.1^17,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,K.1^3+K.1^17,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,2,2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^24,2*K.1^20,-2*K.1^24,2*K.1^24,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^24,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^20,2*K.1^4,2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^12,2*K.1^20,2*K.1^16,-2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^24,2*K.1^16,-2*K.1^12,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,-1*K.1^3-K.1^17,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^15,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,-1*K.1^9+K.1^23,-1*K.1+K.1^15,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1^3-K.1^17,K.1^5-K.1^19,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^15,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^8,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^16,-2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^12,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^24,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^20,2*K.1^20,2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^24,2*K.1^20,2*K.1^24,2*K.1^16,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^8,-2*K.1^24,2*K.1^8,-2*K.1^12,-2*K.1^8,-2*K.1^20,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,-1*K.1^9-K.1^23,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,K.1+K.1^15,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1^9+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,K.1+K.1^15,-1*K.1-K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^12,2*K.1^20,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^12,2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^16,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^16,2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^20,2*K.1^4,-2*K.1^20,2*K.1^16,2*K.1^20,2*K.1^8,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,-1*K.1-K.1^15,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,-1*K.1^9-K.1^23,K.1^3-K.1^17,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1^5+K.1^19,-1*K.1-K.1^15,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,K.1^9+K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^12,2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^8,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^16,-2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^12,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^24,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^20,2*K.1^20,2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^24,2*K.1^20,2*K.1^24,2*K.1^16,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^20,-2*K.1^24,2*K.1^8,-2*K.1^8,-2*K.1^24,2*K.1^8,-2*K.1^12,-2*K.1^8,-2*K.1^20,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,K.1^9+K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^9+K.1^23,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,-1*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,-1*K.1-K.1^15,K.1+K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^12,2*K.1^20,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^12,2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^16,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^16,2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^20,2*K.1^20,2*K.1^4,-2*K.1^20,2*K.1^16,2*K.1^20,2*K.1^8,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,K.1+K.1^15,K.1^9+K.1^23,K.1^3-K.1^17,K.1^3-K.1^17,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,K.1^9+K.1^23,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1+K.1^15,K.1^9+K.1^23,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,K.1^9+K.1^23,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^8,2*K.1^16,-2*K.1^8,2*K.1^8,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^12,2*K.1^12,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^20,-2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^16,2*K.1^8,-2*K.1^8,-2*K.1^8,-2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^20,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^16,2*K.1^4,2*K.1^16,-2*K.1^20,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^24,-2*K.1^24,-2*K.1^16,2*K.1^24,2*K.1^8,-2*K.1^24,-2*K.1^4,K.1^3-K.1^17,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,-1*K.1^5-K.1^19,-1*K.1-K.1^15,K.1+K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,K.1^3-K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^20,-2*K.1^12,2*K.1^20,-2*K.1^20,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^16,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^12,-2*K.1^20,2*K.1^20,2*K.1^20,2*K.1^12,-2*K.1^16,2*K.1^24,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^20,-2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^20,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^12,-2*K.1^24,-2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^4,2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^20,2*K.1^4,2*K.1^24,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^9+K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1-K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1+K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^8,2*K.1^16,-2*K.1^8,2*K.1^8,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^12,2*K.1^12,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^20,-2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^16,2*K.1^8,-2*K.1^8,-2*K.1^8,-2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^20,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^16,2*K.1^4,2*K.1^16,-2*K.1^20,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^24,-2*K.1^24,-2*K.1^16,2*K.1^24,2*K.1^8,-2*K.1^24,-2*K.1^4,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^5+K.1^19,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^9+K.1^23,K.1^3-K.1^17,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,K.1^5+K.1^19,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,-1*K.1^3+K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^20,-2*K.1^12,2*K.1^20,-2*K.1^20,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^16,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^12,-2*K.1^20,2*K.1^20,2*K.1^20,2*K.1^12,-2*K.1^16,2*K.1^24,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^20,-2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^20,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^12,-2*K.1^24,-2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^4,2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^20,2*K.1^4,2*K.1^24,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,K.1+K.1^15,K.1^5+K.1^19,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,K.1^9+K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1+K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^4,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^4,-2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^16,2*K.1^24,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^24,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^16,K.1^5+K.1^19,K.1+K.1^15,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,K.1^3-K.1^17,-1*K.1^5-K.1^19,-1*K.1-K.1^15,K.1^3-K.1^17,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^3-K.1^17,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^9+K.1^23,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,-1*K.1-K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,K.1^3-K.1^17,-1*K.1^5-K.1^19,K.1^5+K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^24,-2*K.1^20,-2*K.1^24,2*K.1^24,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^20,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^24,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^24,2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^20,-2*K.1^4,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^12,2*K.1^20,2*K.1^16,-2*K.1^16,2*K.1^20,2*K.1^16,2*K.1^24,-2*K.1^16,-2*K.1^12,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,K.1^3-K.1^17,K.1+K.1^15,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,-1*K.1-K.1^15,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1^9-K.1^23,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,K.1^9+K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,-1*K.1^9-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^4,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^4,-2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^16,2*K.1^24,2*K.1^20,2*K.1^4,2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^24,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^16,-1*K.1^5-K.1^19,-1*K.1-K.1^15,K.1^3-K.1^17,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,K.1^5+K.1^19,K.1+K.1^15,-1*K.1^3+K.1^17,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,K.1^9+K.1^23,K.1^3-K.1^17,K.1+K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,K.1^3-K.1^17,-1*K.1^3+K.1^17,K.1^5+K.1^19,-1*K.1^5-K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,2,2,-2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^24,-2*K.1^20,-2*K.1^24,2*K.1^24,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^20,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^24,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^24,2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^20,-2*K.1^4,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^12,2*K.1^20,2*K.1^16,-2*K.1^16,2*K.1^20,2*K.1^16,2*K.1^24,-2*K.1^16,-2*K.1^12,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1+K.1^15,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,K.1+K.1^15,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1^9+K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,K.1^9+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^24,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^20,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^16,-2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^8,2*K.1^8,-2*K.1^24,2*K.1^8,-2*K.1^12,-2*K.1^8,2*K.1^20,-1*K.1+K.1^15,-1*K.1^3-K.1^17,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,K.1^9-K.1^23,K.1-K.1^15,K.1^3+K.1^17,K.1^9-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1-K.1^15,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,-1*K.1+K.1^15,-1*K.1+K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^16,-2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^4,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^16,-2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^20,-2*K.1^20,2*K.1^4,-2*K.1^20,2*K.1^16,2*K.1^20,-2*K.1^8,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,K.1-K.1^15,K.1^9-K.1^23,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1^5+K.1^19,-1*K.1+K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^8,-2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^24,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^20,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^16,-2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^8,2*K.1^8,-2*K.1^24,2*K.1^8,-2*K.1^12,-2*K.1^8,2*K.1^20,K.1-K.1^15,K.1^3+K.1^17,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^15,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,K.1^3+K.1^17,K.1^3+K.1^17,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,K.1-K.1^15,K.1-K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^20,2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^16,-2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^4,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,-2*K.1^16,-2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^20,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^8,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^12,2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^20,-2*K.1^20,2*K.1^4,-2*K.1^20,2*K.1^16,2*K.1^20,-2*K.1^8,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^15,-1*K.1^9+K.1^23,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,K.1^9-K.1^23,K.1^3+K.1^17,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,K.1^5-K.1^19,K.1-K.1^15,K.1^9-K.1^23,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^5-K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,2*K.1^12,2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^16,-2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^8,2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^8,2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^16,-2*K.1^4,-2*K.1^16,2*K.1^20,2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^24,-2*K.1^16,2*K.1^24,2*K.1^8,-2*K.1^24,2*K.1^4,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1^5-K.1^19,K.1^5-K.1^19,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^15,-1*K.1^5+K.1^19,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^3+K.1^17,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,K.1^5-K.1^19,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^20,-2*K.1^12,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^16,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^20,-2*K.1^20,-2*K.1^20,-2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^20,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^20,-2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^24,-2*K.1^8,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^8,-2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^20,2*K.1^4,-2*K.1^24,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,-1*K.1+K.1^15,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^5-K.1^19,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,K.1-K.1^15,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,2*K.1^12,2*K.1^20,-2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^24,2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^16,-2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^8,2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^8,2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^8,-2*K.1^20,-2*K.1^16,-2*K.1^4,-2*K.1^16,2*K.1^20,2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^24,-2*K.1^16,2*K.1^24,2*K.1^8,-2*K.1^24,2*K.1^4,K.1^3+K.1^17,K.1^9-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,K.1^5-K.1^19,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3-K.1^17,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^15,K.1^5-K.1^19,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^3-K.1^17,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,K.1-K.1^15,K.1-K.1^15,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,K.1^3+K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,-2*K.1^20,-2*K.1^12,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^16,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^20,-2*K.1^20,-2*K.1^20,-2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^20,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^20,-2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,-2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^24,-2*K.1^8,2*K.1^16,2*K.1^20,2*K.1^8,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^8,-2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^20,2*K.1^4,-2*K.1^24,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^5-K.1^19,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5+K.1^19,K.1-K.1^15,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^9-K.1^23,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,-1*K.1+K.1^15,K.1^5-K.1^19,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^8,2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^4,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,2*K.1^24,2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^24,-2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,-2*K.1^16,K.1^5-K.1^19,-1*K.1+K.1^15,K.1^3+K.1^17,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,K.1^3+K.1^17,-1*K.1^5+K.1^19,K.1-K.1^15,K.1^3+K.1^17,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^9-K.1^23,-1*K.1^3-K.1^17,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,-1*K.1^9+K.1^23,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,-1*K.1^9+K.1^23,-1*K.1^3-K.1^17,-1*K.1+K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3+K.1^17,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1^5-K.1^19,K.1^5-K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^24,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^20,-2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^24,-2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^24,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,-2*K.1^4,-2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^20,2*K.1^4,2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^16,2*K.1^20,2*K.1^16,2*K.1^24,-2*K.1^16,2*K.1^12,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,K.1^3+K.1^17,-1*K.1+K.1^15,K.1-K.1^15,K.1-K.1^15,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,-1*K.1^3-K.1^17,-1*K.1+K.1^15,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9+K.1^23,K.1^3+K.1^17,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,-1*K.1^3-K.1^17,K.1^5-K.1^19,-1*K.1^9+K.1^23,K.1-K.1^15,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1^3-K.1^17,K.1^5-K.1^19,-1*K.1^5+K.1^19,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^9-K.1^23,-1*K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3-K.1^17,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,K.1^9-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^24,2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^8,2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^20,2*K.1^4,-2*K.1^24,-2*K.1^4,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,2*K.1^24,2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^24,-2*K.1^24,2*K.1^8,2*K.1^16,2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,-2*K.1^16,-1*K.1^5+K.1^19,K.1-K.1^15,-1*K.1^3-K.1^17,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,-1*K.1^3-K.1^17,K.1^5-K.1^19,-1*K.1+K.1^15,-1*K.1^3-K.1^17,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^15,K.1^9-K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9+K.1^23,K.1^3+K.1^17,-1*K.1^9+K.1^23,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,K.1^9-K.1^23,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5+K.1^19,K.1^9-K.1^23,K.1^3+K.1^17,K.1-K.1^15,K.1-K.1^15,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3-K.1^17,K.1^3+K.1^17,K.1^3+K.1^17,-1*K.1^5+K.1^19,-1*K.1^5+K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,-2,-2,-2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,-1*K.1^7-K.1^21,K.1^7+K.1^21,K.1^7+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^24,2*K.1^20,2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^20,-2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^24,-2*K.1^8,-2*K.1^24,2*K.1^4,2*K.1^24,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,-2*K.1^4,-2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^20,-2*K.1^12,2*K.1^20,2*K.1^4,2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^16,2*K.1^20,2*K.1^16,2*K.1^24,-2*K.1^16,2*K.1^12,-1*K.1^9+K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^5-K.1^19,-1*K.1^3-K.1^17,K.1-K.1^15,-1*K.1+K.1^15,-1*K.1+K.1^15,K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1^5-K.1^19,K.1^3+K.1^17,K.1-K.1^15,-1*K.1+K.1^15,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^9-K.1^23,-1*K.1^3-K.1^17,-1*K.1^5+K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5+K.1^19,K.1^3+K.1^17,-1*K.1^5+K.1^19,K.1^9-K.1^23,-1*K.1+K.1^15,-1*K.1^3-K.1^17,-1*K.1^3-K.1^17,K.1^3+K.1^17,-1*K.1^5+K.1^19,K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11-K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^15,-1*K.1^9+K.1^23,K.1^5-K.1^19,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^13-K.1^15+K.1^19-K.1^23,K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9+K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9+K.1^23,-1*K.1^9+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^2,-2*K.1^6,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,2*K.1^10,2*K.1^2,2*K.1^4,-2*K.1^10,2*K.1^8,2*K.1^6,-2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^8,2*K.1^4,2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^2,-2*K.1^10,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^10,2*K.1^2,-1*K.1^12,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^10,2*K.1^6,-2*K.1^6,-2*K.1^8,-2*K.1^10,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^12,2*K.1^12,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^12,-2*K.1^8,2*K.1^10,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^12,-2*K.1^4,-2*K.1^4,-2*K.1^3,-2*K.1^13,-2*K.1,-2*K.1^13,-2*K.1,-2*K.1^5,2*K.1^3,2*K.1^13,2*K.1^13,2*K.1^5,2*K.1,2*K.1,-2*K.1^3,2*K.1^9,2*K.1^11,2*K.1^11,-2*K.1^9,-2*K.1^5,2*K.1^3,-2*K.1^9,-2*K.1^11,2*K.1^5,-2*K.1^11,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,K.1^10,-1*K.1^10,K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,K.1^12,-1*K.1^4,K.1^11,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,K.1^13,K.1^12,K.1^9,K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,-1*K.1^11,K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^11,-1*K.1^6,-1*K.1^11,K.1^5,K.1^3,K.1^6,-1*K.1^13,-1*K.1,-1*K.1^12,-1*K.1^3,K.1^10,K.1^8,-1*K.1,K.1^6,K.1^5,-1*K.1^9,-1*K.1^12,K.1^10,K.1^11,K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^11,-1*K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,-2*K.1^4,-2*K.1^12,-2*K.1^10,2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,-2*K.1^6,-2*K.1^10,-2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^10,-2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^2,-2*K.1^10,2*K.1^6,-2*K.1^6,2*K.1^10,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^12,2*K.1^4,-2*K.1^2,2*K.1^10,2*K.1^6,-2*K.1^4,-2*K.1^12,K.1^2,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^12,-2*K.1^6,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^10,2*K.1^2,2*K.1^10,2*K.1^10,2*K.1^11,2*K.1,2*K.1^13,2*K.1,2*K.1^13,2*K.1^9,-2*K.1^11,-2*K.1,-2*K.1,-2*K.1^9,-2*K.1^13,-2*K.1^13,2*K.1^11,-2*K.1^5,-2*K.1^3,-2*K.1^3,2*K.1^5,2*K.1^9,-2*K.1^11,2*K.1^5,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^12,-1*K.1^12,K.1^12,K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10,-1*K.1^13,K.1^9,K.1^5,K.1^11,-1*K.1^2,K.1^10,-1*K.1^3,K.1^8,-1*K.1^10,K.1^10,K.1^4,-1*K.1^12,K.1^12,-1*K.1,-1*K.1^2,-1*K.1^5,-1*K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,K.1^3,-1*K.1^3,K.1,K.1^9,K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,K.1^13,-1*K.1^11,-1*K.1^13,K.1^3,K.1^8,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^8,K.1,K.1^13,K.1^2,K.1^11,-1*K.1^4,-1*K.1^6,K.1^13,-1*K.1^8,-1*K.1^9,K.1^5,K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^12,K.1^11,K.1^9,-1*K.1^5,-1*K.1^9,K.1^4,K.1^6,K.1^12,-1*K.1^3,K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,-2*K.1^4,-2*K.1^12,-2*K.1^10,2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,-2*K.1^6,-2*K.1^10,-2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^10,-2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^2,-2*K.1^10,2*K.1^6,-2*K.1^6,2*K.1^10,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^12,2*K.1^4,-2*K.1^2,2*K.1^10,2*K.1^6,-2*K.1^4,-2*K.1^12,K.1^2,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