/* Group 1344.4135 downloaded from the LMFDB on 04 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -7, 8354, 4090, 66, 21763, 10891, 26572, 4660, 116, 31501, 11157, 141, 35854, 7190, 222, 36879]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "d4", "d12"]); GPerm := PermutationGroup< 26 | (2,3)(4,5)(6,7)(11,12,17,22)(13,14,23,25)(15,21,16,20)(18,26,24,19), (9,10)(11,13,16,19,17,23,15,26)(12,18,21,14,22,24,20,25), (11,14)(12,19)(13,20)(15,18)(16,24)(17,25)(21,23)(22,26), (11,15,17,16)(12,20,22,21)(13,19,23,26)(14,24,25,18), (11,16,17,15)(12,21,22,20)(13,19,23,26)(14,24,25,18), (11,17)(12,22)(13,23)(14,25)(15,16)(18,24)(19,26)(20,21), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_4135 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^42>,< 2, 2, c^2>,< 2, 4, a>,< 2, 84, a*b*d^36>,< 2, 84, b*d^44>,< 2, 84, a*b*c^2*d^77>,< 3, 2, d^56>,< 4, 2, d^63>,< 4, 2, c^2*d^21>,< 4, 4, a*d^21>,< 4, 12, c^3>,< 4, 12, c>,< 4, 56, a*b*c>,< 4, 84, b*c^2*d^45>,< 6, 2, d^14>,< 6, 4, c^2*d^28>,< 6, 8, a*d^28>,< 7, 2, d^48>,< 7, 2, d^12>,< 7, 2, d^60>,< 8, 24, a*c*d^63>,< 8, 56, b*c^3*d^75>,< 12, 4, d^7>,< 12, 4, c^2*d^7>,< 12, 8, a*d^7>,< 12, 56, a*b*c*d^70>,< 12, 56, a*b*c*d^56>,< 14, 2, d^6>,< 14, 2, d^18>,< 14, 2, d^30>,< 14, 4, c^2*d^24>,< 14, 4, c^2*d^72>,< 14, 4, c^2*d^36>,< 14, 8, a*d^12>,< 14, 8, a*d^36>,< 14, 8, a*d^60>,< 21, 4, d^8>,< 21, 4, d^16>,< 21, 4, d^32>,< 24, 56, b*c*d^82>,< 24, 56, b*c^3*d^5>,< 28, 2, d^45>,< 28, 2, d^51>,< 28, 2, d^57>,< 28, 2, d^69>,< 28, 2, d^75>,< 28, 2, d^81>,< 28, 4, c^2*d^3>,< 28, 4, c^2*d^9>,< 28, 4, c^2*d^15>,< 28, 8, a*d^3>,< 28, 8, a*d^9>,< 28, 8, a*d^15>,< 28, 12, c*d^12>,< 28, 12, c*d^26>,< 28, 12, c*d^6>,< 28, 12, c*d>,< 28, 12, c*d^4>,< 28, 12, c*d^3>,< 28, 12, c*d^24>,< 28, 12, c^3*d^4>,< 28, 12, c*d^50>,< 28, 12, c*d^8>,< 28, 12, c*d^72>,< 28, 12, c*d^2>,< 42, 4, d^2>,< 42, 4, d^10>,< 42, 4, d^22>,< 42, 8, c^2*d^4>,< 42, 8, c^2*d^8>,< 42, 8, c^2*d^2>,< 42, 8, a*d^4>,< 42, 8, a*d^20>,< 42, 8, a*d^2>,< 42, 8, a*d^10>,< 42, 8, a*d^16>,< 42, 8, a*d^8>,< 56, 24, a*c*d^12>,< 56, 24, a*c*d>,< 56, 24, a*c*d^4>,< 56, 24, a*c*d^24>,< 56, 24, a*c*d^8>,< 56, 24, a*c*d^2>,< 84, 4, d>,< 84, 4, d^5>,< 84, 4, d^73>,< 84, 4, d^13>,< 84, 4, d^37>,< 84, 4, d^25>,< 84, 8, c^2*d>,< 84, 8, c^2*d^5>,< 84, 8, c^2*d^25>,< 84, 8, a*d>,< 84, 8, a*d^5>,< 84, 8, a*c^2*d^4>,< 84, 8, a*d^13>,< 84, 8, a*d^25>,< 84, 8, a*d^61>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 0, -1, 2, 2, 2, 0, 0, 2, 0, -1, -1, -1, 2, 2, 2, 0, 2, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 2, -2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, 0, 0, -2, 2, 2, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 0, -2, 0, 2, 2, -2, 0, 0, 0, 0, 2, 2, -2, 0, 2, 2, 2, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 0, 2, 0, 2, 2, -2, 0, 0, 0, 0, -2, 2, -2, 0, 2, 2, 2, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, -2, -2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 2, -2, 2, 2, 2, 2, 0, 0, -2, 2, -2, 0, 0, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -2, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 0, -2, -2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, 2, 0, -2, 2, -2, -2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 0, -2, -2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, 0, 0, -1, 2, 2, -2, 0, 0, -2, 0, -1, -1, 1, 2, 2, 2, 0, 2, -1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 2, -2, -2, -2, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, 0, 0, -1, 2, 2, -2, 0, 0, 2, 0, -1, -1, 1, 2, 2, 2, 0, -2, -1, -1, 1, -1, -1, 2, 2, 2, 2, 2, 2, -2, -2, -2, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 0, -1, 2, 2, 2, 0, 0, -2, 0, -1, -1, -1, 2, 2, 2, 0, -2, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2,2,2,0,0,0,0,-1,1,1,2,2,2,0,0,1,-1,-1,-1-2*K.1,1+2*K.1,2,2,2,-2,-2,-2,-2,-2,-2,-1,-1,-1,1+2*K.1,-1-2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2,2,2,0,0,0,0,-1,1,1,2,2,2,0,0,1,-1,-1,1+2*K.1,-1-2*K.1,2,2,2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1-2*K.1,1+2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,0,0,0,-1,-2,2,-2,0,0,0,0,-1,1,-1,2,2,2,0,0,1,-1,1,-1-2*K.1,1+2*K.1,2,2,2,-2,-2,-2,2,2,2,-1,-1,-1,-1-2*K.1,1+2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,0,0,0,-1,-2,2,-2,0,0,0,0,-1,1,-1,2,2,2,0,0,1,-1,1,1+2*K.1,-1-2*K.1,2,2,2,-2,-2,-2,2,2,2,-1,-1,-1,1+2*K.1,-1-2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,1,1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,0,0,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