^12,-2*K.1^6,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^10,2*K.1^2,2*K.1^10,2*K.1^10,-2*K.1^11,-2*K.1,-2*K.1^13,-2*K.1,-2*K.1^13,-2*K.1^9,2*K.1^11,2*K.1,2*K.1,2*K.1^9,2*K.1^13,2*K.1^13,-2*K.1^11,2*K.1^5,2*K.1^3,2*K.1^3,-2*K.1^5,-2*K.1^9,2*K.1^11,-2*K.1^5,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^8,K.1^12,K.1^8,-1*K.1^6,K.1^8,-1*K.1^12,-1*K.1^12,K.1^12,K.1^2,K.1^8,K.1^6,K.1^10,K.1^12,K.1^2,-1*K.1^6,-1*K.1^8,K.1^10,-1*K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^6,K.1^2,K.1^4,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^8,-1*K.1^10,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^2,K.1^10,K.1^3,K.1^8,-1*K.1^10,K.1^10,K.1^4,-1*K.1^12,K.1^12,K.1,-1*K.1^2,K.1^5,-1*K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^11,K.1^13,-1*K.1^3,K.1^8,-1*K.1^3,K.1^9,K.1^11,-1*K.1^8,-1*K.1,-1*K.1^13,K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^6,-1*K.1^13,-1*K.1^8,K.1^9,-1*K.1^5,K.1^2,-1*K.1^4,K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,K.1^9,K.1^4,K.1^6,K.1^12,K.1^3,K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^2,-2*K.1^6,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,2*K.1^10,2*K.1^2,2*K.1^4,-2*K.1^10,2*K.1^8,2*K.1^6,-2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^8,2*K.1^4,2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^2,-2*K.1^10,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^10,2*K.1^2,-1*K.1^12,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^10,2*K.1^6,-2*K.1^6,-2*K.1^8,-2*K.1^10,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^12,2*K.1^12,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^12,-2*K.1^8,2*K.1^10,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^12,-2*K.1^4,-2*K.1^4,2*K.1^3,2*K.1^13,2*K.1,2*K.1^13,2*K.1,2*K.1^5,-2*K.1^3,-2*K.1^13,-2*K.1^13,-2*K.1^5,-2*K.1,-2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^11,-2*K.1^11,2*K.1^9,2*K.1^5,-2*K.1^3,2*K.1^9,2*K.1^11,-2*K.1^5,2*K.1^11,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^8,K.1^6,-1*K.1^4,K.1^10,-1*K.1^2,K.1^10,-1*K.1^10,K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^12,-1*K.1^10,K.1^12,-1*K.1^8,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1,K.1^5,K.1^9,K.1^3,K.1^12,-1*K.1^4,-1*K.1^11,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^13,K.1^12,-1*K.1^9,K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^11,-1*K.1^11,K.1^13,K.1^5,K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^11,-1*K.1^6,K.1^11,-1*K.1^5,-1*K.1^3,K.1^6,K.1^13,K.1,-1*K.1^12,K.1^3,K.1^10,K.1^8,K.1,K.1^6,-1*K.1^5,K.1^9,-1*K.1^12,K.1^10,-1*K.1^11,K.1^2,K.1^3,K.1^5,-1*K.1^9,-1*K.1^5,-1*K.1^10,-1*K.1^8,-1*K.1^2,-1*K.1^11,-1*K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^8,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,2*K.1^2,2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^10,-2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^10,2*K.1^12,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^10,-2*K.1^12,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^10,-2*K.1^12,2*K.1^8,2*K.1^10,-2*K.1^2,-2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^2,2*K.1^6,-1*K.1^8,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,K.1^2,-2*K.1^4,2*K.1^4,2*K.1^10,-2*K.1^2,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^10,2*K.1^2,-2*K.1^10,2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^2,-2*K.1^4,2*K.1^6,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^12,2*K.1^9,2*K.1^11,2*K.1^3,2*K.1^11,2*K.1^3,-2*K.1,-2*K.1^9,-2*K.1^11,-2*K.1^11,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^13,-2*K.1^5,-2*K.1^5,-2*K.1^13,-2*K.1,-2*K.1^9,-2*K.1^13,2*K.1^5,2*K.1,2*K.1^5,2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^2,K.1^8,K.1^12,K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^3,-1*K.1,-1*K.1^13,K.1^9,K.1^8,-1*K.1^12,-1*K.1^5,K.1^4,K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^11,K.1^8,K.1^13,-1*K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,K.1^5,-1*K.1^5,K.1^11,-1*K.1,-1*K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^3,K.1^5,K.1^4,K.1^5,K.1,-1*K.1^9,-1*K.1^4,K.1^11,K.1^3,-1*K.1^8,K.1^9,K.1^2,-1*K.1^10,K.1^3,-1*K.1^4,K.1,-1*K.1^13,-1*K.1^8,K.1^2,-1*K.1^5,K.1^6,K.1^9,-1*K.1,K.1^13,K.1,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^5,K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^8,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,-2*K.1^12,-2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^4,2*K.1^10,2*K.1^6,-2*K.1^10,2*K.1^10,2*K.1^4,-2*K.1^2,-2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^8,2*K.1^10,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^12,2*K.1^2,2*K.1^6,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^6,2*K.1^8,2*K.1^12,-2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^12,-2*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^12,2*K.1^10,-2*K.1^10,-2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^12,2*K.1^8,-2*K.1^6,-2*K.1^6,-2*K.1^10,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^5,-2*K.1^3,-2*K.1^11,-2*K.1^3,-2*K.1^11,2*K.1^13,2*K.1^5,2*K.1^3,2*K.1^3,-2*K.1^13,2*K.1^11,2*K.1^11,-2*K.1^5,-2*K.1,2*K.1^9,2*K.1^9,2*K.1,2*K.1^13,2*K.1^5,2*K.1,-2*K.1^9,-2*K.1^13,-2*K.1^9,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^10,K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^11,K.1^13,K.1,-1*K.1^5,-1*K.1^6,K.1^2,K.1^9,-1*K.1^10,-1*K.1^2,K.1^2,K.1^12,-1*K.1^8,K.1^8,K.1^3,-1*K.1^6,-1*K.1,K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,-1*K.1^9,K.1^9,-1*K.1^3,K.1^13,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,-1*K.1^11,K.1^5,K.1^11,-1*K.1^9,-1*K.1^10,-1*K.1^9,-1*K.1^13,K.1^5,K.1^10,-1*K.1^3,-1*K.1^11,K.1^6,-1*K.1^5,-1*K.1^12,K.1^4,-1*K.1^11,K.1^10,-1*K.1^13,K.1,K.1^6,-1*K.1^12,K.1^9,-1*K.1^8,-1*K.1^5,K.1^13,-1*K.1,-1*K.1^13,K.1^12,-1*K.1^4,K.1^8,K.1^9,-1*K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^8,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,-2*K.1^12,-2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^4,2*K.1^10,2*K.1^6,-2*K.1^10,2*K.1^10,2*K.1^4,-2*K.1^2,-2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^8,2*K.1^10,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^12,2*K.1^2,2*K.1^6,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^6,2*K.1^8,2*K.1^12,-2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^12,-2*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^12,2*K.1^10,-2*K.1^10,-2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^12,2*K.1^8,-2*K.1^6,-2*K.1^6,-2*K.1^10,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^2,2*K.1^5,2*K.1^3,2*K.1^11,2*K.1^3,2*K.1^11,-2*K.1^13,-2*K.1^5,-2*K.1^3,-2*K.1^3,2*K.1^13,-2*K.1^11,-2*K.1^11,2*K.1^5,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1,-2*K.1^13,-2*K.1^5,-2*K.1,2*K.1^9,2*K.1^13,2*K.1^9,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^10,K.1^8,-1*K.1^10,K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,-1*K.1^4,K.1^2,K.1^8,K.1^6,K.1^4,K.1^10,K.1^2,-1*K.1^12,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^8,K.1^10,K.1^4,K.1^6,K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^5,-1*K.1^6,K.1^2,-1*K.1^9,-1*K.1^10,-1*K.1^2,K.1^2,K.1^12,-1*K.1^8,K.1^8,-1*K.1^3,-1*K.1^6,K.1,K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,K.1^3,-1*K.1^13,-1*K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^11,K.1^9,-1*K.1^10,K.1^9,K.1^13,-1*K.1^5,K.1^10,K.1^3,K.1^11,K.1^6,K.1^5,-1*K.1^12,K.1^4,K.1^11,K.1^10,K.1^13,-1*K.1,K.1^6,-1*K.1^12,-1*K.1^9,-1*K.1^8,K.1^5,-1*K.1^13,K.1,K.1^13,K.1^12,-1*K.1^4,K.1^8,-1*K.1^9,-1*K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,2*K.1^2,2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^10,-2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^10,2*K.1^12,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^10,-2*K.1^12,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^10,-2*K.1^12,2*K.1^8,2*K.1^10,-2*K.1^2,-2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^2,2*K.1^6,-1*K.1^8,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,K.1^2,-2*K.1^4,2*K.1^4,2*K.1^10,-2*K.1^2,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^10,2*K.1^2,-2*K.1^10,2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^2,-2*K.1^4,2*K.1^6,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^12,-2*K.1^9,-2*K.1^11,-2*K.1^3,-2*K.1^11,-2*K.1^3,2*K.1,2*K.1^9,2*K.1^11,2*K.1^11,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^13,2*K.1^5,2*K.1^5,2*K.1^13,2*K.1,2*K.1^9,2*K.1^13,-2*K.1^5,-2*K.1,-2*K.1^5,-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^4,-1*K.1^10,K.1^4,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,K.1^10,-1*K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^10,-1*K.1^8,-1*K.1^2,K.1^8,K.1^10,K.1^10,K.1^8,K.1^2,-1*K.1^2,K.1^8,K.1^12,K.1^12,K.1^8,K.1^12,K.1^4,K.1^12,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^3,K.1,K.1^13,-1*K.1^9,K.1^8,-1*K.1^12,K.1^5,K.1^4,K.1^12,-1*K.1^12,-1*K.1^2,K.1^6,-1*K.1^6,K.1^11,K.1^8,-1*K.1^13,-1*K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,-1*K.1^5,K.1^5,-1*K.1^11,K.1,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,-1*K.1^3,K.1^9,K.1^3,-1*K.1^5,K.1^4,-1*K.1^5,-1*K.1,K.1^9,-1*K.1^4,-1*K.1^11,-1*K.1^3,-1*K.1^8,-1*K.1^9,K.1^2,-1*K.1^10,-1*K.1^3,-1*K.1^4,-1*K.1,K.1^13,-1*K.1^8,K.1^2,K.1^5,K.1^6,-1*K.1^9,K.1,-1*K.1^13,-1*K.1,-1*K.1^2,K.1^10,-1*K.1^6,K.1^5,K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^10,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,-2*K.1^8,2*K.1^10,-2*K.1^6,2*K.1^8,2*K.1^12,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^12,-2*K.1^6,-2*K.1^8,2*K.1^4,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^12,2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^10,2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^8,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^6,-1*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^12,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^4,2*K.1^4,-2*K.1^2,-2*K.1^10,2*K.1^12,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^8,2*K.1^2,2*K.1^10,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^6,2*K.1,-2*K.1^9,-2*K.1^5,-2*K.1^9,-2*K.1^5,2*K.1^11,-2*K.1,2*K.1^9,2*K.1^9,-2*K.1^11,2*K.1^5,2*K.1^5,2*K.1,-2*K.1^3,-2*K.1^13,-2*K.1^13,2*K.1^3,2*K.1^11,-2*K.1,2*K.1^3,2*K.1^13,-2*K.1^11,2*K.1^13,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,K.1^10,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^8,K.1^8,K.1^12,K.1^10,K.1^2,K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^5,K.1^11,K.1^3,K.1,K.1^4,K.1^6,-1*K.1^13,-1*K.1^2,-1*K.1^6,K.1^6,K.1^8,K.1^10,-1*K.1^10,K.1^9,K.1^4,-1*K.1^3,K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^9,K.1^11,K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,-1*K.1^5,-1*K.1,K.1^5,K.1^13,-1*K.1^2,K.1^13,-1*K.1^11,-1*K.1,K.1^2,-1*K.1^9,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^8,K.1^12,-1*K.1^5,K.1^2,-1*K.1^11,K.1^3,-1*K.1^4,-1*K.1^8,-1*K.1^13,K.1^10,K.1,K.1^11,-1*K.1^3,-1*K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,-1*K.1^13,-1*K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^4,2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,2*K.1^6,-2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^12,2*K.1^10,2*K.1^12,-2*K.1^12,-2*K.1^2,2*K.1^8,2*K.1^6,-2*K.1^10,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^10,2*K.1^4,-2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^4,K.1^10,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^6,-2*K.1^12,2*K.1^12,2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^10,-2*K.1^10,2*K.1^12,2*K.1^4,-2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^6,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^10,-2*K.1^8,-2*K.1^8,-2*K.1^13,2*K.1^5,2*K.1^9,2*K.1^5,2*K.1^9,-2*K.1^3,2*K.1^13,-2*K.1^5,-2*K.1^5,2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^13,2*K.1^11,2*K.1,2*K.1,-2*K.1^11,-2*K.1^3,2*K.1^13,-2*K.1^11,-2*K.1,2*K.1^3,-2*K.1,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,-1*K.1^10,-1*K.1^8,K.1,K.1^12,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^5,-1*K.1^10,K.1^11,-1*K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,-1*K.1,K.1,K.1^5,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,K.1^9,K.1^13,-1*K.1^9,-1*K.1,K.1^12,-1*K.1,K.1^3,K.1^13,-1*K.1^12,K.1^5,K.1^9,K.1^10,-1*K.1^13,K.1^6,-1*K.1^2,K.1^9,-1*K.1^12,K.1^3,-1*K.1^11,K.1^10,K.1^6,K.1,-1*K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,K.1^3,-1*K.1^6,K.1^2,K.1^4,K.1,K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^4,2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^10,0,0,0,0,0,0,0,0,K.1^7,1,-1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,1,-1*K.1^7,-1*K.1^7,-1,2*K.1^6,-2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^12,2*K.1^10,2*K.1^12,-2*K.1^12,-2*K.1^2,2*K.1^8,2*K.1^6,-2*K.1^10,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^10,2*K.1^4,-2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^4,K.1^10,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^6,-2*K.1^12,2*K.1^12,2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^10,-2*K.1^10,2*K.1^12,2*K.1^4,-2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^6,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^10,-2*K.1^8,-2*K.1^8,2*K.1^13,-2*K.1^5,-2*K.1^9,-2*K.1^5,-2*K.1^9,2*K.1^3,-2*K.1^13,2*K.1^5,2*K.1^5,-2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^13,-2*K.1^11,-2*K.1,-2*K.1,2*K.1^11,2*K.1^3,-2*K.1^13,2*K.1^11,2*K.1,-2*K.1^3,2*K.1,-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,-1*K.1^12,K.1^4,K.1^12,-1*K.1^2,K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^10,K.1^12,K.1^2,-1*K.1^8,K.1^4,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^8,K.1^6,K.1^4,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,K.1^2,K.1^2,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^10,K.1^8,K.1^8,-1*K.1^10,K.1^8,K.1^12,K.1^8,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1^10,-1*K.1^8,-1*K.1,K.1^12,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^4,K.1^5,-1*K.1^10,-1*K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,K.1,-1*K.1,-1*K.1^5,K.1^3,K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,-1*K.1^9,-1*K.1^13,K.1^9,K.1,K.1^12,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^12,-1*K.1^5,-1*K.1^9,K.1^10,K.1^13,K.1^6,-1*K.1^2,-1*K.1^9,-1*K.1^12,-1*K.1^3,K.1^11,K.1^10,K.1^6,-1*K.1,-1*K.1^4,K.1^13,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^6,K.1^2,K.1^4,-1*K.1,K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,2,2,-2,-2,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^10,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^7,1,-1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,1,K.1^7,K.1^7,-1,-2*K.1^8,2*K.1^10,-2*K.1^6,2*K.1^8,2*K.1^12,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^12,-2*K.1^6,-2*K.1^8,2*K.1^4,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^12,2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^10,2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^8,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^6,-1*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^12,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^4,2*K.1^4,-2*K.1^2,-2*K.1^10,2*K.1^12,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^8,2*K.1^2,2*K.1^10,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^6,-2*K.1,2*K.1^9,2*K.1^5,2*K.1^9,2*K.1^5,-2*K.1^11,2*K.1,-2*K.1^9,-2*K.1^9,2*K.1^11,-2*K.1^5,-2*K.1^5,-2*K.1,2*K.1^3,2*K.1^13,2*K.1^13,-2*K.1^3,-2*K.1^11,2*K.1,-2*K.1^3,-2*K.1^13,2*K.1^11,-2*K.1^13,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^2,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^2,K.1^10,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^2,-1*K.1^12,K.1^6,-1*K.1^10,-1*K.1^4,K.1^12,K.1^2,K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^8,K.1^8,K.1^12,K.1^10,K.1^2,K.1^12,-1*K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^4,K.1^6,K.1^13,-1*K.1^2,-1*K.1^6,K.1^6,K.1^8,K.1^10,-1*K.1^10,-1*K.1^9,K.1^4,K.1^3,K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,-1*K.1^13,K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^5,K.1,-1*K.1^5,-1*K.1^13,-1*K.1^2,-1*K.1^13,K.1^11,K.1,K.1^2,K.1^9,K.1^5,-1*K.1^4,-1*K.1,-1*K.1^8,K.1^12,K.1^5,K.1^2,K.1^11,-1*K.1^3,-1*K.1^4,-1*K.1^8,K.1^13,K.1^10,-1*K.1,-1*K.1^11,K.1^3,K.1^11,K.1^8,-1*K.1^12,-1*K.1^10,K.1^13,-1*K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^9,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^-3,-2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,-2*K.1^-6,-2*K.1^9,2*K.1^-6,2*K.1^-6,-2*K.1^6,-2*K.1^3,2*K.1^-3,-2*K.1^9,-2*K.1^-9,2*K.1^-9,-2*K.1^-9,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^-6,2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^6,2*K.1^3,2*K.1^9,-2*K.1^6,-2*K.1^-3,2*K.1^3,-2*K.1^9,-2*K.1^-6,-2*K.1^-6,2*K.1^-6,2*K.1^9,2*K.1^-9,-2*K.1^-3,-2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^-3,2*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,2*K.1^-6,2*K.1^-6,-2*K.1^6,2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,2*K.1^9,-2*K.1^-6,2*K.1^-9,-2*K.1^6,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^-6,K.1^-9,K.1^-6,K.1^6,-1*K.1^-6,K.1^-9,-1*K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,K.1^6,K.1^3,-1*K.1^-9,K.1^9,-1*K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-9,-1*K.1^-3,K.1^-3,-1*K.1^6,K.1^-9,-1*K.1^-6,K.1^6,K.1^9,-1*K.1^-3,-1*K.1^9,K.1^6,-1*K.1^6,K.1^9,K.1^-3,K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^-6,K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1^9,-1*K.1^3,K.1^3+2*K.1^10,K.1^-6,K.1^3,K.1^3,K.1^-3,-1*K.1^-9,K.1^-9,K.1-K.1^8,K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^6,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,K.1^4-K.1^-10,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10,K.1-K.1^8,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1-K.1^8,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,-1*K.1+K.1^8,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^4-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^-6,K.1^3+2*K.1^10,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,-1*K.1^-6,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^9,K.1^4-K.1^-10,-1*K.1^-3,-1*K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-6,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^9,K.1^-3,-1*K.1^3-2*K.1^10,K.1^-9,K.1^4-K.1^-10,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,K.1^3+2*K.1^10,K.1^6,-1*K.1^4+K.1^-10,K.1-K.1^8,-1*K.1+K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-9,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^3,-2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,-2*K.1^6,-2*K.1^-9,2*K.1^6,2*K.1^6,-2*K.1^-6,-2*K.1^-3,2*K.1^3,-2*K.1^-9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^6,2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^-6,2*K.1^-3,2*K.1^-9,-2*K.1^-6,-2*K.1^3,2*K.1^-3,-2*K.1^-9,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^-9,2*K.1^9,-2*K.1^3,-2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^3,2*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-3,-1*K.1^3,2*K.1^6,2*K.1^6,-2*K.1^-6,2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,2*K.1^-9,-2*K.1^6,2*K.1^9,-2*K.1^-6,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-9,-2*K.1^-3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1^6,K.1^9,K.1^6,K.1^-6,-1*K.1^6,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^6,K.1^-6,K.1^-3,-1*K.1^9,K.1^-9,-1*K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^-6,K.1^9,-1*K.1^6,K.1^-6,K.1^-9,-1*K.1^3,-1*K.1^-9,K.1^-6,-1*K.1^-6,K.1^-9,K.1^3,K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,K.1^-9,K.1^-3,K.1^6,K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1-K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-1*K.1^-9,-1*K.1^-3,-1*K.1^4+K.1^-10,K.1^6,K.1^-3,K.1^-3,K.1^3,-1*K.1^9,K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,2*K.1^2+K.1^9,K.1^-6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,K.1^4-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,-1*K.1+K.1^8,-1*K.1^3-2*K.1^10,K.1-K.1^8,K.1^4-K.1^-10,-1*K.1^6,-1*K.1^4+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,-1*K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,-1*K.1^-9,-1*K.1^3-2*K.1^10,-1*K.1^3,-1*K.1^-6,K.1-K.1^8,K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,K.1^-9,K.1^3,K.1^4-K.1^-10,K.1^9,-1*K.1^3-2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^4+K.1^-10,K.1^-6,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+K.1^9,-1*K.1+K.1^8,-1*K.1+K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^9,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^-3,-2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,-2*K.1^-6,-2*K.1^9,2*K.1^-6,2*K.1^-6,-2*K.1^6,-2*K.1^3,2*K.1^-3,-2*K.1^9,-2*K.1^-9,2*K.1^-9,-2*K.1^-9,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^-6,2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^6,2*K.1^3,2*K.1^9,-2*K.1^6,-2*K.1^-3,2*K.1^3,-2*K.1^9,-2*K.1^-6,-2*K.1^-6,2*K.1^-6,2*K.1^9,2*K.1^-9,-2*K.1^-3,-2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^-3,2*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,2*K.1^-6,2*K.1^-6,-2*K.1^6,2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,2*K.1^9,-2*K.1^-6,2*K.1^-9,-2*K.1^6,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^-6,K.1^-9,K.1^-6,K.1^6,-1*K.1^-6,K.1^-9,-1*K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,K.1^6,K.1^3,-1*K.1^-9,K.1^9,-1*K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-9,-1*K.1^-3,K.1^-3,-1*K.1^6,K.1^-9,-1*K.1^-6,K.1^6,K.1^9,-1*K.1^-3,-1*K.1^9,K.1^6,-1*K.1^6,K.1^9,K.1^-3,K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^-6,K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,-1*K.1^9,-1*K.1^3,-1*K.1^3-2*K.1^10,K.1^-6,K.1^3,K.1^3,K.1^-3,-1*K.1^-9,K.1^-9,-1*K.1+K.1^8,K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^6,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10,-1*K.1+K.1^8,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1+K.1^8,K.1^3+2*K.1^10,K.1-K.1^8,K.1-K.1^8,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^4+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+2*K.1^10,-1*K.1^-6,-1*K.1^3-2*K.1^10,2*K.1^2+K.1^9,K.1^4-K.1^-10,-1*K.1^-6,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^9,-1*K.1^4+K.1^-10,-1*K.1^-3,-1*K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-6,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^9,K.1^-3,K.1^3+2*K.1^10,K.1^-9,-1*K.1^4+K.1^-10,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^3-2*K.1^10,K.1^6,K.1^4-K.1^-10,-1*K.1+K.1^8,K.1-K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-9,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^3,-2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,-2*K.1^6,-2*K.1^-9,2*K.1^6,2*K.1^6,-2*K.1^-6,-2*K.1^-3,2*K.1^3,-2*K.1^-9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^6,2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^-6,2*K.1^-3,2*K.1^-9,-2*K.1^-6,-2*K.1^3,2*K.1^-3,-2*K.1^-9,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^-9,2*K.1^9,-2*K.1^3,-2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^3,2*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-3,-1*K.1^3,2*K.1^6,2*K.1^6,-2*K.1^-6,2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,2*K.1^-9,-2*K.1^6,2*K.1^9,-2*K.1^-6,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-9,-2*K.1^-3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1^6,K.1^9,K.1^6,K.1^-6,-1*K.1^6,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^6,K.1^-6,K.1^-3,-1*K.1^9,K.1^-9,-1*K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^-6,K.1^9,-1*K.1^6,K.1^-6,K.1^-9,-1*K.1^3,-1*K.1^-9,K.1^-6,-1*K.1^-6,K.1^-9,K.1^3,K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,K.1^-9,K.1^-3,K.1^6,K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1+K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,-1*K.1^-9,-1*K.1^-3,K.1^4-K.1^-10,K.1^6,K.1^-3,K.1^-3,K.1^3,-1*K.1^9,K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,-2*K.1^2-K.1^9,K.1^-6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10,K.1^4-K.1^-10,-1*K.1^4+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,K.1-K.1^8,K.1^3+2*K.1^10,-1*K.1+K.1^8,-1*K.1^4+K.1^-10,-1*K.1^6,K.1^4-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,-1*K.1^-9,K.1^3+2*K.1^10,-1*K.1^3,-1*K.1^-6,-1*K.1+K.1^8,K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,K.1^-9,K.1^3,-1*K.1^4+K.1^-10,K.1^9,K.1^3+2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3,-1*K.1^-6,-1*K.1^9,K.1^4-K.1^-10,K.1^-6,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-K.1^9,K.1-K.1^8,K.1-K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^-9,-2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,-2*K.1^3,-2*K.1^6,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^9,2*K.1^-9,-2*K.1^6,-2*K.1^-6,2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^3,2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-3,2*K.1^9,2*K.1^6,-2*K.1^-3,-2*K.1^-9,2*K.1^9,-2*K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-6,-2*K.1^-9,-2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-9,2*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^9,-1*K.1^-9,2*K.1^3,2*K.1^3,-2*K.1^-3,2*K.1^-9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,2*K.1^6,-2*K.1^3,2*K.1^-6,-2*K.1^-3,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^-3,-2*K.1^-9,-2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^6,-2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,K.1^3,K.1^-6,K.1^3,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-3,K.1^9,-1*K.1^-6,K.1^6,-1*K.1^-3,K.1^3,K.1^9,K.1^-9,K.1^-6,-1*K.1^-9,K.1^-9,-1*K.1^-3,K.1^-6,-1*K.1^3,K.1^-3,K.1^6,-1*K.1^-9,-1*K.1^6,K.1^-3,-1*K.1^-3,K.1^6,K.1^-9,K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^9,K.1^6,K.1^9,K.1^3,K.1^9,-1*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^4+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^6,-1*K.1^9,-2*K.1^2-K.1^9,K.1^3,K.1^9,K.1^9,K.1^-9,-1*K.1^-6,K.1^-6,K.1^3+2*K.1^10,K.1^6,K.1-K.1^8,K.1^-3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,2*K.1^2+K.1^9,K.1^3+2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,K.1^3+2*K.1^10,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,-1*K.1^3-2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,K.1^4-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^4+K.1^-10,2*K.1^2+K.1^9,-1*K.1^3,-2*K.1^2-K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,-1*K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^-9,-1*K.1^-3,-1*K.1^4+K.1^-10,K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,K.1^6,K.1^-9,2*K.1^2+K.1^9,K.1^-6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-2*K.1^2-K.1^9,K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10,K.1-K.1^8,K.1^4-K.1^-10,K.1^4-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^9,-2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,-2*K.1^-3,-2*K.1^-6,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-9,2*K.1^9,-2*K.1^-6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-3,2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^3,2*K.1^-9,2*K.1^-6,-2*K.1^3,-2*K.1^9,2*K.1^-9,-2*K.1^-6,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^6,-2*K.1^9,-2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^9,2*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,2*K.1^-3,2*K.1^-3,-2*K.1^3,2*K.1^9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,2*K.1^-6,-2*K.1^-3,2*K.1^6,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^3,-2*K.1^9,-2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-6,-2*K.1^-9,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,K.1^-3,K.1^6,K.1^-3,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^3,K.1^-9,-1*K.1^6,K.1^-6,-1*K.1^3,K.1^-3,K.1^-9,K.1^9,K.1^6,-1*K.1^9,K.1^9,-1*K.1^3,K.1^6,-1*K.1^-3,K.1^3,K.1^-6,-1*K.1^9,-1*K.1^-6,K.1^3,-1*K.1^3,K.1^-6,K.1^9,K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,K.1^-6,K.1^-9,K.1^-3,K.1^-9,-1*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,K.1^3+2*K.1^10,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,-1*K.1^-6,-1*K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^-3,K.1^-9,K.1^-9,K.1^9,-1*K.1^6,K.1^6,-1*K.1^4+K.1^-10,K.1^-6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3,K.1-K.1^8,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^4+K.1^-10,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,K.1^4-K.1^-10,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-2*K.1^10,2*K.1^2+K.1^9,K.1^3+2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1+K.1^8,-2*K.1^2-K.1^9,-1*K.1^-3,K.1^4-K.1^-10,K.1^3+2*K.1^10,-1*K.1^-6,2*K.1^2+K.1^9,-1*K.1^9,-1*K.1^3,K.1^3+2*K.1^10,K.1^-3,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-6,K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^6,2*K.1^2+K.1^9,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,K.1^4-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^3-2*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^-9,-2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,-2*K.1^3,-2*K.1^6,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^9,2*K.1^-9,-2*K.1^6,-2*K.1^-6,2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^3,2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-3,2*K.1^9,2*K.1^6,-2*K.1^-3,-2*K.1^-9,2*K.1^9,-2*K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-6,-2*K.1^-9,-2*K.1^6,-2*K.1^9,2*K.1^-3,-2*K.1^-9,2*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^9,-1*K.1^-9,2*K.1^3,2*K.1^3,-2*K.1^-3,2*K.1^-9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,2*K.1^6,-2*K.1^3,2*K.1^-6,-2*K.1^-3,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^-3,-2*K.1^-9,-2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^6,-2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,K.1^3,K.1^-6,K.1^3,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-3,K.1^9,-1*K.1^-6,K.1^6,-1*K.1^-3,K.1^3,K.1^9,K.1^-9,K.1^-6,-1*K.1^-9,K.1^-9,-1*K.1^-3,K.1^-6,-1*K.1^3,K.1^-3,K.1^6,-1*K.1^-9,-1*K.1^6,K.1^-3,-1*K.1^-3,K.1^6,K.1^-9,K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^9,K.1^6,K.1^9,K.1^3,K.1^9,-1*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,K.1^4-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^6,-1*K.1^9,2*K.1^2+K.1^9,K.1^3,K.1^9,K.1^9,K.1^-9,-1*K.1^-6,K.1^-6,-1*K.1^3-2*K.1^10,K.1^6,-1*K.1+K.1^8,K.1^-3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,-2*K.1^2-K.1^9,-1*K.1^3-2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,K.1^3+2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,-1*K.1^4+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^4-K.1^-10,-2*K.1^2-K.1^9,-1*K.1^3,2*K.1^2+K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3,K.1^3+2*K.1^10,K.1^4-K.1^-10,-1*K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^-9,-1*K.1^-3,K.1^4-K.1^-10,K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,K.1^6,K.1^-9,-2*K.1^2-K.1^9,K.1^-6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,2*K.1^2+K.1^9,K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10,-1*K.1+K.1^8,-1*K.1^4+K.1^-10,-1*K.1^4+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^9,-2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,-2*K.1^-3,-2*K.1^-6,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-9,2*K.1^9,-2*K.1^-6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-3,2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^3,2*K.1^-9,2*K.1^-6,-2*K.1^3,-2*K.1^9,2*K.1^-9,-2*K.1^-6,-2*K.1^-3,-2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^6,-2*K.1^9,-2*K.1^-6,-2*K.1^-9,2*K.1^3,-2*K.1^9,2*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,2*K.1^-3,2*K.1^-3,-2*K.1^3,2*K.1^9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,2*K.1^-6,-2*K.1^-3,2*K.1^6,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^3,-2*K.1^9,-2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-6,-2*K.1^-9,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,K.1^-3,K.1^6,K.1^-3,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^3,K.1^-9,-1*K.1^6,K.1^-6,-1*K.1^3,K.1^-3,K.1^-9,K.1^9,K.1^6,-1*K.1^9,K.1^9,-1*K.1^3,K.1^6,-1*K.1^-3,K.1^3,K.1^-6,-1*K.1^9,-1*K.1^-6,K.1^3,-1*K.1^3,K.1^-6,K.1^9,K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,K.1^-6,K.1^-9,K.1^-3,K.1^-9,-1*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,-1*K.1^3-2*K.1^10,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,-1*K.1^-6,-1*K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^-3,K.1^-9,K.1^-9,K.1^9,-1*K.1^6,K.1^6,K.1^4-K.1^-10,K.1^-6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3,-1*K.1+K.1^8,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^4-K.1^-10,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+2*K.1^10,-2*K.1^2-K.1^9,-1*K.1^3-2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1-K.1^8,2*K.1^2+K.1^9,-1*K.1^-3,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^-6,-2*K.1^2-K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3-2*K.1^10,K.1^-3,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-6,K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^6,-2*K.1^2-K.1^9,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,2*K.1^2+K.1^9,K.1^4-K.1^-10,-1*K.1^4+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+2*K.1^10,K.1^3+2*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^6,-2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,-2*K.1^-9,-2*K.1^3,2*K.1^-9,2*K.1^-9,-2*K.1^9,-2*K.1^-6,2*K.1^6,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1^9,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-9,2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^9,2*K.1^-6,2*K.1^3,-2*K.1^9,-2*K.1^6,2*K.1^-6,-2*K.1^3,-2*K.1^-9,-2*K.1^-9,2*K.1^-9,2*K.1^3,2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^6,2*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,2*K.1^-9,2*K.1^-9,-2*K.1^9,2*K.1^6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^-9,2*K.1^-3,-2*K.1^9,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^9,-2*K.1^6,-2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^3,-2*K.1^-6,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,K.1^-9,K.1^-3,K.1^-9,K.1^9,-1*K.1^-9,K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,K.1^9,K.1^-6,-1*K.1^-3,K.1^3,-1*K.1^9,K.1^-9,K.1^-6,K.1^6,K.1^-3,-1*K.1^6,K.1^6,-1*K.1^9,K.1^-3,-1*K.1^-9,K.1^9,K.1^3,-1*K.1^6,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^6,K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,K.1^3,K.1^-6,K.1^-9,K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,2*K.1^2+K.1^9,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3,-1*K.1^-6,K.1-K.1^8,K.1^-9,K.1^-6,K.1^-6,K.1^6,-1*K.1^-3,K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,K.1^4-K.1^-10,K.1^9,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,-1*K.1+K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3+2*K.1^10,K.1^4-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,-2*K.1^2-K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+K.1^9,-1*K.1+K.1^8,-1*K.1^-9,K.1-K.1^8,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,-1*K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^6,-1*K.1^9,2*K.1^2+K.1^9,K.1^-9,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,K.1^3,K.1^6,-1*K.1+K.1^8,K.1^-3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,-1*K.1^6,-1*K.1^9,-1*K.1^-3,K.1-K.1^8,K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^4-K.1^-10,-2*K.1^2-K.1^9,-2*K.1^2-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^-6,-2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,-2*K.1^9,-2*K.1^-3,2*K.1^9,2*K.1^9,-2*K.1^-9,-2*K.1^6,2*K.1^-6,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-9,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^9,2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-9,2*K.1^6,2*K.1^-3,-2*K.1^-9,-2*K.1^-6,2*K.1^6,-2*K.1^-3,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^-3,2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-6,2*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^-6,2*K.1^9,2*K.1^9,-2*K.1^-9,2*K.1^-6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^9,2*K.1^3,-2*K.1^-9,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^-9,-2*K.1^-6,-2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^-3,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^9,K.1^3,K.1^9,K.1^-9,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^9,K.1^-9,K.1^6,-1*K.1^3,K.1^-3,-1*K.1^-9,K.1^9,K.1^6,K.1^-6,K.1^3,-1*K.1^-6,K.1^-6,-1*K.1^-9,K.1^3,-1*K.1^9,K.1^-9,K.1^-3,-1*K.1^-6,-1*K.1^-3,K.1^-9,-1*K.1^-9,K.1^-3,K.1^-6,K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,K.1^-3,K.1^6,K.1^9,K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,K.1-K.1^8,-1*K.1^-3,-1*K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^9,K.1^6,K.1^6,K.1^-6,-1*K.1^3,K.1^3,2*K.1^2+K.1^9,K.1^-3,-1*K.1^3-2*K.1^10,K.1^-9,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,K.1-K.1^8,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+K.1^9,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,-2*K.1^2-K.1^9,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1+K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^4+K.1^-10,K.1-K.1^8,-1*K.1^9,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^-3,-1*K.1+K.1^8,-1*K.1^-6,-1*K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^9,K.1^4-K.1^-10,K.1^3+2*K.1^10,K.1^-3,K.1^-6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3,-1*K.1+K.1^8,K.1^4-K.1^-10,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,K.1-K.1^8,2*K.1^2+K.1^9,-2*K.1^2-K.1^9,-1*K.1^3-2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,1+2*K.1^7,1,-1,1+2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,-1,-1-2*K.1^7,-1-2*K.1^7,1,2*K.1^6,-2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,-2*K.1^-9,-2*K.1^3,2*K.1^-9,2*K.1^-9,-2*K.1^9,-2*K.1^-6,2*K.1^6,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,-2*K.1^9,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-9,2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^9,2*K.1^-6,2*K.1^3,-2*K.1^9,-2*K.1^6,2*K.1^-6,-2*K.1^3,-2*K.1^-9,-2*K.1^-9,2*K.1^-9,2*K.1^3,2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^-6,2*K.1^9,-2*K.1^6,2*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,2*K.1^-9,2*K.1^-9,-2*K.1^9,2*K.1^6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^-9,2*K.1^-3,-2*K.1^9,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^9,-2*K.1^6,-2*K.1^-9,-2*K.1^-3,2*K.1^-6,-2*K.1^3,-2*K.1^-6,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,K.1^-9,K.1^-3,K.1^-9,K.1^9,-1*K.1^-9,K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,K.1^9,K.1^-6,-1*K.1^-3,K.1^3,-1*K.1^9,K.1^-9,K.1^-6,K.1^6,K.1^-3,-1*K.1^6,K.1^6,-1*K.1^9,K.1^-3,-1*K.1^-9,K.1^9,K.1^3,-1*K.1^6,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^6,K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,K.1^3,K.1^-6,K.1^-9,K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-2*K.1^2-K.1^9,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3,-1*K.1^-6,-1*K.1+K.1^8,K.1^-9,K.1^-6,K.1^-6,K.1^6,-1*K.1^-3,K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,-1*K.1^4+K.1^-10,K.1^9,K.1^3+2*K.1^10,2*K.1^2+K.1^9,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,K.1-K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,2*K.1^2+K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-K.1^9,K.1-K.1^8,-1*K.1^-9,-1*K.1+K.1^8,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,-1*K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^6,-1*K.1^9,-2*K.1^2-K.1^9,K.1^-9,K.1^3+2*K.1^10,K.1^4-K.1^-10,K.1^3,K.1^6,K.1-K.1^8,K.1^-3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+2*K.1^10,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1+K.1^8,K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^4+K.1^-10,2*K.1^2+K.1^9,2*K.1^2+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,-2,2,-2,-2,2,-2,2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,1,-1,-1,1,1,-1,1,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,-1,-1-2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1,1+2*K.1^7,1+2*K.1^7,1,2*K.1^-6,-2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,-2*K.1^9,-2*K.1^-3,2*K.1^9,2*K.1^9,-2*K.1^-9,-2*K.1^6,2*K.1^-6,-2*K.1^-3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^-9,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^9,2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-9,2*K.1^6,2*K.1^-3,-2*K.1^-9,-2*K.1^-6,2*K.1^6,-2*K.1^-3,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^-3,2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,2*K.1^-9,-2*K.1^-6,2*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^-6,2*K.1^9,2*K.1^9,-2*K.1^-9,2*K.1^-6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,2*K.1^-3,-2*K.1^9,2*K.1^3,-2*K.1^-9,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^-9,-2*K.1^-6,-2*K.1^9,-2*K.1^3,2*K.1^6,-2*K.1^-3,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^9,K.1^3,K.1^9,K.1^-9,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^9,K.1^-9,K.1^6,-1*K.1^3,K.1^-3,-1*K.1^-9,K.1^9,K.1^6,K.1^-6,K.1^3,-1*K.1^-6,K.1^-6,-1*K.1^-9,K.1^3,-1*K.1^9,K.1^-9,K.1^-3,-1*K.1^-6,-1*K.1^-3,K.1^-9,-1*K.1^-9,K.1^-3,K.1^-6,K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,K.1^-3,K.1^6,K.1^9,K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,-1*K.1^-3,-1*K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^9,K.1^6,K.1^6,K.1^-6,-1*K.1^3,K.1^3,-2*K.1^2-K.1^9,K.1^-3,K.1^3+2*K.1^10,K.1^-9,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-K.1^9,K.1^4-K.1^-10,K.1^3+2*K.1^10,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,2*K.1^2+K.1^9,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1-K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^4-K.1^-10,-1*K.1+K.1^8,-1*K.1^9,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^-3,K.1-K.1^8,-1*K.1^-6,-1*K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^9,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,K.1^-3,K.1^-6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3,K.1-K.1^8,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,-1*K.1+K.1^8,-2*K.1^2-K.1^9,2*K.1^2+K.1^9,K.1^3+2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^2,-2*K.1^6,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,2*K.1^10,-2*K.1^2,2*K.1^4,-2*K.1^10,2*K.1^8,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^10,-2*K.1^12,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^10,2*K.1^2,-2*K.1^6,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^10,-2*K.1^4,2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^2,2*K.1^10,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^10,2*K.1^2,-1*K.1^12,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^10,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^10,-2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^8,2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^12,-2*K.1^4,2*K.1^4,2*K.1^3,2*K.1^13,-2*K.1,-2*K.1^13,2*K.1,2*K.1^5,2*K.1^3,-2*K.1^13,2*K.1^13,-2*K.1^5,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^11,-2*K.1^11,-2*K.1^9,-2*K.1^5,-2*K.1^3,2*K.1^9,2*K.1^11,2*K.1^5,-2*K.1^11,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^12,-1*K.1^10,K.1^12,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^12,K.1^4,-1*K.1^11,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^13,K.1^12,K.1^9,K.1^8,K.1^5,-1*K.1,K.1^9,K.1^3,K.1^3,K.1^11,K.1^11,K.1^13,K.1^5,K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^9,K.1,-1*K.1^3,K.1,K.1^11,K.1^6,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1^6,K.1^13,-1*K.1,K.1^12,-1*K.1^3,-1*K.1^10,-1*K.1^8,K.1,K.1^6,-1*K.1^5,K.1^9,-1*K.1^12,K.1^10,-1*K.1^11,K.1^2,K.1^3,K.1^5,-1*K.1^9,K.1^5,K.1^10,K.1^8,K.1^2,K.1^11,-1*K.1^8,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,-2*K.1^4,2*K.1^12,-2*K.1^10,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^10,-2*K.1^4,2*K.1^2,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^6,-2*K.1^10,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^2,2*K.1^10,2*K.1^6,2*K.1^6,2*K.1^10,-2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^10,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^12,-2*K.1^4,2*K.1^2,-2*K.1^10,2*K.1^6,2*K.1^4,-2*K.1^12,K.1^2,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^12,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^2,2*K.1^10,-2*K.1^10,-2*K.1^11,-2*K.1,2*K.1^13,2*K.1,-2*K.1^13,-2*K.1^9,-2*K.1^11,2*K.1,-2*K.1,2*K.1^9,-2*K.1^13,2*K.1^13,2*K.1^11,2*K.1^5,-2*K.1^3,2*K.1^3,2*K.1^5,2*K.1^9,2*K.1^11,-2*K.1^5,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,K.1^12,-1*K.1^12,K.1^12,K.1^2,K.1^8,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^8,K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,K.1^13,K.1^9,K.1^5,K.1^11,K.1^2,-1*K.1^10,K.1^3,K.1^8,-1*K.1^10,K.1^10,K.1^4,K.1^12,K.1^12,-1*K.1,-1*K.1^2,-1*K.1^5,-1*K.1^6,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^5,K.1,K.1^3,K.1,-1*K.1,K.1^9,K.1^5,-1*K.1^13,K.1^11,-1*K.1^13,-1*K.1^3,-1*K.1^8,K.1^3,K.1^9,K.1^11,K.1^8,-1*K.1,K.1^13,-1*K.1^2,K.1^11,K.1^4,K.1^6,-1*K.1^13,-1*K.1^8,K.1^9,-1*K.1^5,K.1^2,-1*K.1^4,K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^9,K.1^5,-1*K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,-1*K.1^3,K.1^6,-1*K.1^11,K.1,K.1,K.1^5,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,-2*K.1^4,2*K.1^12,-2*K.1^10,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^10,-2*K.1^4,2*K.1^2,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^6,-2*K.1^10,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^2,2*K.1^10,2*K.1^6,2*K.1^6,2*K.1^10,-2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^10,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^12,-2*K.1^4,2*K.1^2,-2*K.1^10,2*K.1^6,2*K.1^4,-2*K.1^12,K.1^2,K.1^6,-1*K.1^12,-1*K.1^8,K.1^10,-1*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^12,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^2,2*K.1^10,-2*K.1^10,2*K.1^11,2*K.1,-2*K.1^13,-2*K.1,2*K.1^13,2*K.1^9,2*K.1^11,-2*K.1,2*K.1,-2*K.1^9,2*K.1^13,-2*K.1^13,-2*K.1^11,-2*K.1^5,2*K.1^3,-2*K.1^3,-2*K.1^5,-2*K.1^9,-2*K.1^11,2*K.1^5,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,K.1^8,-1*K.1^12,-1*K.1^8,K.1^6,K.1^8,K.1^12,-1*K.1^12,K.1^12,K.1^2,K.1^8,-1*K.1^6,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^8,K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,-1*K.1^8,K.1^10,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