,0,2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,0,0,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,0,2,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,0,0,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,0,2,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,-2,-2,0,0,2,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,0,2,2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,-2,-2,0,0,2,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,0,2,2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,-2,-2,0,0,2,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,0,2,2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,2,2,0,0,2,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,0,2,2,-2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,2,2,0,0,2,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,0,2,2,-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,0,0,2,2,2,-2,2,2,0,0,2,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,0,2,2,-2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,-2,-2,0,0,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,0,2,2,2,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,-2,-2,0,0,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,0,2,2,2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,-2,-2,0,0,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,0,2,2,2,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,2,2,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,2,2,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,2,2,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,2,2,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2,2,2,0,0,0,0,2,-2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,2,-2,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,2,-2,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,2,-2,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,0,0,0,2,-2,2,-2,0,0,0,0,2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,2,-2,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, 0, 0, 0, 0, -2, 4, -4, 0, 0, 0, 0, 0, -2, 2, 0, 4, 4, 4, 0, 0, -2, 2, 0, 0, 0, 4, 4, 4, -4, -4, -4, 0, 0, 0, -2, -2, -2, 0, 0, 4, 4, 4, 4, 4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 0, 0, 0, 0, -2, -4, -4, 0, 0, 0, 0, 0, -2, -2, 0, 4, 4, 4, 0, 0, 2, 2, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, -2, -2, -2, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1,2*K.1,0,0,-4,0,0,4,4,4,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1,-2*K.1,0,0,-4,0,0,4,4,4,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,0,0,0,0,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,0,0,0,0,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,0,0,0,0,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,0,0,0,4,4,-4,0,0,0,0,0,4,-4,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,4,-4,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,0,0,0,4,4,-4,0,0,0,0,0,4,-4,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,4,-4,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,0,0,0,4,4,-4,0,0,0,0,0,4,-4,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,4,-4,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,0,0,0,4,-4,-4,0,0,0,0,0,4,4,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-4,-4,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,0,0,0,4,-4,-4,0,0,0,0,0,4,4,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-4,-4,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,0,0,0,4,-4,-4,0,0,0,0,0,4,4,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-4,-4,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,-2,4,4,-4,0,0,0,0,-2,-2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,-2,4,4,-4,0,0,0,0,-2,-2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-2,-2,2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-4,0,0,0,-2,4,4,-4,0,0,0,0,-2,-2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-2,-2,2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4,4,4,0,0,0,0,-2,2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4,4,4,0,0,0,0,-2,2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4,4,4,0,0,0,0,-2,2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,-2,-4,4,-4,0,0,0,0,-2,2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,-2,-4,4,-4,0,0,0,0,-2,2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,2,-2,2,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,0,0,0,-2,-4,4,-4,0,0,0,0,-2,2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,2,-2,2,