^11,K.1^2,-1*K.1^10,-1*K.1^3,K.1^8,-1*K.1^10,K.1^10,K.1^4,K.1^12,K.1^12,K.1,-1*K.1^2,K.1^5,-1*K.1^6,K.1^9,-1*K.1^13,K.1^5,K.1^11,K.1^11,K.1^3,K.1^3,K.1,K.1^9,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,K.1^13,-1*K.1^11,K.1^13,K.1^3,-1*K.1^8,-1*K.1^3,-1*K.1^9,-1*K.1^11,K.1^8,K.1,-1*K.1^13,-1*K.1^2,-1*K.1^11,K.1^4,K.1^6,K.1^13,-1*K.1^8,-1*K.1^9,K.1^5,K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^12,K.1^11,K.1^9,-1*K.1^5,K.1^9,-1*K.1^4,-1*K.1^6,-1*K.1^12,K.1^3,K.1^6,K.1^11,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^2,-2*K.1^6,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,2*K.1^10,-2*K.1^2,2*K.1^4,-2*K.1^10,2*K.1^8,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^10,-2*K.1^12,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^10,2*K.1^2,-2*K.1^6,-2*K.1^12,-2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^10,-2*K.1^4,2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^2,2*K.1^10,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^10,2*K.1^2,-1*K.1^12,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^10,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^10,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^10,-2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^8,2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^3,-2*K.1^13,2*K.1,2*K.1^13,-2*K.1,-2*K.1^5,-2*K.1^3,2*K.1^13,-2*K.1^13,2*K.1^5,-2*K.1,2*K.1,2*K.1^3,2*K.1^9,-2*K.1^11,2*K.1^11,2*K.1^9,2*K.1^5,2*K.1^3,-2*K.1^9,-2*K.1^11,-2*K.1^5,2*K.1^11,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^12,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^12,-1*K.1^10,K.1^12,K.1^8,-1*K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1,K.1^5,K.1^9,K.1^3,-1*K.1^12,K.1^4,K.1^11,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^13,K.1^12,-1*K.1^9,K.1^8,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^5,-1*K.1^9,K.1^13,K.1^11,K.1^13,-1*K.1^13,K.1^5,K.1^9,-1*K.1,K.1^3,-1*K.1,-1*K.1^11,K.1^6,K.1^11,K.1^5,K.1^3,-1*K.1^6,-1*K.1^13,K.1,K.1^12,K.1^3,-1*K.1^10,-1*K.1^8,-1*K.1,K.1^6,K.1^5,-1*K.1^9,-1*K.1^12,K.1^10,K.1^11,K.1^2,-1*K.1^3,-1*K.1^5,K.1^9,-1*K.1^5,K.1^10,K.1^8,K.1^2,-1*K.1^11,-1*K.1^8,-1*K.1^3,K.1^13,K.1^13,K.1^9,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^8,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,2*K.1^2,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^10,-2*K.1^12,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^6,2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^10,-2*K.1^12,2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^12,2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^2,2*K.1^6,-1*K.1^8,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,K.1^2,2*K.1^4,-2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^10,-2*K.1^2,2*K.1^10,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^9,-2*K.1^11,2*K.1^3,2*K.1^11,-2*K.1^3,2*K.1,-2*K.1^9,2*K.1^11,-2*K.1^11,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^13,-2*K.1^5,2*K.1^5,-2*K.1^13,-2*K.1,2*K.1^9,2*K.1^13,-2*K.1^5,2*K.1,2*K.1^5,2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^4,K.1^10,K.1^8,-1*K.1^2,K.1^8,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^3,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^8,K.1^12,K.1^5,K.1^4,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^11,K.1^8,K.1^13,-1*K.1^10,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^11,K.1,K.1^13,K.1^11,K.1^5,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^5,-1*K.1^4,K.1^5,-1*K.1,K.1^9,K.1^4,-1*K.1^11,K.1^3,K.1^8,K.1^9,-1*K.1^2,K.1^10,-1*K.1^3,-1*K.1^4,-1*K.1,K.1^13,-1*K.1^8,K.1^2,K.1^5,K.1^6,-1*K.1^9,K.1,-1*K.1^13,K.1,K.1^2,-1*K.1^10,K.1^6,-1*K.1^5,K.1^10,-1*K.1^9,K.1^11,K.1^11,-1*K.1^13,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^8,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,-2*K.1^12,2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^10,2*K.1^10,-2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^8,-2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^2,-2*K.1^6,2*K.1^10,2*K.1^10,2*K.1^10,2*K.1^6,2*K.1^8,-2*K.1^12,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^12,-2*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^12,-2*K.1^10,2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^2,2*K.1^12,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^5,2*K.1^3,-2*K.1^11,-2*K.1^3,2*K.1^11,-2*K.1^13,2*K.1^5,-2*K.1^3,2*K.1^3,2*K.1^13,2*K.1^11,-2*K.1^11,-2*K.1^5,2*K.1,2*K.1^9,-2*K.1^9,2*K.1,2*K.1^13,-2*K.1^5,-2*K.1,2*K.1^9,-2*K.1^13,-2*K.1^9,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^4,K.1^8,K.1^10,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^6,K.1^4,-1*K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^11,K.1^13,K.1,-1*K.1^5,K.1^6,-1*K.1^2,-1*K.1^9,-1*K.1^10,-1*K.1^2,K.1^2,K.1^12,K.1^8,K.1^8,K.1^3,-1*K.1^6,-1*K.1,K.1^4,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^5,K.1^5,K.1^9,K.1^9,K.1^3,-1*K.1^13,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1,K.1^11,-1*K.1^5,K.1^11,K.1^9,K.1^10,-1*K.1^9,K.1^13,-1*K.1^5,-1*K.1^10,K.1^3,-1*K.1^11,-1*K.1^6,-1*K.1^5,K.1^12,-1*K.1^4,K.1^11,K.1^10,K.1^13,-1*K.1,K.1^6,-1*K.1^12,-1*K.1^9,-1*K.1^8,K.1^5,-1*K.1^13,K.1,-1*K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,K.1^9,-1*K.1^4,K.1^5,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^8,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,-2*K.1^12,2*K.1^8,-2*K.1^2,2*K.1^12,2*K.1^4,-2*K.1^10,-2*K.1^6,-2*K.1^10,2*K.1^10,-2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^8,-2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^2,-2*K.1^6,2*K.1^10,2*K.1^10,2*K.1^10,2*K.1^6,2*K.1^8,-2*K.1^12,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^12,-2*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,K.1^10,K.1^2,-1*K.1^12,-2*K.1^10,2*K.1^10,-2*K.1^4,-2*K.1^12,-2*K.1^2,2*K.1^12,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^5,-2*K.1^3,2*K.1^11,2*K.1^3,-2*K.1^11,2*K.1^13,-2*K.1^5,2*K.1^3,-2*K.1^3,-2*K.1^13,-2*K.1^11,2*K.1^11,2*K.1^5,-2*K.1,-2*K.1^9,2*K.1^9,-2*K.1,-2*K.1^13,2*K.1^5,2*K.1,-2*K.1^9,2*K.1^13,2*K.1^9,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^10,-1*K.1^8,K.1^10,-1*K.1^4,-1*K.1^10,K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^12,K.1^4,K.1^8,K.1^10,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^6,K.1^4,-1*K.1^4,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^2,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^11,-1*K.1^13,-1*K.1,K.1^5,K.1^6,-1*K.1^2,K.1^9,-1*K.1^10,-1*K.1^2,K.1^2,K.1^12,K.1^8,K.1^8,-1*K.1^3,-1*K.1^6,K.1,K.1^4,K.1^13,K.1^11,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^13,K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^5,-1*K.1^11,-1*K.1^9,K.1^10,K.1^9,-1*K.1^13,K.1^5,-1*K.1^10,-1*K.1^3,K.1^11,-1*K.1^6,K.1^5,K.1^12,-1*K.1^4,-1*K.1^11,K.1^10,-1*K.1^13,K.1,K.1^6,-1*K.1^12,K.1^9,-1*K.1^8,-1*K.1^5,K.1^13,-1*K.1,K.1^13,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^9,-1*K.1^4,-1*K.1^5,K.1^3,K.1^3,-1*K.1,K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,2*K.1^2,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^10,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^10,-2*K.1^12,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^10,2*K.1^12,-2*K.1^2,2*K.1^6,2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^10,2*K.1^10,-2*K.1^12,2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^12,2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^12,2*K.1^10,-2*K.1^2,2*K.1^6,-1*K.1^8,K.1^10,K.1^6,-1*K.1^4,-1*K.1^12,K.1^2,2*K.1^4,-2*K.1^4,2*K.1^10,2*K.1^2,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^10,-2*K.1^2,2*K.1^10,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^9,2*K.1^11,-2*K.1^3,-2*K.1^11,2*K.1^3,-2*K.1,2*K.1^9,-2*K.1^11,2*K.1^11,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^13,2*K.1^5,-2*K.1^5,2*K.1^13,2*K.1,-2*K.1^9,-2*K.1^13,2*K.1^5,-2*K.1,-2*K.1^5,-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4,K.1^6,-1*K.1^4,K.1^10,K.1^4,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,-1*K.1^10,K.1^12,-1*K.1^6,K.1^8,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^4,K.1^10,K.1^8,-1*K.1^2,K.1^8,-1*K.1^10,K.1^10,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,K.1^12,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^3,K.1,K.1^13,-1*K.1^9,-1*K.1^8,K.1^12,-1*K.1^5,K.1^4,K.1^12,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^11,K.1^8,-1*K.1^13,-1*K.1^10,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^9,K.1^5,K.1^5,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^11,K.1^11,K.1,K.1^13,K.1^3,-1*K.1^9,K.1^3,K.1^5,-1*K.1^4,-1*K.1^5,K.1,-1*K.1^9,K.1^4,K.1^11,-1*K.1^3,K.1^8,-1*K.1^9,-1*K.1^2,K.1^10,K.1^3,-1*K.1^4,K.1,-1*K.1^13,-1*K.1^8,K.1^2,-1*K.1^5,K.1^6,K.1^9,-1*K.1,K.1^13,-1*K.1,K.1^2,-1*K.1^10,K.1^6,K.1^5,K.1^10,K.1^9,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^10,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,-2*K.1^8,-2*K.1^10,-2*K.1^6,2*K.1^8,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^12,-2*K.1^6,2*K.1^8,2*K.1^10,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^6,2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^10,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^8,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^6,-1*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^12,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^4,-2*K.1^4,-2*K.1^2,2*K.1^10,2*K.1^12,2*K.1^8,-2*K.1^12,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^2,2*K.1^10,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^6,-2*K.1,2*K.1^9,-2*K.1^5,-2*K.1^9,2*K.1^5,-2*K.1^11,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^11,2*K.1^5,-2*K.1^5,2*K.1,2*K.1^3,-2*K.1^13,2*K.1^13,2*K.1^3,2*K.1^11,2*K.1,-2*K.1^3,-2*K.1^13,-2*K.1^11,2*K.1^13,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^10,K.1^2,-1*K.1^12,K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^5,K.1^11,K.1^3,K.1,-1*K.1^4,-1*K.1^6,K.1^13,-1*K.1^2,-1*K.1^6,K.1^6,K.1^8,-1*K.1^10,-1*K.1^10,K.1^9,K.1^4,-1*K.1^3,K.1^12,-1*K.1^11,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^9,K.1^9,K.1^11,K.1^3,K.1^5,K.1,K.1^5,-1*K.1^13,K.1^2,K.1^13,K.1^11,K.1,-1*K.1^2,K.1^9,-1*K.1^5,K.1^4,K.1,K.1^8,-1*K.1^12,K.1^5,K.1^2,K.1^11,-1*K.1^3,-1*K.1^4,-1*K.1^8,K.1^13,K.1^10,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^11,-1*K.1^8,K.1^12,K.1^10,-1*K.1^13,-1*K.1^12,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^4,2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^12,-2*K.1^12,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^10,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^8,-2*K.1^10,-2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^10,2*K.1^4,2*K.1^6,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^6,-2*K.1^4,K.1^10,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^6,2*K.1^12,-2*K.1^12,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^10,2*K.1^10,2*K.1^12,-2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^10,-2*K.1^8,2*K.1^8,2*K.1^13,-2*K.1^5,2*K.1^9,2*K.1^5,-2*K.1^9,2*K.1^3,2*K.1^13,2*K.1^5,-2*K.1^5,-2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^13,-2*K.1^11,2*K.1,-2*K.1,-2*K.1^11,-2*K.1^3,-2*K.1^13,2*K.1^11,2*K.1,2*K.1^3,-2*K.1,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,K.1^4,-1*K.1^4,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^10,K.1^8,-1*K.1,K.1^12,K.1^8,-1*K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^5,-1*K.1^10,K.1^11,-1*K.1^2,K.1^3,K.1^9,K.1^11,K.1^13,K.1^13,K.1,K.1,-1*K.1^5,K.1^3,K.1^11,K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^9,K.1,-1*K.1^12,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^12,-1*K.1^5,K.1^9,-1*K.1^10,-1*K.1^13,-1*K.1^6,K.1^2,-1*K.1^9,-1*K.1^12,-1*K.1^3,K.1^11,K.1^10,K.1^6,-1*K.1,-1*K.1^4,K.1^13,K.1^3,-1*K.1^11,K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,K.1,K.1^2,K.1^13,K.1^5,K.1^5,-1*K.1^11,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^4,2*K.1^12,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^10,0,0,0,0,0,0,0,0,K.1^7,1,1,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1,-1*K.1^7,K.1^7,-1,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^12,-2*K.1^10,2*K.1^12,-2*K.1^12,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^10,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^8,-2*K.1^10,-2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^10,2*K.1^4,2*K.1^6,2*K.1^10,2*K.1^8,2*K.1^2,-2*K.1^6,-2*K.1^4,K.1^10,K.1^2,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^6,2*K.1^12,-2*K.1^12,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^10,2*K.1^10,2*K.1^12,-2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^6,-2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^10,-2*K.1^8,2*K.1^8,-2*K.1^13,2*K.1^5,-2*K.1^9,-2*K.1^5,2*K.1^9,-2*K.1^3,-2*K.1^13,-2*K.1^5,2*K.1^5,2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^13,2*K.1^11,-2*K.1,2*K.1,2*K.1^11,2*K.1^3,2*K.1^13,-2*K.1^11,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^12,K.1^4,-1*K.1^4,K.1^4,K.1^10,K.1^12,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,-1*K.1^2,K.1^12,K.1^8,-1*K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^2,K.1^4,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^6,K.1^6,-1*K.1^10,K.1^8,K.1^8,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^8,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,-1*K.1^9,K.1^3,K.1^11,K.1^13,K.1^10,K.1^8,K.1,K.1^12,K.1^8,-1*K.1^8,-1*K.1^6,K.1^4,K.1^4,K.1^5,-1*K.1^10,-1*K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^11,K.1^9,K.1^13,K.1^9,-1*K.1,-1*K.1^12,K.1,K.1^3,K.1^13,K.1^12,K.1^5,-1*K.1^9,-1*K.1^10,K.1^13,-1*K.1^6,K.1^2,K.1^9,-1*K.1^12,K.1^3,-1*K.1^11,K.1^10,K.1^6,K.1,-1*K.1^4,-1*K.1^13,-1*K.1^3,K.1^11,-1*K.1^3,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1,K.1^2,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,-2,2,2,-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^10,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^7,1,1,K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1,K.1^7,-1*K.1^7,-1,-2*K.1^8,-2*K.1^10,-2*K.1^6,2*K.1^8,2*K.1^12,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^12,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^12,-2*K.1^6,2*K.1^8,2*K.1^10,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^6,2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^10,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^12,2*K.1^8,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^6,-1*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^12,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^4,-2*K.1^4,-2*K.1^2,2*K.1^10,2*K.1^12,2*K.1^8,-2*K.1^12,-2*K.1^10,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^2,2*K.1^10,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^6,2*K.1,-2*K.1^9,2*K.1^5,2*K.1^9,-2*K.1^5,2*K.1^11,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^11,-2*K.1^5,2*K.1^5,-2*K.1,-2*K.1^3,2*K.1^13,-2*K.1^13,-2*K.1^3,-2*K.1^11,-2*K.1,2*K.1^3,2*K.1^13,2*K.1^11,-2*K.1^13,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^2,K.1^10,K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^10,K.1^4,K.1^12,-1*K.1^2,-1*K.1^6,K.1^8,K.1^10,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^10,K.1^2,-1*K.1^12,K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^6,-1*K.1^13,-1*K.1^2,-1*K.1^6,K.1^6,K.1^8,-1*K.1^10,-1*K.1^10,-1*K.1^9,K.1^4,K.1^3,K.1^12,K.1^11,K.1^5,K.1^3,K.1,K.1,K.1^13,K.1^13,-1*K.1^9,K.1^11,K.1^3,K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^13,K.1^2,-1*K.1^13,-1*K.1^11,-1*K.1,-1*K.1^2,-1*K.1^9,K.1^5,K.1^4,-1*K.1,K.1^8,-1*K.1^12,-1*K.1^5,K.1^2,-1*K.1^11,K.1^3,-1*K.1^4,-1*K.1^8,-1*K.1^13,K.1^10,K.1,K.1^11,-1*K.1^3,K.1^11,-1*K.1^8,K.1^12,K.1^10,K.1^13,-1*K.1^12,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^6,-2*K.1^18,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^30,2*K.1^24,-2*K.1^18,2*K.1^36,-2*K.1^18,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^30,-2*K.1^36,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^30,2*K.1^6,-2*K.1^18,-2*K.1^36,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^36,2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^36,-2*K.1^6,2*K.1^30,-2*K.1^36,2*K.1^12,-2*K.1^24,-2*K.1^30,2*K.1^6,-1*K.1^36,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,K.1^30,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^30,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^36,2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^36,-2*K.1^24,-2*K.1^30,-2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^36,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^18,K.1^6,K.1^18,-1*K.1^24,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^18,K.1^24,K.1^12,-1*K.1^6,K.1^36,K.1^24,-1*K.1^18,K.1^12,-1*K.1^30,K.1^6,K.1^30,K.1^30,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,K.1^36,-1*K.1^30,K.1^36,K.1^24,-1*K.1^24,-1*K.1^36,-1*K.1^30,K.1^30,K.1^36,K.1^12,K.1^12,-1*K.1^36,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^3+2*K.1^17,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,K.1^36,-1*K.1^12,K.1^5+K.1^19,K.1^18,-1*K.1^12,K.1^12,K.1^30,K.1^6,K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^36,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^24,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,-1*K.1^18,-1*K.1^5-K.1^19,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^3-2*K.1^17,-1*K.1^36,-1*K.1^9+2*K.1^23,K.1^30,K.1^24,K.1^3-2*K.1^17,-1*K.1^18,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^36,-1*K.1^30,-1*K.1^5-K.1^19,-1*K.1^6,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,-1*K.1^30,-1*K.1^24,-1*K.1^6,K.1^5+K.1^19,K.1^24,K.1^9-2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,K.1^3-2*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^36,2*K.1^24,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^36,-2*K.1^36,2*K.1^36,-2*K.1^18,-2*K.1^30,2*K.1^12,-2*K.1^36,2*K.1^24,2*K.1^6,2*K.1^30,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^36,-2*K.1^12,2*K.1^6,-2*K.1^30,2*K.1^18,2*K.1^12,-2*K.1^36,K.1^6,K.1^18,-1*K.1^36,-1*K.1^24,K.1^30,-1*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^18,2*K.1^12,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^6,-2*K.1^24,2*K.1^36,2*K.1^18,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^36,-2*K.1^30,-2*K.1^6,-2*K.1^30,2*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,K.1^24,-1*K.1^36,-1*K.1^24,K.1^18,K.1^24,K.1^36,-1*K.1^36,K.1^36,K.1^6,K.1^24,-1*K.1^18,-1*K.1^30,K.1^36,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^30,K.1^12,-1*K.1^36,-1*K.1^12,-1*K.1^12,-1*K.1^18,K.1^36,-1*K.1^24,K.1^18,-1*K.1^6,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^30,K.1^6,K.1^30,-1*K.1^24,K.1^30,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^6,K.1^30,K.1^9-2*K.1^23,-1*K.1^24,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^36,-1*K.1^36,K.1^3-2*K.1^17,K.1^6,2*K.1-K.1^15,K.1^18,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,K.1^24,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,-1*K.1^24,K.1^3-2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^6,-1*K.1^5-K.1^19,-1*K.1^12,-1*K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,-1*K.1^6,K.1^12,-1*K.1^9+2*K.1^23,K.1^36,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^12,K.1^18,K.1^36,K.1^9-2*K.1^23,-1*K.1^18,K.1^5+K.1^19,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^6,-2*K.1^18,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^36,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^30,2*K.1^24,-2*K.1^18,2*K.1^36,-2*K.1^18,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^30,-2*K.1^36,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^30,2*K.1^6,-2*K.1^18,-2*K.1^36,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^36,2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^36,-2*K.1^6,2*K.1^30,-2*K.1^36,2*K.1^12,-2*K.1^24,-2*K.1^30,2*K.1^6,-1*K.1^36,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,K.1^30,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^30,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^36,2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^36,-2*K.1^24,-2*K.1^30,-2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^36,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^18,K.1^6,K.1^18,-1*K.1^24,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^18,K.1^24,K.1^12,-1*K.1^6,K.1^36,K.1^24,-1*K.1^18,K.1^12,-1*K.1^30,K.1^6,K.1^30,K.1^30,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,K.1^36,-1*K.1^30,K.1^36,K.1^24,-1*K.1^24,-1*K.1^36,-1*K.1^30,K.1^30,K.1^36,K.1^12,K.1^12,-1*K.1^36,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^3-2*K.1^17,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^36,-1*K.1^12,-1*K.1^5-K.1^19,K.1^18,-1*K.1^12,K.1^12,K.1^30,K.1^6,K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^36,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^24,2*K.1-K.1^15,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,-1*K.1^18,K.1^5+K.1^19,-2*K.1+K.1^15,K.1^9-2*K.1^23,K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^36,K.1^9-2*K.1^23,K.1^30,K.1^24,-1*K.1^3+2*K.1^17,-1*K.1^18,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^36,-1*K.1^30,K.1^5+K.1^19,-1*K.1^6,K.1^9-2*K.1^23,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1^30,-1*K.1^24,-1*K.1^6,-1*K.1^5-K.1^19,K.1^24,-1*K.1^9+2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^3+2*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^36,2*K.1^24,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^36,-2*K.1^36,2*K.1^36,-2*K.1^18,-2*K.1^30,2*K.1^12,-2*K.1^36,2*K.1^24,2*K.1^6,2*K.1^30,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^36,-2*K.1^12,2*K.1^6,-2*K.1^30,2*K.1^18,2*K.1^12,-2*K.1^36,K.1^6,K.1^18,-1*K.1^36,-1*K.1^24,K.1^30,-1*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^18,2*K.1^12,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^6,-2*K.1^24,2*K.1^36,2*K.1^18,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^36,-2*K.1^30,-2*K.1^6,-2*K.1^30,2*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,K.1^24,-1*K.1^36,-1*K.1^24,K.1^18,K.1^24,K.1^36,-1*K.1^36,K.1^36,K.1^6,K.1^24,-1*K.1^18,-1*K.1^30,K.1^36,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^30,K.1^12,-1*K.1^36,-1*K.1^12,-1*K.1^12,-1*K.1^18,K.1^36,-1*K.1^24,K.1^18,-1*K.1^6,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,K.1^6,K.1^12,-1*K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^30,K.1^6,K.1^30,-1*K.1^24,K.1^30,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1^6,K.1^30,-1*K.1^9+2*K.1^23,-1*K.1^24,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^36,-1*K.1^36,-1*K.1^3+2*K.1^17,K.1^6,-2*K.1+K.1^15,K.1^18,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,2*K.1-K.1^15,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,K.1^24,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,-1*K.1^24,-1*K.1^3+2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^6,K.1^5+K.1^19,-1*K.1^12,-1*K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1^6,K.1^12,K.1^9-2*K.1^23,K.1^36,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^12,K.1^18,K.1^36,-1*K.1^9+2*K.1^23,-1*K.1^18,-1*K.1^5-K.1^19,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^6,-2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^30,-2*K.1^36,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^18,-2*K.1^18,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^18,2*K.1^12,-2*K.1^24,-2*K.1^36,2*K.1^30,2*K.1^30,-2*K.1^36,2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^6,2*K.1^18,-1*K.1^24,K.1^30,K.1^18,-1*K.1^12,-1*K.1^36,K.1^6,-2*K.1^12,2*K.1^12,-2*K.1^30,-2*K.1^6,-2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^18,2*K.1^30,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^36,2*K.1^24,2*K.1^36,-2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,K.1^12,K.1^18,-1*K.1^12,K.1^30,K.1^12,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^24,K.1^12,-1*K.1^30,K.1^36,-1*K.1^18,K.1^24,-1*K.1^30,K.1^12,K.1^36,-1*K.1^6,K.1^18,K.1^6,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^12,K.1^30,K.1^24,-1*K.1^6,K.1^24,-1*K.1^30,K.1^30,-1*K.1^24,-1*K.1^6,K.1^6,K.1^24,K.1^36,K.1^36,-1*K.1^24,-1*K.1^36,-1*K.1^12,-1*K.1^36,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36,K.1^9-2*K.1^23,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^24,-1*K.1^36,-2*K.1+K.1^15,-1*K.1^12,-1*K.1^36,K.1^36,K.1^6,K.1^18,K.1^18,-1*K.1^5-K.1^19,-1*K.1^24,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^30,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^9-2*K.1^23,-2*K.1+K.1^15,K.1^12,2*K.1-K.1^15,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^12,-1*K.1^5-K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^6,-1*K.1^30,-1*K.1^9+2*K.1^23,K.1^12,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^24,-1*K.1^6,2*K.1-K.1^15,-1*K.1^18,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-1*K.1^6,K.1^30,-1*K.1^18,-2*K.1+K.1^15,-1*K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^9+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^24,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^36,2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^30,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^24,-2*K.1^30,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^18,2*K.1^30,2*K.1^30,2*K.1^30,2*K.1^18,2*K.1^24,-2*K.1^36,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^36,-2*K.1^24,K.1^18,-1*K.1^12,-1*K.1^24,K.1^30,K.1^6,-1*K.1^36,2*K.1^30,-2*K.1^30,2*K.1^12,2*K.1^36,2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^18,-2*K.1^18,2*K.1^30,2*K.1^24,-2*K.1^12,-2*K.1^36,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^30,-1*K.1^24,K.1^30,-1*K.1^12,-1*K.1^30,K.1^24,-1*K.1^24,K.1^24,K.1^18,-1*K.1^30,K.1^12,-1*K.1^6,K.1^24,-1*K.1^18,K.1^12,-1*K.1^30,-1*K.1^6,K.1^36,-1*K.1^24,-1*K.1^36,-1*K.1^36,K.1^12,K.1^24,K.1^30,-1*K.1^12,-1*K.1^18,K.1^36,-1*K.1^18,K.1^12,-1*K.1^12,K.1^18,K.1^36,-1*K.1^36,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^30,K.1^6,K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^5+K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-2*K.1+K.1^15,-1*K.1^18,K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^30,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^24,-1*K.1^24,-1*K.1^9+2*K.1^23,K.1^18,K.1^3-2*K.1^17,-1*K.1^12,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,-2*K.1+K.1^15,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,K.1^30,-1*K.1^9+2*K.1^23,-1*K.1^5-K.1^19,K.1^18,2*K.1-K.1^15,-1*K.1^36,K.1^12,-1*K.1^5-K.1^19,-1*K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-1*K.1^18,K.1^36,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^24,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^36,-1*K.1^12,K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^12,-2*K.1+K.1^15,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^24,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,2*K.1^6,-2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^30,-2*K.1^36,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^18,-2*K.1^18,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^18,2*K.1^12,-2*K.1^24,-2*K.1^36,2*K.1^30,2*K.1^30,-2*K.1^36,2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^6,2*K.1^18,-1*K.1^24,K.1^30,K.1^18,-1*K.1^12,-1*K.1^36,K.1^6,-2*K.1^12,2*K.1^12,-2*K.1^30,-2*K.1^6,-2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^18,2*K.1^30,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^36,2*K.1^24,2*K.1^36,-2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,K.1^12,K.1^18,-1*K.1^12,K.1^30,K.1^12,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^24,K.1^12,-1*K.1^30,K.1^36,-1*K.1^18,K.1^24,-1*K.1^30,K.1^12,K.1^36,-1*K.1^6,K.1^18,K.1^6,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^12,K.1^30,K.1^24,-1*K.1^6,K.1^24,-1*K.1^30,K.1^30,-1*K.1^24,-1*K.1^6,K.1^6,K.1^24,K.1^36,K.1^36,-1*K.1^24,-1*K.1^36,-1*K.1^12,-1*K.1^36,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36,-1*K.1^9+2*K.1^23,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^24,-1*K.1^36,2*K.1-K.1^15,-1*K.1^12,-1*K.1^36,K.1^36,K.1^6,K.1^18,K.1^18,K.1^5+K.1^19,-1*K.1^24,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^30,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,K.1^12,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^12,K.1^5+K.1^19,K.1^9-2*K.1^23,-1*K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^6,-1*K.1^30,K.1^9-2*K.1^23,K.1^12,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^24,-1*K.1^6,-2*K.1+K.1^15,-1*K.1^18,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^6,K.1^30,-1*K.1^18,2*K.1-K.1^15,-1*K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,K.1^9-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^24,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^18,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-2*K.1^36,2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^30,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^24,-2*K.1^30,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^18,2*K.1^30,2*K.1^30,2*K.1^30,2*K.1^18,2*K.1^24,-2*K.1^36,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^36,-2*K.1^24,K.1^18,-1*K.1^12,-1*K.1^24,K.1^30,K.1^6,-1*K.1^36,2*K.1^30,-2*K.1^30,2*K.1^12,2*K.1^36,2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^18,-2*K.1^18,2*K.1^30,2*K.1^24,-2*K.1^12,-2*K.1^36,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^30,-1*K.1^24,K.1^30,-1*K.1^12,-1*K.1^30,K.1^24,-1*K.1^24,K.1^24,K.1^18,-1*K.1^30,K.1^12,-1*K.1^6,K.1^24,-1*K.1^18,K.1^12,-1*K.1^30,-1*K.1^6,K.1^36,-1*K.1^24,-1*K.1^36,-1*K.1^36,K.1^12,K.1^24,K.1^30,-1*K.1^12,-1*K.1^18,K.1^36,-1*K.1^18,K.1^12,-1*K.1^12,K.1^18,K.1^36,-1*K.1^36,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^30,K.1^6,K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^5-K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-1*K.1^18,K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^30,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^24,-1*K.1^24,K.1^9-2*K.1^23,K.1^18,-1*K.1^3+2*K.1^17,-1*K.1^12,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,-2*K.1+K.1^15,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,2*K.1-K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,K.1^30,K.1^9-2*K.1^23,K.1^5+K.1^19,K.1^18,-2*K.1+K.1^15,-1*K.1^36,K.1^12,K.1^5+K.1^19,-1*K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^18,K.1^36,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^24,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^36,-1*K.1^12,K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^12,2*K.1-K.1^15,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,K.1^5+K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^30,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^24,-2*K.1^30,-2*K.1^18,2*K.1^24,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^36,-2*K.1^18,2*K.1^24,2*K.1^30,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^36,-2*K.1^24,2*K.1^18,2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^30,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^24,2*K.1^30,-1*K.1^12,-1*K.1^36,K.1^30,K.1^6,K.1^18,-1*K.1^24,2*K.1^6,-2*K.1^6,2*K.1^36,2*K.1^24,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^30,-2*K.1^36,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^24,-2*K.1^6,-2*K.1^30,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^6,K.1^30,K.1^6,-1*K.1^36,-1*K.1^6,-1*K.1^30,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^6,K.1^36,-1*K.1^18,-1*K.1^30,K.1^12,K.1^36,-1*K.1^6,-1*K.1^18,K.1^24,K.1^30,-1*K.1^24,-1*K.1^24,K.1^36,-1*K.1^30,K.1^6,-1*K.1^36,K.1^12,K.1^24,K.1^12,K.1^36,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^24,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^12,K.1^18,K.1^6,K.1^18,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,-2*K.1+K.1^15,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^12,K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^6,K.1^18,-1*K.1^18,-1*K.1^24,K.1^30,K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^12,-1*K.1^9+2*K.1^23,-1*K.1^36,K.1^5+K.1^19,-2*K.1+K.1^15,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,2*K.1-K.1^15,-1*K.1^12,K.1^3-2*K.1^17,-1*K.1^24,K.1^36,2*K.1-K.1^15,-1*K.1^6,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,K.1^12,K.1^24,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^30,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,K.1^24,-1*K.1^36,-1*K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^36,-1*K.1^3+2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,2*K.1-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^12,2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^30,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^36,-2*K.1^36,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^30,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^36,2*K.1^30,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^30,-2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^30,-2*K.1^36,-2*K.1^36,-2*K.1^36,2*K.1^30,2*K.1^12,2*K.1^18,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^18,-2*K.1^12,K.1^30,K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^18,-2*K.1^36,2*K.1^36,-2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^30,-2*K.1^36,2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^18,2*K.1^36,2*K.1^12,2*K.1^24,-2*K.1^30,2*K.1^24,-2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,K.1^36,-1*K.1^12,-1*K.1^36,K.1^6,K.1^36,K.1^12,-1*K.1^12,K.1^12,K.1^30,K.1^36,-1*K.1^6,K.1^24,K.1^12,-1*K.1^30,-1*K.1^6,K.1^36,K.1^24,-1*K.1^18,-1*K.1^12,K.1^18,K.1^18,-1*K.1^6,K.1^12,-1*K.1^36,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^6,K.1^6,K.1^30,-1*K.1^18,K.1^18,-1*K.1^30,K.1^24,K.1^24,K.1^30,-1*K.1^24,-1*K.1^36,-1*K.1^24,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^30,-1*K.1^24,-1*K.1^3+2*K.1^17,-1*K.1^36,-1*K.1^24,K.1^24,K.1^18,-1*K.1^12,-1*K.1^12,2*K.1-K.1^15,K.1^30,-1*K.1^5-K.1^19,K.1^6,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,K.1^3-2*K.1^17,-2*K.1+K.1^15,K.1^9-2*K.1^23,K.1^5+K.1^19,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-2*K.1+K.1^15,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,K.1^36,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^36,2*K.1-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^18,-1*K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^36,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^30,-1*K.1^18,K.1^3-2*K.1^17,K.1^12,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^18,K.1^6,K.1^12,-1*K.1^3+2*K.1^17,-1*K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2*K.1-K.1^15,-2*K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,-2*K.1^30,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,-2*K.1^24,-2*K.1^30,-2*K.1^18,2*K.1^24,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^36,-2*K.1^18,2*K.1^24,2*K.1^30,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^36,-2*K.1^24,2*K.1^18,2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^30,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^24,2*K.1^30,-1*K.1^12,-1*K.1^36,K.1^30,K.1^6,K.1^18,-1*K.1^24,2*K.1^6,-2*K.1^6,2*K.1^36,2*K.1^24,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^30,-2*K.1^36,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^24,-2*K.1^6,-2*K.1^30,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^6,K.1^30,K.1^6,-1*K.1^36,-1*K.1^6,-1*K.1^30,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^6,K.1^36,-1*K.1^18,-1*K.1^30,K.1^12,K.1^36,-1*K.1^6,-1*K.1^18,K.1^24,K.1^30,-1*K.1^24,-1*K.1^24,K.1^36,-1*K.1^30,K.1^6,-1*K.1^36,K.1^12,K.1^24,K.1^12,K.1^36,-1*K.1^36,-1*K.1^12,K.1^24,-1*K.1^24,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^12,K.1^18,K.1^6,K.1^18,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,2*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^3-2*K.1^17,K.1^12,K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^6,K.1^18,-1*K.1^18,-1*K.1^24,K.1^30,K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^12,K.1^9-2*K.1^23,-1*K.1^36,-1*K.1^5-K.1^19,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,K.1^3-2*K.1^17,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-2*K.1+K.1^15,-1*K.1^12,-1*K.1^3+2*K.1^17,-1*K.1^24,K.1^36,-2*K.1+K.1^15,-1*K.1^6,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^12,K.1^24,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^30,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,K.1^24,-1*K.1^36,-1*K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^36,K.1^3-2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-2*K.1+K.1^15,-2*K.1+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,-1,2,-2,-2,2,0,0,0,0,0,0,0,0,1,1,-1,-1,1,1,-1,2*K.1^12,2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^30,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,1,K.1^7+K.1^-7,K.1^7+K.1^-7,1,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^36,-2*K.1^36,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^30,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^36,2*K.1^30,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^30,-2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^30,-2*K.1^36,-2*K.1^36,-2*K.1^36,2*K.1^30,2*K.1^12,2*K.1^18,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^18,-2*K.1^12,K.1^30,K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^18,-2*K.1^36,2*K.1^36,-2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^30,-2*K.1^36,2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^18,2*K.1^36,2*K.1^12,2*K.1^24,-2*K.1^30,2*K.1^24,-2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,K.1^36,-1*K.1^12,-1*K.1^36,K.1^6,K.1^36,K.1^12,-1*K.1^12,K.1^12,K.1^30,K.1^36,-1*K.1^6,K.1^24,K.1^12,-1*K.1^30,-1*K.1^6,K.1^36,K.1^24,-1*K.1^18,-1*K.1^12,K.1^18,K.1^18,-1*K.1^6,K.1^12,-1*K.1^36,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^6,K.1^6,K.1^30,-1*K.1^18,K.1^18,-1*K.1^30,K.1^24,K.1^24,K.1^30,-1*K.1^24,-1*K.1^36,-1*K.1^24,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^30,-1*K.1^24,K.1^3-2*K.1^17,-1*K.1^36,-1*K.1^24,K.1^24,K.1^18,-1*K.1^12,-1*K.1^12,-2*K.1+K.1^15,K.1^30,K.1^5+K.1^19,K.1^6,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,-1*K.1^5-K.1^19,2*K.1-K.1^15,K.1^3-2*K.1^17,-2*K.1+K.1^15,2*K.1-K.1^15,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,K.1^36,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^36,-2*K.1+K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^18,-1*K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^36,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1^30,-1*K.1^18,-1*K.1^3+2*K.1^17,K.1^12,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,-1*K.1^18,K.1^6,K.1^12,K.1^3-2*K.1^17,-1*K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2*K.1+K.1^15,2*K.1-K.1^15,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^9,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^-6,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^-9,2*K.1^-9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^6,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^-6,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-2*K.1^-6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,-2*K.1^9,-2*K.1^-6,-2*K.1^-9,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-9,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^9,-1*K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,K.1^9,K.1^3,-1*K.1^3-2*K.1^10,K.1^-6,K.1^3,K.1^3,K.1^-3,K.1^-9,K.1^-9,K.1-K.1^8,K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^6,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,-1*K.1+K.1^8,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+2*K.1^10,K.1^-6,K.1^3+2*K.1^10,2*K.1^2+K.1^9,K.1^4-K.1^-10,K.1^-6,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^9,K.1^4-K.1^-10,K.1^-3,K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-6,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^9,K.1^-3,K.1^3+2*K.1^10,K.1^-9,-1*K.1^4+K.1^-10,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,K.1^-3,K.1^6,K.1^-9,K.1^3+2*K.1^10,K.1^6,K.1^4-K.1^-10,-1*K.1+K.1^8,K.1-K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-9,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^6,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^-6,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-2*K.1^6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,-2*K.1^-9,-2*K.1^6,-2*K.1^9,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^9,-2*K.1^-3,-2*K.1^-9,-2*K.1^-3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^-9,-1*K.1^-6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,K.1^-9,K.1^-3,K.1^4-K.1^-10,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^9,K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,2*K.1^2+K.1^9,K.1^-6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,K.1-K.1^8,K.1^3+2*K.1^10,K.1-K.1^8,-1*K.1^4+K.1^-10,K.1^6,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,K.1^-9,-1*K.1^3-2*K.1^10,K.1^3,K.1^-6,-1*K.1+K.1^8,K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,K.1^-9,K.1^3,-1*K.1^4+K.1^-10,K.1^9,K.1^3+2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,K.1^-6,K.1^9,-1*K.1^4+K.1^-10,K.1^-6,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-K.1^9,K.1-K.1^8,-1*K.1+K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^9,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^-6,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^-9,2*K.1^-9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^6,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^-6,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,2*K.1^9,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-2*K.1^-6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,-2*K.1^9,-2*K.1^-6,-2*K.1^-9,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-9,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^9,-1*K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,K.1^9,K.1^3,K.1^3+2*K.1^10,K.1^-6,K.1^3,K.1^3,K.1^-3,K.1^-9,K.1^-9,-1*K.1+K.1^8,K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^6,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,K.1^3+2*K.1^10,K.1-K.1^8,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,K.1^3+2*K.1^10,K.1-K.1^8,K.1-K.1^8,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-2*K.1^10,K.1^-6,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,K.1^-6,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^9,-1*K.1^4+K.1^-10,K.1^-3,K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-6,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^9,K.1^-3,-1*K.1^3-2*K.1^10,K.1^-9,K.1^4-K.1^-10,2*K.1^2+K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,K.1^-3,K.1^6,K.1^-9,-1*K.1^3-2*K.1^10,K.1^6,-1*K.1^4+K.1^-10,K.1-K.1^8,-1*K.1+K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-9,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^6,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^-6,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,2*K.1^-9,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-2*K.1^6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,-2*K.1^-9,-2*K.1^6,-2*K.1^9,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^9,-2*K.1^-3,-2*K.1^-9,-2*K.1^-3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^-9,-1*K.1^-6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,K.1^-9,K.1^-3,-1*K.1^4+K.1^-10,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^9,K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,-2*K.1^2-K.1^9,K.1^-6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,-1*K.1+K.1^8,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,K.1^4-K.1^-10,K.1^6,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,K.1^-9,K.1^3+2*K.1^10,K.1^3,K.1^-6,K.1-K.1^8,K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,K.1^-9,K.1^3,K.1^4-K.1^-10,K.1^9,-1*K.1^3-2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-2*K.1^2-K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,K.1^-6,K.1^9,K.1^4-K.1^-10,K.1^-6,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+K.1^9,-1*K.1+K.1^8,K.1-K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^-9,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^-6,2*K.1^-6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^-3,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^-9,2*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-9,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-9,-2*K.1^3,-2*K.1^-6,-2*K.1^9,-2*K.1^6,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^6,K.1^9,2*K.1^2+K.1^9,K.1^3,K.1^9,K.1^9,K.1^-9,K.1^-6,K.1^-6,K.1^3+2*K.1^10,K.1^6,K.1-K.1^8,K.1^-3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,K.1^3+2*K.1^10,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,-1*K.1^3-2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,-1*K.1^4+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,-2*K.1^2-K.1^9,K.1^3,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^-9,K.1^-3,K.1^4-K.1^-10,K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,K.1^6,K.1^-9,-2*K.1^2-K.1^9,K.1^-6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,K.1^-3,K.1^-6,-2*K.1^2-K.1^9,K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10,-1*K.1+K.1^8,-1*K.1^4+K.1^-10,K.1^4-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^9,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^3,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^9,2*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^9,-2*K.1^-3,-2*K.1^6,-2*K.1^-9,-2*K.1^-6,-2*K.1^-9,-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-9,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,K.1^-6,K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^-3,K.1^-9,K.1^-9,K.1^9,K.1^6,K.1^6,-1*K.1^4+K.1^-10,K.1^-6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3,K.1-K.1^8,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,K.1^4-K.1^-10,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+2*K.1^10,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,2*K.1^2+K.1^9,K.1^-3,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,K.1^-6,2*K.1^2+K.1^9,K.1^9,K.1^3,-1*K.1^3-2*K.1^10,K.1^-3,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-6,K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^6,-2*K.1^2-K.1^9,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,K.1^9,K.1^3,K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,2*K.1^2+K.1^9,K.1^4-K.1^-10,-1*K.1^4+