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,-2,2,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,-2,2,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,-2,2,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,-2,2,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,-2,2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,-4,0,0,0,0,-2,4,-4,0,0,0,0,0,-2,2,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,-2,2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,2,2,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,2,2,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,2,2,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^3-K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,2,2,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3-K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,2,2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,0,0,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^9-K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,4,0,0,0,0,-2,-4,-4,0,0,0,0,0,-2,-2,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,2,2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,0,0,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^9-K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,K.1^3+K.1^4+K.1^10+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^3-K.1^4-K.1^10-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,K.1^3-K.1^4-K.1^10+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^4-K.1^10+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3-K.1^4-K.1^10-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3+K.1^4+K.1^10+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^4+K.1^10-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^4-K.1^10+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1*K.1^3-K.1^4-K.1^10-K.1^11,K.1^3+K.1^4+K.1^10+K.1^11,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,K.1^3-K.1^5-K.1^6+K.1^7-K.1^8-K.1^9+K.1^11,-1*K.1^3+K.1^4+K.1^10-K.1^11,1-2*K.1^2+K.1^4+K.1^5-K.1^6+K.1^8+K.1^9-K.1^10,-1*K.1^3+K.1^5-K.1^6-K.1^7-K.1^8+K.1^9-K.1^11,K.1^3-K.1^5+K.1^6+K.1^7+K.1^8-K.1^9+K.1^11,-1+2*K.1^2-K.1^4-K.1^5+K.1^6-K.1^8-K.1^9+K.1^10,-1*K.1^3+K.1^5+K.1^6-K.1^7+K.1^8+K.1^9-K.1^11,K.1^3-K.1^4-K.1^10+K.1^11,1-2*K.1^2+K.1^4-K.1^5-K.1^6+K.1^8-K.1^9-K.1^10,-1+2*K.1^2-K.1^4+K.1^5+K.1^6-K.1^8+K.1^9+K.1^10,K.1^3+K.1^4+K.1^10+K.1^11,-1*K.1^3-K.1^4-K.1^10-K.1^11,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, -8, -8, -8, 0, 0, 0, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,-4*K.1^2-4*K.1^-2,4*K.1^4+4*K.1^-4,-4*K.1^6-4*K.1^-6,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^6+4*K.1^-6,-4*K.1^4-4*K.1^-4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,-4*K.1-4*K.1^-1,4*K.1^3+4*K.1^-3,4*K.1^5+4*K.1^-5,-4*K.1^5-4*K.1^-5,-4*K.1^3-4*K.1^-3,4*K.1+4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,-4*K.1^2-4*K.1^-2,4*K.1^4+4*K.1^-4,-4*K.1^6-4*K.1^-6,0,0,0,0,0,0,0,4*K.1^2+4*K.1^-2,4*K.1^6+4*K.1^-6,-4*K.1^4-4*K.1^-4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,4*K.1+4*K.1^-1,-4*K.1^3-4*K.1^-3,-4*K.1^5-4*K.1^-5,4*K.1^5+4*K.1^-5,4*K.1^3+4*K.1^-3,-4*K.1-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,-4*K.1^6-4*K.1^-6,-4*K.1^2-4*K.1^-2,4*K.1^4+4*K.1^-4,0,0,0,0,0,0,0,4*K.1^6+4*K.1^-6,-4*K.1^4-4*K.1^-4,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,-4*K.1^3-4*K.1^-3,-4*K.1^5-4*K.1^-5,-4*K.1-4*K.1^-1,4*K.1+4*K.1^-1,4*K.1^5+4*K.1^-5,4*K.1^3+4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,-4*K.1^6-4*K.1^-6,-4*K.1^2-4*K.1^-2,4*K.1^4+4*K.1^-4,0,0,0,0,0,0,0,4*K.1^6+4*K.1^-6,-4*K.1^4-4*K.1^-4,4*K.1^2+4*K.1^-2,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,4*K.1^3+4*K.1^-3,4*K.1^5+4*K.1^-5,4*K.1+4*K.1^-1,-4*K.1-4*K.1^-1,-4*K.1^5-4*K.1^-5,-4*K.1^3-4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,4*K.1^4+4*K.1^-4,-4*K.1^6-4*K.1^-6,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,-4*K.1^4-4*K.1^-4,4*K.1^2+4*K.1^-2,4*K.1^6+4*K.1^-6,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,-4*K.1^5-4*K.1^-5,-4*K.1-4*K.1^-1,4*K.1^3+4*K.1^-3,-4*K.1^3-4*K.1^-3,4*K.1+4*K.1^-1,4*K.1^5+4*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |8,-8,0,0,0,0,0,-4,0,0,0,0,0,0,0,4,0,0,4*K.1^4+4*K.1^-4,-4*K.1^6-4*K.1^-6,-4*K.1^2-4*K.1^-2,0,0,0,0,0,0,0,-4*K.1^4-4*K.1^-4,4*K.1^2+4*K.1^-2,4*K.1^6+4*K.1^-6,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,4*K.1^5+4*K.1^-5,4*K.1+4*K.1^-1,-4*K.1^3-4*K.1^-3,4*K.1^3+4*K.1^-3,-4*K.1-4*K.1^-1,-4*K.1^5-4*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_4135:= KnownIrreducibles(CR);