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^-9,2*K.1^-6,2*K.1^9,2*K.1^-9,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^-6,2*K.1^-6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^-3,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^9,2*K.1^6,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^6,2*K.1^9,2*K.1^-3,2*K.1^-9,2*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-9,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-9,-2*K.1^3,-2*K.1^-6,-2*K.1^9,-2*K.1^6,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^6,K.1^9,-2*K.1^2-K.1^9,K.1^3,K.1^9,K.1^9,K.1^-9,K.1^-6,K.1^-6,-1*K.1^3-2*K.1^10,K.1^6,-1*K.1+K.1^8,K.1^-3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,K.1^3+2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,K.1^4-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,2*K.1^2+K.1^9,K.1^3,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^-9,K.1^-3,-1*K.1^4+K.1^-10,K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,K.1^6,K.1^-9,2*K.1^2+K.1^9,K.1^-6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,K.1^-3,K.1^-6,2*K.1^2+K.1^9,K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,-1*K.1^3-2*K.1^10,K.1-K.1^8,K.1^4-K.1^-10,-1*K.1^4+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^9,2*K.1^6,2*K.1^-9,2*K.1^9,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^3,2*K.1^-9,2*K.1^9,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^3,2*K.1^-9,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^-9,2*K.1^-6,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^-6,2*K.1^-9,2*K.1^3,2*K.1^9,2*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^9,-2*K.1^-3,-2*K.1^6,-2*K.1^-9,-2*K.1^-6,-2*K.1^-9,-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-9,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-9,K.1^3+2*K.1^10,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,K.1^-6,K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^-3,K.1^-9,K.1^-9,K.1^9,K.1^6,K.1^6,K.1^4-K.1^-10,K.1^-6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3,-1*K.1+K.1^8,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1+K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1^4+K.1^-10,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-2*K.1^10,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,-2*K.1^2-K.1^9,K.1^-3,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,K.1^-6,-2*K.1^2-K.1^9,K.1^9,K.1^3,K.1^3+2*K.1^10,K.1^-3,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-6,K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^6,2*K.1^2+K.1^9,K.1-K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1-K.1^8,K.1^9,K.1^3,K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,K.1^4-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-2*K.1^10,K.1^3+2*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-9,2*K.1^-9,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^9,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^-9,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^6,2*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-2*K.1^-9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-9,-2*K.1^-3,-2*K.1^9,-2*K.1^6,-2*K.1^9,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^6,-2*K.1^-9,-2*K.1^-3,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^-9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-6,-2*K.1^2-K.1^9,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3,K.1^-6,-1*K.1+K.1^8,K.1^-9,K.1^-6,K.1^-6,K.1^6,K.1^-3,K.1^-3,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3,K.1^4-K.1^-10,K.1^9,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,-1*K.1^4+K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1+K.1^8,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,2*K.1^2+K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,K.1-K.1^8,K.1^-9,K.1-K.1^8,-1*K.1^3-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2*K.1^2+K.1^9,K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^6,K.1^9,-2*K.1^2-K.1^9,K.1^-9,K.1^3+2*K.1^10,K.1^4-K.1^-10,K.1^3,K.1^6,K.1-K.1^8,K.1^-3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+2*K.1^10,K.1^4-K.1^-10,K.1^3+2*K.1^10,K.1^6,K.1^9,K.1^-3,K.1-K.1^8,K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^4+K.1^-10,2*K.1^2+K.1^9,-2*K.1^2-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^9,2*K.1^9,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^-9,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^-6,2*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-2*K.1^9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^9,-2*K.1^3,-2*K.1^-9,-2*K.1^-6,-2*K.1^-9,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^-6,-2*K.1^9,-2*K.1^3,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-9,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,K.1-K.1^8,K.1^-3,K.1^6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^9,K.1^6,K.1^6,K.1^-6,K.1^3,K.1^3,2*K.1^2+K.1^9,K.1^-3,-1*K.1^3-2*K.1^10,K.1^-9,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3+2*K.1^10,K.1-K.1^8,-1*K.1+K.1^8,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,K.1^4-K.1^-10,K.1^3+2*K.1^10,2*K.1^2+K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,-2*K.1^2-K.1^9,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^4-K.1^-10,-1*K.1+K.1^8,K.1^9,2*K.1^2+K.1^9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^-3,-1*K.1+K.1^8,K.1^-6,K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^9,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,K.1^-3,K.1^-6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^3,K.1-K.1^8,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,K.1^-6,K.1^-9,K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,-1*K.1+K.1^8,-2*K.1^2-K.1^9,2*K.1^2+K.1^9,K.1^3+2*K.1^10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^-3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,1+2*K.1^7,1,1,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,1,-1-2*K.1^7,1+2*K.1^7,1,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^9,2*K.1^-9,2*K.1^3,2*K.1^-9,2*K.1^-9,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^9,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-9,2*K.1^-9,2*K.1^-9,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^9,2*K.1^6,2*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-2*K.1^-9,-2*K.1^-9,-2*K.1^9,-2*K.1^6,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-9,-2*K.1^-3,-2*K.1^9,-2*K.1^6,-2*K.1^9,-2*K.1^-3,-2*K.1^3,-2*K.1^9,-2*K.1^6,-2*K.1^-9,-2*K.1^-3,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^-9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1^9,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-6,2*K.1^2+K.1^9,-1*K.1^3-2*K.1^10,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3,K.1^-6,K.1-K.1^8,K.1^-9,K.1^-6,K.1^-6,K.1^6,K.1^-3,K.1^-3,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^3,-1*K.1^4+K.1^-10,K.1^9,K.1^3+2*K.1^10,2*K.1^2+K.1^9,K.1^4-K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1-K.1^8,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3+2*K.1^10,K.1^4-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1-K.1^8,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^3+2*K.1^10,-1*K.1^4+K.1^-10,-2*K.1^2-K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^2-K.1^9,-1*K.1+K.1^8,K.1^-9,-1*K.1+K.1^8,K.1^3+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^-9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2*K.1^2-K.1^9,K.1^3,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^6,K.1^9,2*K.1^2+K.1^9,K.1^-9,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,K.1^3,K.1^6,-1*K.1+K.1^8,K.1^-3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,K.1^6,K.1^9,K.1^-3,-1*K.1+K.1^8,K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^4-K.1^-10,-2*K.1^2-K.1^9,2*K.1^2+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,2*K.1^3,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,-1-2*K.1^7,1,1,1+2*K.1^7,1+2*K.1^7,-1-2*K.1^7,-1-2*K.1^7,1+2*K.1^7,1,1+2*K.1^7,-1-2*K.1^7,1,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-9,2*K.1^9,2*K.1^-3,2*K.1^9,2*K.1^9,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^9,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^-9,2*K.1^6,2*K.1^-3,2*K.1^-9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-9,2*K.1^-6,2*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-2*K.1^9,-2*K.1^9,-2*K.1^-9,-2*K.1^-6,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^9,-2*K.1^3,-2*K.1^-9,-2*K.1^-6,-2*K.1^-9,-2*K.1^3,-2*K.1^-3,-2*K.1^-9,-2*K.1^-6,-2*K.1^9,-2*K.1^3,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-9,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^9,-1*K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^4-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,K.1^-3,K.1^6,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,K.1^9,K.1^6,K.1^6,K.1^-6,K.1^3,K.1^3,-2*K.1^2-K.1^9,K.1^-3,K.1^3+2*K.1^10,K.1^-9,-1*K.1^4+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,-1*K.1^3-2*K.1^10,-1*K.1+K.1^8,K.1-K.1^8,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,-1*K.1^4+K.1^-10,-1*K.1^3-2*K.1^10,-2*K.1^2-K.1^9,2-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,2*K.1^2+K.1^9,2*K.1^2+K.1^9,-1*K.1^4+K.1^-10,K.1^3+2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-1*K.1+K.1^8,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^9,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^4+K.1^-10,K.1-K.1^8,K.1^9,-2*K.1^2-K.1^9,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,K.1^-3,K.1-K.1^8,K.1^-6,K.1^-9,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10,K.1^9,K.1^4-K.1^-10,K.1^3+2*K.1^10,K.1^-3,K.1^-6,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^3,-1*K.1+K.1^8,K.1^4-K.1^-10,K.1^3+2*K.1^10,K.1^4-K.1^-10,K.1^-6,K.1^-9,K.1^3,-2+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,K.1^-9,K.1-K.1^8,2*K.1^2+K.1^9,-2*K.1^2-K.1^9,-1*K.1^3-2*K.1^10,-1+K.1-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-K.1^9+K.1^-10,1-K.1+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^12,-2*K.1^24,2*K.1^12,2*K.1^12,2*K.1^16,2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^4,-2*K.1^12,-2*K.1^24,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^8,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^24,-2*K.1^8,2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^12,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^20,-2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^24,2*K.1^16,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^20,2*K.1^24,-2*K.1^8,2*K.1^8,2*K.1^24,-2*K.1^8,2*K.1^12,2*K.1^8,2*K.1^20,K.1+K.1^15,-1*K.1^3+K.1^17,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,K.1^9+K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,K.1+K.1^15,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,-1*K.1^3+K.1^17,K.1^3-K.1^17,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,K.1+K.1^15,-1*K.1-K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^16,-2*K.1^16,-2*K.1^12,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^24,2*K.1^16,2*K.1^4,2*K.1^20,2*K.1^12,2*K.1^12,-2*K.1^20,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^16,2*K.1^16,-2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^16,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^16,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^20,-2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^16,-2*K.1^20,-2*K.1^8,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,-1*K.1-K.1^15,-1*K.1^9-K.1^23,K.1^3-K.1^17,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1^5+K.1^19,K.1+K.1^15,K.1^9+K.1^23,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,K.1^9+K.1^23,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^8,2*K.1^16,2*K.1^24,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^4,-2*K.1^8,2*K.1^20,-2*K.1^16,2*K.1^12,-2*K.1^24,2*K.1^12,2*K.1^12,2*K.1^16,2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^4,-2*K.1^12,-2*K.1^24,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^8,-2*K.1^24,-2*K.1^16,2*K.1^20,-2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^24,-2*K.1^8,2*K.1^16,2*K.1^20,-2*K.1^4,2*K.1^24,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^12,-2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^12,-2*K.1^8,-2*K.1^20,2*K.1^4,2*K.1^20,-2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^24,-2*K.1^20,-2*K.1^24,2*K.1^16,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^20,2*K.1^24,-2*K.1^8,2*K.1^8,2*K.1^24,-2*K.1^8,2*K.1^12,2*K.1^8,2*K.1^20,-1*K.1-K.1^15,K.1^3-K.1^17,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,-1*K.1^9-K.1^23,K.1+K.1^15,K.1^3-K.1^17,K.1^9+K.1^23,K.1^3-K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,-1*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,K.1^3-K.1^17,-1*K.1^3+K.1^17,K.1^5+K.1^19,K.1^9+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,K.1+K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^24,2*K.1^20,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^16,-2*K.1^16,-2*K.1^12,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^24,2*K.1^16,2*K.1^4,2*K.1^20,2*K.1^12,2*K.1^12,-2*K.1^20,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^16,2*K.1^16,-2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^8,2*K.1^24,-2*K.1^4,-2*K.1^12,2*K.1^24,2*K.1^16,-2*K.1^20,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^20,2*K.1^16,2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^16,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^4,-2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^20,2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^20,-2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^16,-2*K.1^20,-2*K.1^8,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,K.1+K.1^15,K.1^9+K.1^23,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,K.1^9+K.1^23,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1^5-K.1^19,-1*K.1-K.1^15,-1*K.1^9-K.1^23,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,-1*K.1^9-K.1^23,K.1^9+K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,-2*K.1^8,-2*K.1^16,-2*K.1^8,-2*K.1^8,-2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^20,2*K.1^24,-2*K.1^16,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^20,2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^16,-2*K.1^20,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^8,2*K.1^24,2*K.1^4,-1*K.1^3+K.1^17,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,K.1^5+K.1^19,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,K.1^3-K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,2*K.1^20,2*K.1^12,2*K.1^20,2*K.1^20,2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^12,-2*K.1^16,2*K.1^24,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^20,2*K.1^16,-2*K.1^20,2*K.1^8,-2*K.1^20,2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^20,-2*K.1^4,-2*K.1^24,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^19,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,-1*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^9+K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,K.1+K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^20,2*K.1^16,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^12,-2*K.1^24,2*K.1^4,2*K.1^20,-2*K.1^8,-2*K.1^16,-2*K.1^8,-2*K.1^8,-2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^20,2*K.1^24,-2*K.1^16,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^16,2*K.1^8,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^16,-2*K.1^24,-2*K.1^20,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^20,-2*K.1^12,2*K.1^8,2*K.1^24,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^20,2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^24,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^8,-2*K.1^24,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^4,2*K.1^20,2*K.1^12,-2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^4,-2*K.1^16,-2*K.1^20,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^24,2*K.1^24,2*K.1^16,-2*K.1^24,-2*K.1^8,2*K.1^24,2*K.1^4,K.1^3-K.1^17,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^5+K.1^19,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1+K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1^9+K.1^23,K.1^3-K.1^17,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1-K.1^15,K.1+K.1^15,K.1+K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,-1*K.1^3+K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^4,2*K.1^8,-2*K.1^12,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^16,2*K.1^4,-2*K.1^24,-2*K.1^8,2*K.1^20,2*K.1^12,2*K.1^20,2*K.1^20,2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^16,2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^12,-2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^12,-2*K.1^16,2*K.1^24,2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^24,2*K.1^16,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^20,-2*K.1^4,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^20,2*K.1^16,-2*K.1^20,2*K.1^8,-2*K.1^20,2*K.1^16,-2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^20,2*K.1^4,2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^24,-2*K.1^8,-2*K.1^16,2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^4,-2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^20,-2*K.1^4,-2*K.1^24,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^5+K.1^19,-1*K.1-K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^9+K.1^23,K.1^9+K.1^23,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,K.1+K.1^15,K.1^5+K.1^19,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^9+K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^17,K.1+K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,-1*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,K.1+K.1^15,-1*K.1-K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^4,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^24,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^4,-2*K.1^20,-2*K.1^4,2*K.1^24,-2*K.1^4,-2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^12,-2*K.1^20,-2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^16,2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^16,-2*K.1^8,2*K.1^24,-2*K.1^24,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^16,-1*K.1^5-K.1^19,K.1+K.1^15,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,K.1^5+K.1^19,K.1+K.1^15,K.1^3-K.1^17,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1-K.1^15,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^3-K.1^17,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^9-K.1^23,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^5+K.1^19,K.1^9+K.1^23,-1*K.1^3+K.1^17,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^17,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1^5+K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^24,2*K.1^20,-2*K.1^24,-2*K.1^24,-2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^24,2*K.1^24,-2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^24,2*K.1^8,2*K.1^24,-2*K.1^4,2*K.1^24,2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^16,2*K.1^8,2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^12,2*K.1^20,-2*K.1^4,2*K.1^4,2*K.1^20,2*K.1^12,2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^24,2*K.1^16,2*K.1^12,K.1^9+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,K.1^3-K.1^17,-1*K.1-K.1^15,-1*K.1-K.1^15,K.1+K.1^15,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^9-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,K.1+K.1^15,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^9+K.1^23,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,K.1^5+K.1^19,K.1^9+K.1^23,K.1+K.1^15,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,-1*K.1^9-K.1^23,-1*K.1^5-K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^17,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,-1*K.1^9-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,-2*K.1^20,-2*K.1^4,2*K.1^16,-2*K.1^12,2*K.1^24,2*K.1^8,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^16,2*K.1^20,2*K.1^12,-2*K.1^16,-2*K.1^24,2*K.1^4,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^24,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^20,2*K.1^20,-2*K.1^20,2*K.1^24,-2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^12,-2*K.1^8,-2*K.1^24,-2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^20,2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^24,-2*K.1^16,-2*K.1^20,2*K.1^8,2*K.1^24,-2*K.1^20,-2*K.1^4,-2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^4,-2*K.1^20,-2*K.1^4,2*K.1^24,-2*K.1^4,-2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^24,-2*K.1^12,-2*K.1^20,-2*K.1^8,2*K.1^24,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^16,2*K.1^16,-2*K.1^24,2*K.1^20,2*K.1^4,-2*K.1^24,2*K.1^8,2*K.1^16,-2*K.1^8,2*K.1^24,-2*K.1^24,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^16,K.1^5+K.1^19,-1*K.1-K.1^15,K.1^3-K.1^17,K.1^9+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^19,K.1^3-K.1^17,-1*K.1^5-K.1^19,-1*K.1-K.1^15,-1*K.1^3+K.1^17,-1*K.1-K.1^15,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1+K.1^15,-1*K.1^9-K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,-1*K.1^3+K.1^17,-1*K.1^9-K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^9+K.1^23,K.1^9+K.1^23,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,K.1^3-K.1^17,-1*K.1-K.1^15,K.1+K.1^15,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1^5-K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,2,2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^20,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^12,2*K.1^4,-2*K.1^24,2*K.1^20,-2*K.1^24,-2*K.1^24,-2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^20,2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^24,2*K.1^20,-2*K.1^16,2*K.1^4,2*K.1^4,2*K.1^16,2*K.1^20,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^24,-2*K.1^24,2*K.1^24,-2*K.1^20,-2*K.1^8,-2*K.1^12,2*K.1^20,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^24,2*K.1^8,2*K.1^24,-2*K.1^4,2*K.1^24,2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^20,-2*K.1^24,2*K.1^4,2*K.1^16,2*K.1^8,2*K.1^20,-2*K.1^4,-2*K.1^24,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^4,-2*K.1^8,-2*K.1^24,2*K.1^4,-2*K.1^20,-2*K.1^12,2*K.1^20,-2*K.1^4,2*K.1^4,2*K.1^20,2*K.1^12,2*K.1^12,-2*K.1^20,-2*K.1^16,2*K.1^16,-2*K.1^20,-2*K.1^16,-2*K.1^24,2*K.1^16,2*K.1^12,-1*K.1^9-K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^19,-1*K.1^3+K.1^17,K.1+K.1^15,K.1+K.1^15,-1*K.1-K.1^15,K.1^9+K.1^23,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,K.1^9+K.1^23,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,-1*K.1-K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^5+K.1^19,-1*K.1^3+K.1^17,-1*K.1-K.1^15,K.1+K.1^15,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^23,K.1^3-K.1^17,K.1^5+K.1^19,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1^5+K.1^19,K.1^3-K.1^17,-1*K.1^5-K.1^19,-1*K.1^9-K.1^23,-1*K.1-K.1^15,K.1^3-K.1^17,-1*K.1^3+K.1^17,-1*K.1^3+K.1^17,-1*K.1^5-K.1^19,-1*K.1^5-K.1^19,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1+K.1^15,K.1^9+K.1^23,K.1^5+K.1^19,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^3+K.1^7-K.1^11+K.1^13+K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-K.1^13-K.1^15+K.1^19-K.1^23,K.1^3-K.1^17,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9-K.1^11+K.1^13-K.1^17+K.1^21,K.1-K.1^5+K.1^9+K.1^11-K.1^13+K.1^17-K.1^21,-1*K.1^9-K.1^23,K.1^9+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^6,-2*K.1^18,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,2*K.1^30,2*K.1^6,2*K.1^12,-2*K.1^30,2*K.1^24,2*K.1^18,-2*K.1^36,-2*K.1^18,2*K.1^18,2*K.1^24,2*K.1^12,2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^30,-2*K.1^6,2*K.1^18,-2*K.1^36,2*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^12,2*K.1^36,-2*K.1^24,-2*K.1^30,-2*K.1^12,-2*K.1^36,-2*K.1^18,-2*K.1^18,2*K.1^18,-2*K.1^36,-2*K.1^6,-2*K.1^30,2*K.1^36,-2*K.1^12,-2*K.1^24,2*K.1^30,2*K.1^6,-1*K.1^36,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,K.1^30,-2*K.1^18,2*K.1^18,2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^30,-2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^24,-2*K.1^30,-2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^36,2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^18,K.1^6,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^6,-1*K.1^36,K.1^24,K.1^18,-1*K.1^12,K.1^30,-1*K.1^6,K.1^30,-1*K.1^30,K.1^24,K.1^6,K.1^18,K.1^24,-1*K.1^36,-1*K.1^30,K.1^36,-1*K.1^24,-1*K.1^24,K.1^36,K.1^30,-1*K.1^30,K.1^36,K.1^12,K.1^12,K.1^36,K.1^12,-1*K.1^18,K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^3-2*K.1^17,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^36,K.1^12,-1*K.1^5-K.1^19,K.1^18,-1*K.1^12,K.1^12,K.1^30,-1*K.1^6,K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^36,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^24,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^5-K.1^19,K.1^18,-1*K.1^5-K.1^19,-2*K.1+K.1^15,K.1^9-2*K.1^23,-1*K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,K.1^36,-1*K.1^9+2*K.1^23,-1*K.1^30,-1*K.1^24,-1*K.1^3+2*K.1^17,-1*K.1^18,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^36,-1*K.1^30,K.1^5+K.1^19,-1*K.1^6,K.1^9-2*K.1^23,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,2*K.1-K.1^15,K.1^30,K.1^24,K.1^6,K.1^5+K.1^19,K.1^24,-1*K.1^9+2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^36,2*K.1^24,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,-2*K.1^12,-2*K.1^36,-2*K.1^30,2*K.1^12,-2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^30,-2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^30,-2*K.1^12,2*K.1^36,-2*K.1^24,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^18,2*K.1^30,-2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^30,2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^36,2*K.1^12,-2*K.1^6,2*K.1^30,2*K.1^18,-2*K.1^12,-2*K.1^36,K.1^6,K.1^18,-1*K.1^36,-1*K.1^24,K.1^30,-1*K.1^12,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^6,-2*K.1^30,-2*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^24,K.1^36,K.1^24,-1*K.1^18,K.1^24,-1*K.1^36,-1*K.1^36,K.1^36,K.1^6,K.1^24,K.1^18,K.1^30,K.1^36,K.1^6,-1*K.1^18,-1*K.1^24,K.1^30,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^36,-1*K.1^24,-1*K.1^18,K.1^6,K.1^12,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^30,-1*K.1^6,-1*K.1^30,K.1^24,-1*K.1^30,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,K.1^5+K.1^19,K.1^6,-1*K.1^30,-1*K.1^9+2*K.1^23,-1*K.1^24,K.1^30,-1*K.1^30,-1*K.1^12,K.1^36,-1*K.1^36,K.1^3-2*K.1^17,K.1^6,2*K.1-K.1^15,K.1^18,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,2*K.1-K.1^15,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^24,-1*K.1^9+2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,K.1^24,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^6,-1*K.1^5-K.1^19,K.1^12,K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1^6,K.1^12,K.1^9-2*K.1^23,K.1^36,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^12,-1*K.1^18,-1*K.1^36,K.1^9-2*K.1^23,-1*K.1^18,-1*K.1^5-K.1^19,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^6,-2*K.1^18,-2*K.1^30,2*K.1^12,2*K.1^24,2*K.1^36,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^30,2*K.1^6,2*K.1^12,-2*K.1^30,2*K.1^24,2*K.1^18,-2*K.1^36,-2*K.1^18,2*K.1^18,2*K.1^24,2*K.1^12,2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^30,-2*K.1^6,2*K.1^18,-2*K.1^36,2*K.1^12,-2*K.1^24,2*K.1^24,-2*K.1^12,2*K.1^36,-2*K.1^24,-2*K.1^30,-2*K.1^12,-2*K.1^36,-2*K.1^18,-2*K.1^18,2*K.1^18,-2*K.1^36,-2*K.1^6,-2*K.1^30,2*K.1^36,-2*K.1^12,-2*K.1^24,2*K.1^30,2*K.1^6,-1*K.1^36,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,K.1^30,-2*K.1^18,2*K.1^18,2*K.1^24,2*K.1^30,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^30,-2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^24,-2*K.1^30,-2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^36,2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^18,K.1^6,K.1^6,-1*K.1^6,-1*K.1^36,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^6,-1*K.1^36,K.1^24,K.1^18,-1*K.1^12,K.1^30,-1*K.1^6,K.1^30,-1*K.1^30,K.1^24,K.1^6,K.1^18,K.1^24,-1*K.1^36,-1*K.1^30,K.1^36,-1*K.1^24,-1*K.1^24,K.1^36,K.1^30,-1*K.1^30,K.1^36,K.1^12,K.1^12,K.1^36,K.1^12,-1*K.1^18,K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^36,K.1^12,K.1^5+K.1^19,K.1^18,-1*K.1^12,K.1^12,K.1^30,-1*K.1^6,K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^36,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^24,2*K.1-K.1^15,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1^3-2*K.1^17,K.1^5+K.1^19,K.1^18,K.1^5+K.1^19,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,-1*K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,K.1^36,K.1^9-2*K.1^23,-1*K.1^30,-1*K.1^24,K.1^3-2*K.1^17,-1*K.1^18,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^36,-1*K.1^30,-1*K.1^5-K.1^19,-1*K.1^6,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-2*K.1+K.1^15,K.1^30,K.1^24,K.1^6,-1*K.1^5-K.1^19,K.1^24,K.1^9-2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^36,2*K.1^24,2*K.1^12,-2*K.1^30,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^12,-2*K.1^36,-2*K.1^30,2*K.1^12,-2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^30,-2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^36,-2*K.1^36,2*K.1^18,2*K.1^30,-2*K.1^12,2*K.1^36,-2*K.1^24,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^18,2*K.1^30,-2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^30,2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^36,2*K.1^12,-2*K.1^6,2*K.1^30,2*K.1^18,-2*K.1^12,-2*K.1^36,K.1^6,K.1^18,-1*K.1^36,-1*K.1^24,K.1^30,-1*K.1^12,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^30,-2*K.1^12,-2*K.1^36,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^6,-2*K.1^30,-2*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^24,K.1^36,K.1^24,-1*K.1^18,K.1^24,-1*K.1^36,-1*K.1^36,K.1^36,K.1^6,K.1^24,K.1^18,K.1^30,K.1^36,K.1^6,-1*K.1^18,-1*K.1^24,K.1^30,-1*K.1^12,K.1^36,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^36,-1*K.1^24,-1*K.1^18,K.1^6,K.1^12,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^30,-1*K.1^6,-1*K.1^30,K.1^24,-1*K.1^30,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^6,-1*K.1^30,K.1^9-2*K.1^23,-1*K.1^24,K.1^30,-1*K.1^30,-1*K.1^12,K.1^36,-1*K.1^36,-1*K.1^3+2*K.1^17,K.1^6,-2*K.1+K.1^15,K.1^18,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-2*K.1+K.1^15,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^9-2*K.1^23,-1*K.1^24,K.1^9-2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,K.1^24,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^6,K.1^5+K.1^19,K.1^12,K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,-1*K.1^6,K.1^12,-1*K.1^9+2*K.1^23,K.1^36,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^12,-1*K.1^18,-1*K.1^36,-1*K.1^9+2*K.1^23,-1*K.1^18,K.1^5+K.1^19,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,2*K.1^6,2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^30,-2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^30,2*K.1^36,2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^36,2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^30,-2*K.1^36,2*K.1^24,2*K.1^30,-2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^36,2*K.1^30,2*K.1^6,2*K.1^18,-1*K.1^24,K.1^30,K.1^18,-1*K.1^12,-1*K.1^36,K.1^6,2*K.1^12,-2*K.1^12,-2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^30,-2*K.1^6,2*K.1^30,-2*K.1^18,2*K.1^24,-2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^24,2*K.1^36,2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^30,K.1^12,K.1^18,K.1^18,-1*K.1^18,-1*K.1^24,K.1^12,K.1^30,-1*K.1^36,-1*K.1^18,-1*K.1^24,-1*K.1^30,-1*K.1^12,-1*K.1^36,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^12,-1*K.1^30,-1*K.1^24,-1*K.1^6,K.1^24,K.1^30,K.1^30,K.1^24,K.1^6,-1*K.1^6,K.1^24,K.1^36,K.1^36,K.1^24,K.1^36,K.1^12,K.1^36,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^24,K.1^36,2*K.1-K.1^15,-1*K.1^12,-1*K.1^36,K.1^36,K.1^6,-1*K.1^18,K.1^18,-1*K.1^5-K.1^19,-1*K.1^24,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^30,-1*K.1^3+2*K.1^17,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-2*K.1+K.1^15,2*K.1-K.1^15,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5+K.1^19,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^5+K.1^19,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,2*K.1-K.1^15,-1*K.1^12,2*K.1-K.1^15,-1*K.1^3+2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^12,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^6,K.1^30,K.1^9-2*K.1^23,K.1^12,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^24,-1*K.1^6,-2*K.1+K.1^15,-1*K.1^18,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^3-2*K.1^17,K.1^6,-1*K.1^30,K.1^18,-2*K.1+K.1^15,-1*K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^19,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^24,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,-2*K.1^36,-2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^12,2*K.1^30,2*K.1^18,-2*K.1^30,2*K.1^30,2*K.1^12,-2*K.1^6,-2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^36,2*K.1^24,2*K.1^30,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^18,2*K.1^24,2*K.1^36,-2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^36,-2*K.1^24,K.1^18,-1*K.1^12,-1*K.1^24,K.1^30,K.1^6,-1*K.1^36,-2*K.1^30,2*K.1^30,2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^24,-2*K.1^12,2*K.1^36,-2*K.1^12,2*K.1^24,-2*K.1^18,2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^18,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^30,K.1^24,-1*K.1^30,K.1^12,-1*K.1^30,-1*K.1^24,-1*K.1^24,K.1^24,K.1^18,-1*K.1^30,-1*K.1^12,K.1^6,K.1^24,K.1^18,K.1^12,K.1^30,K.1^6,-1*K.1^36,K.1^24,-1*K.1^36,K.1^36,K.1^12,-1*K.1^24,K.1^30,K.1^12,K.1^18,K.1^36,-1*K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^18,-1*K.1^36,K.1^36,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^30,-1*K.1^6,K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-2*K.1+K.1^15,K.1^18,-1*K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^30,K.1^6,-1*K.1^6,-1*K.1^36,K.1^24,-1*K.1^24,-1*K.1^9+2*K.1^23,K.1^18,K.1^3-2*K.1^17,-1*K.1^12,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-2*K.1+K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^3-2*K.1^17,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^5-K.1^19,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-2*K.1+K.1^15,-1*K.1^30,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^18,2*K.1-K.1^15,K.1^36,-1*K.1^12,K.1^5+K.1^19,-1*K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^18,K.1^36,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^24,-2*K.1+K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^36,K.1^12,-1*K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^12,2*K.1-K.1^15,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,-1*K.1^5-K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^30,2*K.1^24,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^6,2*K.1^18,2*K.1^36,-2*K.1^6,-2*K.1^30,-2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^30,2*K.1^36,2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^36,2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^36,2*K.1^30,-2*K.1^30,-2*K.1^36,2*K.1^24,2*K.1^30,-2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^12,2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^36,2*K.1^30,2*K.1^6,2*K.1^18,-1*K.1^24,K.1^30,K.1^18,-1*K.1^12,-1*K.1^36,K.1^6,2*K.1^12,-2*K.1^12,-2*K.1^30,2*K.1^6,-2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^30,-2*K.1^6,2*K.1^30,-2*K.1^18,2*K.1^24,-2*K.1^30,-2*K.1^6,2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^24,2*K.1^36,2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^30,K.1^12,K.1^18,K.1^18,-1*K.1^18,-1*K.1^24,K.1^12,K.1^30,-1*K.1^36,-1*K.1^18,-1*K.1^24,-1*K.1^30,-1*K.1^12,-1*K.1^36,K.1^6,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^12,-1*K.1^30,-1*K.1^24,-1*K.1^6,K.1^24,K.1^30,K.1^30,K.1^24,K.1^6,-1*K.1^6,K.1^24,K.1^36,K.1^36,K.1^24,K.1^36,K.1^12,K.1^36,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36,K.1^9-2*K.1^23,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^24,K.1^36,-2*K.1+K.1^15,-1*K.1^12,-1*K.1^36,K.1^36,K.1^6,-1*K.1^18,K.1^18,K.1^5+K.1^19,-1*K.1^24,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^30,K.1^3-2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,2*K.1-K.1^15,-2*K.1+K.1^15,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^19,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^5-K.1^19,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,-2*K.1+K.1^15,-1*K.1^12,-2*K.1+K.1^15,K.1^3-2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^12,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^6,K.1^30,-1*K.1^9+2*K.1^23,K.1^12,-1*K.1^3+2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^24,-1*K.1^6,2*K.1-K.1^15,-1*K.1^18,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^3-2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^3+2*K.1^17,K.1^6,-1*K.1^30,K.1^18,2*K.1-K.1^15,-1*K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^19,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^24,-2*K.1^30,2*K.1^36,-2*K.1^6,2*K.1^12,-2*K.1^18,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^36,-2*K.1^24,-2*K.1^6,2*K.1^36,2*K.1^12,2*K.1^30,2*K.1^18,-2*K.1^30,2*K.1^30,2*K.1^12,-2*K.1^6,-2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^36,2*K.1^24,2*K.1^30,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^36,2*K.1^6,2*K.1^18,-2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^18,2*K.1^24,2*K.1^36,-2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^36,-2*K.1^24,K.1^18,-1*K.1^12,-1*K.1^24,K.1^30,K.1^6,-1*K.1^36,-2*K.1^30,2*K.1^30,2*K.1^12,-2*K.1^36,2*K.1^6,-2*K.1^36,-2*K.1^24,2*K.1^18,2*K.1^18,2*K.1^30,-2*K.1^24,-2*K.1^12,2*K.1^36,-2*K.1^12,2*K.1^24,-2*K.1^18,2*K.1^12,2*K.1^36,-2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^18,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^30,K.1^24,-1*K.1^30,K.1^12,-1*K.1^30,-1*K.1^24,-1*K.1^24,K.1^24,K.1^18,-1*K.1^30,-1*K.1^12,K.1^6,K.1^24,K.1^18,K.1^12,K.1^30,K.1^6,-1*K.1^36,K.1^24,-1*K.1^36,K.1^36,K.1^12,-1*K.1^24,K.1^30,K.1^12,K.1^18,K.1^36,-1*K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^18,-1*K.1^36,K.1^36,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^30,-1*K.1^6,K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,K.1^18,-1*K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^30,K.1^6,-1*K.1^6,-1*K.1^36,K.1^24,-1*K.1^24,K.1^9-2*K.1^23,K.1^18,-1*K.1^3+2*K.1^17,-1*K.1^12,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,-2*K.1+K.1^15,2*K.1-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^9+2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,K.1^5+K.1^19,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,2*K.1-K.1^15,-1*K.1^30,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1^18,-2*K.1+K.1^15,K.1^36,-1*K.1^12,-1*K.1^5-K.1^19,-1*K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^3-2*K.1^17,-1*K.1^18,K.1^36,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^24,2*K.1-K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^3+2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^36,K.1^12,-1*K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^12,-2*K.1+K.1^15,-1*K.1^9+2*K.1^23,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,K.1^5+K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^30,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,-2*K.1^24,2*K.1^30,-2*K.1^18,2*K.1^24,2*K.1^36,2*K.1^6,-2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^36,-2*K.1^18,-2*K.1^24,2*K.1^12,-2*K.1^30,2*K.1^30,2*K.1^30,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^36,2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^24,2*K.1^18,-2*K.1^12,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^30,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^36,-2*K.1^24,2*K.1^30,-1*K.1^12,-1*K.1^36,K.1^30,K.1^6,K.1^18,-1*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^36,-2*K.1^24,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^30,-2*K.1^36,2*K.1^24,-2*K.1^36,-2*K.1^30,2*K.1^12,2*K.1^36,2*K.1^24,-2*K.1^6,-2*K.1^30,2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,K.1^6,-1*K.1^30,-1*K.1^6,K.1^36,-1*K.1^6,K.1^30,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^6,-1*K.1^36,K.1^18,-1*K.1^30,-1*K.1^12,K.1^36,K.1^6,K.1^18,-1*K.1^24,-1*K.1^30,-1*K.1^24,K.1^24,K.1^36,K.1^30,K.1^6,K.1^36,-1*K.1^12,K.1^24,K.1^12,-1*K.1^36,-1*K.1^36,K.1^12,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,-1*K.1^18,K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,2*K.1-K.1^15,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^12,-1*K.1^18,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^6,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^30,K.1^30,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^12,-1*K.1^9+2*K.1^23,-1*K.1^36,K.1^5+K.1^19,-2*K.1+K.1^15,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,-1*K.1^9+2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,2*K.1-K.1^15,K.1^3-2*K.1^17,-2*K.1+K.1^15,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^5+K.1^19,-1*K.1^3+2*K.1^17,-1*K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,2*K.1-K.1^15,K.1^12,K.1^3-2*K.1^17,K.1^24,-1*K.1^36,-2*K.1+K.1^15,-1*K.1^6,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^12,K.1^24,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^30,-1*K.1^3+2*K.1^17,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^24,K.1^36,K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^36,K.1^3-2*K.1^17,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-2*K.1+K.1^15,2*K.1-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^12,2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^30,0,0,0,0,0,0,0,0,-1*K.1^7-K.1^-7,-1,1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,1,2*K.1^18,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^36,2*K.1^30,2*K.1^36,-2*K.1^36,-2*K.1^6,2*K.1^24,2*K.1^18,-2*K.1^30,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^6,-2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^36,2*K.1^36,-2*K.1^36,2*K.1^30,2*K.1^12,-2*K.1^18,-2*K.1^30,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^12,K.1^30,K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^18,2*K.1^36,-2*K.1^36,-2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^30,2*K.1^30,-2*K.1^36,-2*K.1^12,2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^30,-2*K.1^6,-2*K.1^18,2*K.1^36,2*K.1^12,-2*K.1^24,-2*K.1^30,2*K.1^24,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,-1*K.1^36,K.1^12,K.1^36,-1*K.1^6,K.1^36,-1*K.1^12,-1*K.1^12,K.1^12,K.1^30,K.1^36,K.1^6,-1*K.1^24,K.1^12,K.1^30,-1*K.1^6,-1*K.1^36,-1*K.1^24,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^30,K.1^6,K.1^6,-1*K.1^30,K.1^18,-1*K.1^18,-1*K.1^30,K.1^24,K.1^24,-1*K.1^30,K.1^24,K.1^36,K.1^24,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^30,K.1^24,K.1^3-2*K.1^17,-1*K.1^36,-1*K.1^24,K.1^24,K.1^18,K.1^12,-1*K.1^12,2*K.1-K.1^15,K.1^30,-1*K.1^5-K.1^19,K.1^6,K.1^9-2*K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,-1*K.1^5-K.1^19,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,-2*K.1+K.1^15,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^3-2*K.1^17,-1*K.1^36,K.1^3-2*K.1^17,K.1^9-2*K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^36,-2*K.1+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^18,K.1^6,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^36,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1^30,-1*K.1^18,-1*K.1^3+2*K.1^17,K.1^12,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^9+2*K.1^23,K.1^18,-1*K.1^6,-1*K.1^12,-1*K.1^3+2*K.1^17,-1*K.1^6,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-2*K.1+K.1^15,2*K.1-K.1^15,K.1^5+K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-2*K.1^30,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,-2*K.1^24,2*K.1^30,-2*K.1^18,2*K.1^24,2*K.1^36,2*K.1^6,-2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^36,-2*K.1^18,-2*K.1^24,2*K.1^12,-2*K.1^30,2*K.1^30,2*K.1^30,-2*K.1^36,2*K.1^18,-2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^12,-2*K.1^18,-2*K.1^36,2*K.1^36,2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^24,2*K.1^18,-2*K.1^12,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^30,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^36,-2*K.1^24,2*K.1^30,-1*K.1^12,-1*K.1^36,K.1^30,K.1^6,K.1^18,-1*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^36,-2*K.1^24,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^12,-2*K.1^12,2*K.1^6,2*K.1^30,-2*K.1^36,2*K.1^24,-2*K.1^36,-2*K.1^30,2*K.1^12,2*K.1^36,2*K.1^24,-2*K.1^6,-2*K.1^30,2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,K.1^6,-1*K.1^30,-1*K.1^6,K.1^36,-1*K.1^6,K.1^30,K.1^30,-1*K.1^30,-1*K.1^12,-1*K.1^6,-1*K.1^36,K.1^18,-1*K.1^30,-1*K.1^12,K.1^36,K.1^6,K.1^18,-1*K.1^24,-1*K.1^30,-1*K.1^24,K.1^24,K.1^36,K.1^30,K.1^6,K.1^36,-1*K.1^12,K.1^24,K.1^12,-1*K.1^36,-1*K.1^36,K.1^12,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,-1*K.1^18,K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-2*K.1+K.1^15,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^3-2*K.1^17,-1*K.1^12,-1*K.1^18,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^6,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^30,K.1^30,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^12,K.1^9-2*K.1^23,-1*K.1^36,-1*K.1^5-K.1^19,2*K.1-K.1^15,-1*K.1^9+2*K.1^23,-1*K.1^3+2*K.1^17,K.1^3-2*K.1^17,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1^5+K.1^19,K.1^9-2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,-2*K.1+K.1^15,-1*K.1^3+2*K.1^17,2*K.1-K.1^15,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^19,K.1^3-2*K.1^17,-1*K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-2*K.1+K.1^15,K.1^12,-1*K.1^3+2*K.1^17,K.1^24,-1*K.1^36,2*K.1-K.1^15,-1*K.1^6,K.1^5+K.1^19,-1*K.1^9+2*K.1^23,K.1^12,K.1^24,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^30,K.1^3-2*K.1^17,-1*K.1^5-K.1^19,K.1^9-2*K.1^23,K.1^5+K.1^19,-1*K.1^24,K.1^36,K.1^30,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^36,-1*K.1^3+2*K.1^17,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,2*K.1-K.1^15,-2*K.1+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-2,2,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,2*K.1^12,2*K.1^36,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^30,0,0,0,0,0,0,0,0,K.1^7+K.1^-7,-1,1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,1,2*K.1^18,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^36,2*K.1^30,2*K.1^36,-2*K.1^36,-2*K.1^6,2*K.1^24,2*K.1^18,-2*K.1^30,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^36,2*K.1^30,2*K.1^24,2*K.1^6,-2*K.1^6,-2*K.1^24,-2*K.1^30,2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^36,2*K.1^36,-2*K.1^36,2*K.1^30,2*K.1^12,-2*K.1^18,-2*K.1^30,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^12,K.1^30,K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^18,2*K.1^36,-2*K.1^36,-2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^30,2*K.1^30,-2*K.1^36,-2*K.1^12,2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^30,-2*K.1^6,-2*K.1^18,2*K.1^36,2*K.1^12,-2*K.1^24,-2*K.1^30,2*K.1^24,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,-1*K.1^36,K.1^12,K.1^36,-1*K.1^6,K.1^36,-1*K.1^12,-1*K.1^12,K.1^12,K.1^30,K.1^36,K.1^6,-1*K.1^24,K.1^12,K.1^30,-1*K.1^6,-1*K.1^36,-1*K.1^24,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^12,-1*K.1^36,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^30,K.1^6,K.1^6,-1*K.1^30,K.1^18,-1*K.1^18,-1*K.1^30,K.1^24,K.1^24,-1*K.1^30,K.1^24,K.1^36,K.1^24,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^30,K.1^24,-1*K.1^3+2*K.1^17,-1*K.1^36,-1*K.1^24,K.1^24,K.1^18,K.1^12,-1*K.1^12,-2*K.1+K.1^15,K.1^30,K.1^5+K.1^19,K.1^6,-1*K.1^9+2*K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^19,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^3-2*K.1^17,-1*K.1^3+2*K.1^17,-2*K.1+K.1^15,K.1^9-2*K.1^23,K.1^5+K.1^19,2*K.1-K.1^15,K.1^3-2*K.1^17,-2*K.1+K.1^15,2*K.1-K.1^15,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3+2*K.1^17,-1*K.1^36,-1*K.1^3+2*K.1^17,-1*K.1^9+2*K.1^23,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,K.1^36,2*K.1-K.1^15,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^30,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,-1*K.1^18,K.1^6,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1^36,K.1^9-2*K.1^23,-1*K.1^5-K.1^19,-1*K.1^30,-1*K.1^18,K.1^3-2*K.1^17,K.1^12,-1*K.1-K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+K.1^17+K.1^19-K.1^23,-1*K.1^9+2*K.1^23,K.1^5+K.1^19,K.1^9-2*K.1^23,K.1^18,-1*K.1^6,-1*K.1^12,K.1^3-2*K.1^17,-1*K.1^6,K.1+K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-K.1^17-K.1^19+K.1^23,2*K.1-K.1^15,-2*K.1+K.1^15,-1*K.1^5-K.1^19,-1*K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^15+K.1^17-K.1^21-K.1^23,K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 4, -4, 4, -4, -4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, 4, 4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, 4, -4, -4, 4, -4, 4, 4, -4, 4, 4, -4, -4, -4, 4, 4, 4, -4, -4, 4, 4, 4, 4, 4, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, 4, -4, 4, -4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, 2, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, -4, -4, 4, 4, -4, 4, 4, 4, 4, 4, 4, 4, -4, -4, -4, -4, -4, -4, 4, -4, 4, -4, -4, -4, 4, -4, 4, -4, 4, -4, -4, -4, -4, 4, -4, 4, -4, 4, -4, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, -4, 4, 4, 4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, 4, -4, -4, 4, -4, -4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -4, -4, -4, 4, 4, 4, -4, 4, -4, -4, -4, -4, 4, -4, -4, -4, -4, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, 2, 2, 2, -2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[4, -4, 4, 4, -4, -4, 4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, -2, 2, -2, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, -4, -4, -4, -4, -4, -4, 4, 4, -4, 4, 4, -4, 4, 4, 4, 4, -4, 4, -4, -4, -4, -4, 4, -4, -4, -4, -4, 4, 4, -4, 4, 4, -4, 4, -4, -4, 4, -4, 4, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1^-3,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^2,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-1,-4*K.1^-3,-4*K.1,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,-4*K.1^3,-4*K.1^-2,4*K.1^-2,-4*K.1^2,-4*K.1,4*K.1^-1,-4*K.1^3,-4*K.1^-3,4*K.1^-3,4*K.1^-3,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-3,4*K.1^-2,4*K.1^3,4*K.1,4*K.1^2,4*K.1^2,-4*K.1,-4*K.1^3,-4*K.1^2,4*K.1^-1,4*K.1,4*K.1^3,-4*K.1^-2,4*K.1^-2,-4*K.1^-2,-4*K.1^3,-4*K.1^-3,-4*K.1^-1,4*K.1^3,-4*K.1,-4*K.1^2,-4*K.1^-1,-4*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-3,-2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^-1,-2*K.1^3,2*K.1^2,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1^3,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-2,4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1,-4*K.1^3,-4*K.1^-1,-4*K.1,-4*K.1^-2,-4*K.1^2,-4*K.1^-3,-4*K.1^2,4*K.1^2,-4*K.1^-2,-4*K.1^-1,4*K.1,-4*K.1^-3,-4*K.1^3,4*K.1^3,4*K.1^3,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^3,4*K.1^2,4*K.1^-3,4*K.1^-1,4*K.1^-2,4*K.1^-2,-4*K.1^-1,-4*K.1^-3,-4*K.1^-2,4*K.1,4*K.1^-1,4*K.1^-3,-4*K.1^2,4*K.1^2,-4*K.1^2,-4*K.1^-3,-4*K.1^3,-4*K.1,4*K.1^-3,-4*K.1^-1,-4*K.1^-2,-4*K.1,-4*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,-2*K.1^3,-2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^3,-2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^3,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^-3,2*K.1,-2*K.1^-3,2*K.1^-2,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1,2*K.1^-3,-2*K.1^-1,2*K.1^-1,-2*K.1^-3,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1^-2,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-3,-4*K.1^-2,-4*K.1^3,-4*K.1^-3,-4*K.1^-1,-4*K.1,-4*K.1^2,-4*K.1,4*K.1,-4*K.1^-1,-4*K.1^3,4*K.1^-3,-4*K.1^2,-4*K.1^-2,4*K.1^-2,4*K.1^-2,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1^-2,4*K.1,4*K.1^2,4*K.1^3,4*K.1^-1,4*K.1^-1,-4*K.1^3,-4*K.1^2,-4*K.1^-1,4*K.1^-3,4*K.1^3,4*K.1^2,-4*K.1,4*K.1,-4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-3,4*K.1^2,-4*K.1^3,-4*K.1^-1,-4*K.1^-3,-4*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^3,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-3,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-3,-2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-3,2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^2,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1^2,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^3,-4*K.1^2,-4*K.1^-3,-4*K.1^3,-4*K.1,-4*K.1^-1,-4*K.1^-2,-4*K.1^-1,4*K.1^-1,-4*K.1,-4*K.1^-3,4*K.1^3,-4*K.1^-2,-4*K.1^2,4*K.1^2,4*K.1^2,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^2,4*K.1^-1,4*K.1^-2,4*K.1^-3,4*K.1,4*K.1,-4*K.1^-3,-4*K.1^-2,-4*K.1,4*K.1^3,4*K.1^-3,4*K.1^-2,-4*K.1^-1,4*K.1^-1,-4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1^3,4*K.1^-2,-4*K.1^-3,-4*K.1,-4*K.1^3,-4*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^-3,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^3,-2*K.1^-2,2*K.1,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^3,2*K.1^-2,-2*K.1^-3,2*K.1^-3,-2*K.1^-2,2*K.1^-3,2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1^-1,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^3,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,-4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1^3,-4*K.1^-3,-4*K.1,-4*K.1^-3,4*K.1^-3,-4*K.1^3,-4*K.1^-2,4*K.1^2,-4*K.1,-4*K.1^-1,4*K.1^-1,4*K.1^-1,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^-1,4*K.1^-3,4*K.1,4*K.1^-2,4*K.1^3,4*K.1^3,-4*K.1^-2,-4*K.1,-4*K.1^3,4*K.1^2,4*K.1^-2,4*K.1,-4*K.1^-3,4*K.1^-3,-4*K.1^-3,-4*K.1,-4*K.1^-1,-4*K.1^2,4*K.1,-4*K.1^-2,-4*K.1^3,-4*K.1^2,-4*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^3,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^3,-2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1,2*K.1^2,-2*K.1,2*K.1^3,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,-4,4,4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,2,2,2,-2,-2,4*K.1,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^-3,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-2,-4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-3,-4*K.1^3,-4*K.1^-1,-4*K.1^3,4*K.1^3,-4*K.1^-3,-4*K.1^2,4*K.1^-2,-4*K.1^-1,-4*K.1,4*K.1,4*K.1,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1,4*K.1^3,4*K.1^-1,4*K.1^2,4*K.1^-3,4*K.1^-3,-4*K.1^2,-4*K.1^-1,-4*K.1^-3,4*K.1^-2,4*K.1^2,4*K.1^-1,-4*K.1^3,4*K.1^3,-4*K.1^3,-4*K.1^-1,-4*K.1,-4*K.1^-2,4*K.1^-1,-4*K.1^2,-4*K.1^-3,-4*K.1^-2,-4*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-3,2*K.1^3,2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-3,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-3,-2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^-3,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1^-3,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^2,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-1,4*K.1^-3,-4*K.1,-4*K.1^-1,-4*K.1^2,4*K.1^-2,4*K.1^3,-4*K.1^-2,4*K.1^-2,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1^-3,-4*K.1^-3,-4*K.1^2,-4*K.1,-4*K.1^-1,-4*K.1^-3,-4*K.1^-2,4*K.1^3,-4*K.1,4*K.1^2,-4*K.1^2,-4*K.1,-4*K.1^3,4*K.1^2,-4*K.1^-1,4*K.1,-4*K.1^3,4*K.1^-2,-4*K.1^-2,-4*K.1^-2,-4*K.1^3,-4*K.1^-3,4*K.1^-1,-4*K.1^3,4*K.1,-4*K.1^2,4*K.1^-1,-4*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-2,-2*K.1^-3,2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^3,-2*K.1^2,2*K.1^2,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1,-2*K.1^-2,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1^3,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-2,4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1,4*K.1^3,-4*K.1^-1,-4*K.1,-4*K.1^-2,4*K.1^2,4*K.1^-3,-4*K.1^2,4*K.1^2,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^3,-4*K.1^3,-4*K.1^-2,-4*K.1^-1,-4*K.1,-4*K.1^3,-4*K.1^2,4*K.1^-3,-4*K.1^-1,4*K.1^-2,-4*K.1^-2,-4*K.1^-1,-4*K.1^-3,4*K.1^-2,-4*K.1,4*K.1^-1,-4*K.1^-3,4*K.1^2,-4*K.1^2,-4*K.1^2,-4*K.1^-3,-4*K.1^3,4*K.1,-4*K.1^-3,4*K.1^-1,-4*K.1^-2,4*K.1,-4*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,2*K.1^3,2*K.1^2,2*K.1^-2,2*K.1^2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1,2*K.1,-2*K.1^-2,2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1^-3,-2*K.1^-2,2*K.1^-2,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-3,-2*K.1^-1,2*K.1^-1,2*K.1^-3,-2*K.1^-1,-2*K.1^2,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1^-2,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-3,4*K.1^-2,-4*K.1^3,-4*K.1^-3,-4*K.1^-1,4*K.1,4*K.1^2,-4*K.1,4*K.1,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^-2,-4*K.1^-2,-4*K.1^-1,-4*K.1^3,-4*K.1^-3,-4*K.1^-2,-4*K.1,4*K.1^2,-4*K.1^3,4*K.1^-1,-4*K.1^-1,-4*K.1^3,-4*K.1^2,4*K.1^-1,-4*K.1^-3,4*K.1^3,-4*K.1^2,4*K.1,-4*K.1,-4*K.1,-4*K.1^2,-4*K.1^-2,4*K.1^-3,-4*K.1^2,4*K.1^3,-4*K.1^-1,4*K.1^-3,-4*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1^-3,2*K.1^-3,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^-3,-2*K.1^-3,2*K.1^2,-2*K.1^3,2*K.1^3,2*K.1^2,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1^2,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^3,4*K.1^2,-4*K.1^-3,-4*K.1^3,-4*K.1,4*K.1^-1,4*K.1^-2,-4*K.1^-1,4*K.1^-1,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^2,-4*K.1^2,-4*K.1,-4*K.1^-3,-4*K.1^3,-4*K.1^2,-4*K.1^-1,4*K.1^-2,-4*K.1^-3,4*K.1,-4*K.1,-4*K.1^-3,-4*K.1^-2,4*K.1,-4*K.1^3,4*K.1^-3,-4*K.1^-2,4*K.1^-1,-4*K.1^-1,-4*K.1^-1,-4*K.1^-2,-4*K.1^2,4*K.1^3,-4*K.1^-2,4*K.1^-3,-4*K.1,4*K.1^3,-4*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^3,-2*K.1^3,2*K.1^-2,-2*K.1^-3,2*K.1^-3,2*K.1^-2,-2*K.1^-3,-2*K.1^-1,2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1^-1,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^3,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1^3,4*K.1^-3,4*K.1,-4*K.1^-3,4*K.1^-3,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-1,-4*K.1^-1,-4*K.1^3,-4*K.1^-2,-4*K.1^2,-4*K.1^-1,-4*K.1^-3,4*K.1,-4*K.1^-2,4*K.1^3,-4*K.1^3,-4*K.1^-2,-4*K.1,4*K.1^3,-4*K.1^2,4*K.1^-2,-4*K.1,4*K.1^-3,-4*K.1^-3,-4*K.1^-3,-4*K.1,-4*K.1^-1,4*K.1^2,-4*K.1,4*K.1^-2,-4*K.1^3,4*K.1^2,-4*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-3,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^-3,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^3,2*K.1^-1,2*K.1^-3,-2*K.1^3,-2*K.1,2*K.1^2,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^-3,2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,-4,4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,-2,2,4*K.1,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^-3,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^-2,4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-3,4*K.1^3,4*K.1^-1,-4*K.1^3,4*K.1^3,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1,-4*K.1,-4*K.1^-3,-4*K.1^2,-4*K.1^-2,-4*K.1,-4*K.1^3,4*K.1^-1,-4*K.1^2,4*K.1^-3,-4*K.1^-3,-4*K.1^2,-4*K.1^-1,4*K.1^-3,-4*K.1^-2,4*K.1^2,-4*K.1^-1,4*K.1^3,-4*K.1^3,-4*K.1^3,-4*K.1^-1,-4*K.1,4*K.1^-2,-4*K.1^-1,4*K.1^2,-4*K.1^-3,4*K.1^-2,-4*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-3,2*K.1,2*K.1^3,-2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-1,-2*K.1^-3,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1^3,2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1^-3,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^2,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-1,4*K.1^-3,-4*K.1,-4*K.1^-1,-4*K.1^2,4*K.1^-2,4*K.1^3,-4*K.1^-2,-4*K.1^-2,-4*K.1^2,-4*K.1,-4*K.1^-1,-4*K.1^3,-4*K.1^-3,-4*K.1^-3,-4*K.1^-3,-4*K.1^2,-4*K.1,-4*K.1^-1,4*K.1^-3,-4*K.1^-2,-4*K.1^3,4*K.1,-4*K.1^2,4*K.1^2,4*K.1,-4*K.1^3,4*K.1^2,4*K.1^-1,-4*K.1,-4*K.1^3,-4*K.1^-2,4*K.1^-2,4*K.1^-2,4*K.1^3,-4*K.1^-3,-4*K.1^-1,4*K.1^3,4*K.1,4*K.1^2,4*K.1^-1,4*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,-2*K.1^2,2*K.1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^-2,-2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^3,2*K.1^2,2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,-2*K.1,-2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1^3,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-2,4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,4*K.1^3,-4*K.1^-1,-4*K.1,-4*K.1^-2,4*K.1^2,4*K.1^-3,-4*K.1^2,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,-4*K.1,-4*K.1^-3,-4*K.1^3,-4*K.1^3,-4*K.1^3,-4*K.1^-2,-4*K.1^-1,-4*K.1,4*K.1^3,-4*K.1^2,-4*K.1^-3,4*K.1^-1,-4*K.1^-2,4*K.1^-2,4*K.1^-1,-4*K.1^-3,4*K.1^-2,4*K.1,-4*K.1^-1,-4*K.1^-3,-4*K.1^2,4*K.1^2,4*K.1^2,4*K.1^-3,-4*K.1^3,-4*K.1,4*K.1^-3,4*K.1^-1,4*K.1^-2,4*K.1,4*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^2,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,-2*K.1^-2,2*K.1^-1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1,2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^2,-2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^-3,2*K.1^-2,2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^-1,2*K.1^-3,-2*K.1^-1,-2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1^-2,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-3,4*K.1^-2,-4*K.1^3,-4*K.1^-3,-4*K.1^-1,4*K.1,4*K.1^2,-4*K.1,-4*K.1,-4*K.1^-1,-4*K.1^3,-4*K.1^-3,-4*K.1^2,-4*K.1^-2,-4*K.1^-2,-4*K.1^-2,-4*K.1^-1,-4*K.1^3,-4*K.1^-3,4*K.1^-2,-4*K.1,-4*K.1^2,4*K.1^3,-4*K.1^-1,4*K.1^-1,4*K.1^3,-4*K.1^2,4*K.1^-1,4*K.1^-3,-4*K.1^3,-4*K.1^2,-4*K.1,4*K.1,4*K.1,4*K.1^2,-4*K.1^-2,-4*K.1^-3,4*K.1^2,4*K.1^3,4*K.1^-1,4*K.1^-3,4*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^-3,2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1^-3,2*K.1^2,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1^2,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1^2,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^3,4*K.1^2,-4*K.1^-3,-4*K.1^3,-4*K.1,4*K.1^-1,4*K.1^-2,-4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-3,-4*K.1^3,-4*K.1^-2,-4*K.1^2,-4*K.1^2,-4*K.1^2,-4*K.1,-4*K.1^-3,-4*K.1^3,4*K.1^2,-4*K.1^-1,-4*K.1^-2,4*K.1^-3,-4*K.1,4*K.1,4*K.1^-3,-4*K.1^-2,4*K.1,4*K.1^3,-4*K.1^-3,-4*K.1^-2,-4*K.1^-1,4*K.1^-1,4*K.1^-1,4*K.1^-2,-4*K.1^2,-4*K.1^3,4*K.1^-2,4*K.1^-3,4*K.1,4*K.1^3,4*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^3,2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1^3,2*K.1^-2,2*K.1,2*K.1,-2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-2,2*K.1^-3,-2*K.1^-3,2*K.1^-2,-2*K.1^-3,-2*K.1^-1,2*K.1^-3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1^-1,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^3,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1^3,4*K.1^-3,4*K.1,-4*K.1^-3,-4*K.1^-3,-4*K.1^3,-4*K.1^-2,-4*K.1^2,-4*K.1,-4*K.1^-1,-4*K.1^-1,-4*K.1^-1,-4*K.1^3,-4*K.1^-2,-4*K.1^2,4*K.1^-1,-4*K.1^-3,-4*K.1,4*K.1^-2,-4*K.1^3,4*K.1^3,4*K.1^-2,-4*K.1,4*K.1^3,4*K.1^2,-4*K.1^-2,-4*K.1,-4*K.1^-3,4*K.1^-3,4*K.1^-3,4*K.1,-4*K.1^-1,-4*K.1^2,4*K.1,4*K.1^-2,4*K.1^3,4*K.1^2,4*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,-2*K.1^3,2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^3,-2*K.1^-1,2*K.1^-3,-2*K.1^3,2*K.1,-2*K.1^2,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^-3,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,4,-4,-4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,2,2,2,4*K.1,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^-3,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-2,4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-3,4*K.1^3,4*K.1^-1,-4*K.1^3,-4*K.1^3,-4*K.1^-3,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,-4*K.1,-4*K.1,-4*K.1,-4*K.1^-3,-4*K.1^2,-4*K.1^-2,4*K.1,-4*K.1^3,-4*K.1^-1,4*K.1^2,-4*K.1^-3,4*K.1^-3,4*K.1^2,-4*K.1^-1,4*K.1^-3,4*K.1^-2,-4*K.1^2,-4*K.1^-1,-4*K.1^3,4*K.1^3,4*K.1^3,4*K.1^-1,-4*K.1,-4*K.1^-2,4*K.1^-1,4*K.1^2,4*K.1^-3,4*K.1^-2,4*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^3,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^3,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,-2*K.1^-3,2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-3,-2*K.1,2*K.1^3,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-3,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1^3,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1^-3,4*K.1^-2,4*K.1^-1,4*K.1,4*K.1^2,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-1,-4*K.1^-3,-4*K.1,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,-4*K.1^3,-4*K.1^-2,-4*K.1^-2,4*K.1^2,4*K.1,-4*K.1^-1,4*K.1^3,4*K.1^-3,-4*K.1^-3,4*K.1^-3,4*K.1^2,4*K.1,4*K.1^-1,-4*K.1^-3,4*K.1^-2,-4*K.1^3,-4*K.1,-4*K.1^2,-4*K.1^2,4*K.1,-4*K.1^3,-4*K.1^2,-4*K.1^-1,-4*K.1,4*K.1^3,4*K.1^-2,-4*K.1^-2,4*K.1^-2,4*K.1^3,-4*K.1^-3,4*K.1^-1,-4*K.1^3,-4*K.1,4*K.1^2,-4*K.1^-1,4*K.1^-3,-2*K.1^3,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-3,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-3,2*K.1^3,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^-3,2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^2,-2*K.1^3,-2*K.1^-1,2*K.1^3,-2*K.1^2,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1,2*K.1^-2,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1^3,4*K.1^2,4*K.1,4*K.1^-1,4*K.1^-2,4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,-4*K.1^3,-4*K.1^-1,-4*K.1,-4*K.1^-2,-4*K.1^2,-4*K.1^-3,-4*K.1^2,-4*K.1^2,4*K.1^-2,4*K.1^-1,-4*K.1,4*K.1^-3,4*K.1^3,-4*K.1^3,4*K.1^3,4*K.1^-2,4*K.1^-1,4*K.1,-4*K.1^3,4*K.1^2,-4*K.1^-3,-4*K.1^-1,-4*K.1^-2,-4*K.1^-2,4*K.1^-1,-4*K.1^-3,-4*K.1^-2,-4*K.1,-4*K.1^-1,4*K.1^-3,4*K.1^2,-4*K.1^2,4*K.1^2,4*K.1^-3,-4*K.1^3,4*K.1,-4*K.1^-3,-4*K.1^-1,4*K.1^-2,-4*K.1,4*K.1^3,-2*K.1^-3,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,-2*K.1^3,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1^3,2*K.1^-3,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^3,2*K.1,-2*K.1,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-2,-2*K.1^-3,-2*K.1,2*K.1^-3,-2*K.1^-2,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^-1,-2*K.1^-3,2*K.1^-1,2*K.1^2,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1^-2,4*K.1,4*K.1^-3,4*K.1^3,4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-3,-4*K.1^-2,-4*K.1^3,-4*K.1^-3,-4*K.1^-1,-4*K.1,-4*K.1^2,-4*K.1,-4*K.1,4*K.1^-1,4*K.1^3,-4*K.1^-3,4*K.1^2,4*K.1^-2,-4*K.1^-2,4*K.1^-2,4*K.1^-1,4*K.1^3,4*K.1^-3,-4*K.1^-2,4*K.1,-4*K.1^2,-4*K.1^3,-4*K.1^-1,-4*K.1^-1,4*K.1^3,-4*K.1^2,-4*K.1^-1,-4*K.1^-3,-4*K.1^3,4*K.1^2,4*K.1,-4*K.1,4*K.1,4*K.1^2,-4*K.1^-2,4*K.1^-3,-4*K.1^2,-4*K.1^3,4*K.1^-1,-4*K.1^-3,4*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^3,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^3,-2*K.1^-3,2*K.1^-2,2*K.1^-3,-2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1^-3,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-3,2*K.1^-3,-2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1^2,2*K.1^3,2*K.1,-2*K.1^3,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1^2,4*K.1^-1,4*K.1^3,4*K.1^-3,4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^3,-4*K.1^2,-4*K.1^-3,-4*K.1^3,-4*K.1,-4*K.1^-1,-4*K.1^-2,-4*K.1^-1,-4*K.1^-1,4*K.1,4*K.1^-3,-4*K.1^3,4*K.1^-2,4*K.1^2,-4*K.1^2,4*K.1^2,4*K.1,4*K.1^-3,4*K.1^3,-4*K.1^2,4*K.1^-1,-4*K.1^-2,-4*K.1^-3,-4*K.1,-4*K.1,4*K.1^-3,-4*K.1^-2,-4*K.1,-4*K.1^3,-4*K.1^-3,4*K.1^-2,4*K.1^-1,-4*K.1^-1,4*K.1^-1,4*K.1^-2,-4*K.1^2,4*K.1^3,-4*K.1^-2,-4*K.1^-3,4*K.1,-4*K.1^3,4*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-3,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-3,-2*K.1^3,2*K.1^2,2*K.1^3,-2*K.1^3,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^3,2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,2*K.1^3,2*K.1^3,-2*K.1^-2,2*K.1^-3,-2*K.1^-3,-2*K.1^-2,2*K.1^-3,2*K.1^-1,-2*K.1^-3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1^-1,4*K.1^-3,4*K.1^2,4*K.1^-2,4*K.1^3,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,-4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1^3,-4*K.1^-3,-4*K.1,-4*K.1^-3,-4*K.1^-3,4*K.1^3,4*K.1^-2,-4*K.1^2,4*K.1,4*K.1^-1,-4*K.1^-1,4*K.1^-1,4*K.1^3,4*K.1^-2,4*K.1^2,-4*K.1^-1,4*K.1^-3,-4*K.1,-4*K.1^-2,-4*K.1^3,-4*K.1^3,4*K.1^-2,-4*K.1,-4*K.1^3,-4*K.1^2,-4*K.1^-2,4*K.1,4*K.1^-3,-4*K.1^-3,4*K.1^-3,4*K.1,-4*K.1^-1,4*K.1^2,-4*K.1,-4*K.1^-2,4*K.1^3,-4*K.1^2,4*K.1^-1,-2*K.1,-2*K.1^3,-2*K.1^-1,-2*K.1^-3,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^3,-2*K.1^-3,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^3,2*K.1^-3,2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^-3,2*K.1^3,-2*K.1,-2*K.1^2,2*K.1,-2*K.1^3,2*K.1^3,2*K.1,2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-3,-2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,4,-4,-4,4,-4,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,-2,4*K.1,4*K.1^3,4*K.1^-2,4*K.1^2,4*K.1^-3,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-2,-4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-3,-4*K.1^3,-4*K.1^-1,-4*K.1^3,-4*K.1^3,4*K.1^-3,4*K.1^2,-4*K.1^-2,4*K.1^-1,4*K.1,-4*K.1,4*K.1,4*K.1^-3,4*K.1^2,4*K.1^-2,-4*K.1,4*K.1^3,-4*K.1^-1,-4*K.1^2,-4*K.1^-3,-4*K.1^-3,4*K.1^2,-4*K.1^-1,-4*K.1^-3,-4*K.1^-2,-4*K.1^2,4*K.1^-1,4*K.1^3,-4*K.1^3,4*K.1^3,4*K.1^-1,-4*K.1,4*K.1^-2,-4*K.1^-1,-4*K.1^2,4*K.1^-3,-4*K.1^-2,4*K.1,-2*K.1^-1,-2*K.1^-3,-2*K.1,-2*K.1^3,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-3,-2*K.1^3,-2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^-3,2*K.1^3,2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^3,2*K.1^-3,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^-3,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^3,-2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_600:= KnownIrreducibles(CR);