/* Group 1344.3515 downloaded from the LMFDB on 26 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, 2, 2, -3, -7, 64, 97, 41, 290, 66, 21125, 22669, 141, 46598, 14350, 222, 73735]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.5, GPC.6]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "d", "d2", "d6"]); GPerm := PermutationGroup< 30 | (2,3)(4,5)(6,7)(11,12,16,19)(13,20,23,26)(14,18,15,24)(17,21,25,22)(28,30), (9,10)(11,13,15,22,16,23,14,21)(12,17,18,20,19,25,24,26)(28,30), (11,14,16,15)(12,18,19,24)(13,21,23,22)(17,20,25,26)(27,28)(29,30), (27,29)(28,30), (11,15,16,14)(12,18,19,24)(13,22,23,21)(17,20,25,26), (11,16)(12,19)(13,23)(14,15)(17,25)(18,24)(20,26)(21,22), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_3515 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c>,< 2, 1, b^4*c>,< 2, 1, b^4>,< 2, 4, d^21>,< 2, 84, a*b^5*d^26>,< 2, 84, a*b^7*c*d^40>,< 3, 2, d^28>,< 4, 2, b^6>,< 4, 2, b^6*c>,< 4, 2, b^2*d^21>,< 4, 2, b^6*d^21>,< 4, 56, a*b^4*d^30>,< 4, 56, a*d^15>,< 4, 84, a*b^5*d^25>,< 4, 84, a*b^5*c*d^25>,< 6, 2, c*d^14>,< 6, 2, b^4*c*d^14>,< 6, 2, b^4*d^28>,< 6, 4, d^7>,< 6, 4, d^35>,< 7, 2, d^12>,< 7, 2, d^24>,< 7, 2, d^36>,< 8, 12, b^7>,< 8, 12, b>,< 8, 12, b^7*c*d^7>,< 8, 12, b^5*d^7>,< 12, 4, b^6*d^14>,< 12, 4, b^6*c*d^14>,< 12, 4, b^6*d^7>,< 12, 4, b^2*d^35>,< 12, 56, a*d^2>,< 12, 56, a*b^4*d^16>,< 12, 56, a*c*d>,< 12, 56, a*d^29>,< 14, 2, c*d^6>,< 14, 2, c*d^18>,< 14, 2, c*d^30>,< 14, 2, b^4*c*d^6>,< 14, 2, b^4*c*d^18>,< 14, 2, b^4*c*d^30>,< 14, 2, b^4*d^24>,< 14, 2, b^4*d^30>,< 14, 2, b^4*d^36>,< 14, 4, d^3>,< 14, 4, d^39>,< 14, 4, d^9>,< 14, 4, d^33>,< 14, 4, d^15>,< 14, 4, d^27>,< 21, 4, d^4>,< 21, 4, d^8>,< 21, 4, d^16>,< 28, 2, b^2*d^12>,< 28, 2, b^6*d^36>,< 28, 2, b^2*d^18>,< 28, 2, b^2*d^24>,< 28, 2, b^6*d^6>,< 28, 2, b^2*d^30>,< 28, 2, b^2*c*d^30>,< 28, 2, b^6*c*d^6>,< 28, 2, b^2*c*d^24>,< 28, 2, b^2*c*d^18>,< 28, 2, b^6*c*d^36>,< 28, 2, b^2*c*d^12>,< 28, 4, b^6*d^3>,< 28, 4, b^2*d^39>,< 28, 4, b^2*d^9>,< 28, 4, b^6*d^33>,< 28, 4, b^6*d^15>,< 28, 4, b^2*d^27>,< 42, 4, c*d^2>,< 42, 4, c*d^4>,< 42, 4, c*d^8>,< 42, 4, b^4*c*d^2>,< 42, 4, b^4*c*d^4>,< 42, 4, b^4*c*d^8>,< 42, 4, b^4*d^4>,< 42, 4, b^4*d^20>,< 42, 4, b^4*d^2>,< 42, 4, d>,< 42, 4, b^4*d>,< 42, 4, d^5>,< 42, 4, d^37>,< 42, 4, d^11>,< 42, 4, d^31>,< 42, 4, d^13>,< 42, 4, c*d>,< 42, 4, d^17>,< 42, 4, d^25>,< 42, 4, d^19>,< 42, 4, b^4*d^19>,< 56, 12, b*d^6>,< 56, 12, b^5*d^6>,< 56, 12, b*d^24>,< 56, 12, b^5*d^24>,< 56, 12, b^5*d^2>,< 56, 12, b*d^2>,< 56, 12, b*d^12>,< 56, 12, b^5*d^12>,< 56, 12, b*d^4>,< 56, 12, b^5*d^4>,< 56, 12, b^5*d^36>,< 56, 12, b*d^36>,< 56, 12, b*d>,< 56, 12, b^3*d^3>,< 56, 12, b^5*d^5>,< 56, 12, b*d^37>,< 56, 12, b^5*d^3>,< 56, 12, b^3*d>,< 56, 12, b*d^13>,< 56, 12, b*d^3>,< 56, 12, b^3*d^5>,< 56, 12, b*d^5>,< 56, 12, b*d^25>,< 56, 12, b^5*d>,< 84, 4, b^2*d^2>,< 84, 4, b^2*d^10>,< 84, 4, b^2*d^20>,< 84, 4, b^6*d^2>,< 84, 4, b^2*d^4>,< 84, 4, b^2*d^8>,< 84, 4, b^2*c*d^2>,< 84, 4, b^2*c*d^10>,< 84, 4, b^2*c*d^20>,< 84, 4, b^6*c*d^2>,< 84, 4, b^2*c*d^4>,< 84, 4, b^2*c*d^8>,< 84, 4, b^2*d>,< 84, 4, b^6*d>,< 84, 4, b^2*d^5>,< 84, 4, b^6*d^5>,< 84, 4, b^6*d^31>,< 84, 4, b^2*d^31>,< 84, 4, b^2*c*d>,< 84, 4, b^6*c*d>,< 84, 4, b^2*d^25>,< 84, 4, b^6*d^25>,< 84, 4, b^6*d^19>,< 84, 4, b^2*d^19>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, -2, 2, 2, 0, 2, 0, -2, 0, 0, 0, 0, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 2, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, -2, 2, 0, -2, -2, 2, 2, 2, 0, 0, 2, 0, 0, 0, -2, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 2, 0, -2, 0, 2, 0, 0, -2, 2, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 2, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 2, -2, 0, 2, 2, -2, -2, -2, 0, 0, -2, 0, 0, 0, 2, 0, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 2, 0, -2, 0, 2, 0, 0, 2, -2, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 2, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 2, -2, 0, 2, 2, -2, -2, -2, 0, 0, -2, 0, 0, 0, 2, 0, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 2, -2, 2, 0, 2, 0, -2, 0, 0, 0, 0, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 2, -2, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, -2, 2, 0, -2, -2, 2, 2, 2, 0, 0, 2, 0, 0, 0, -2, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, 2, 2, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 2, -2, 2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, 2, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, -1, -2, 2, -2, 2, -2, 2, 0, 0, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, -1, 1, -1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, -1, -2, 2, -2, 2, 2, -2, 0, 0, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, -1, 1, -1, 1, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, -2, -2, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,-2,0,0,-1,2,-2,2,-2,0,0,0,0,-1,-1,-1,1,1,2,2,2,0,0,0,0,1,-1,1,-1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,-2,0,0,-1,2,-2,2,-2,0,0,0,0,-1,-1,-1,1,1,2,2,2,0,0,0,0,1,-1,1,-1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,2,2,2,0,0,0,0,1,1,1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,-1,2,2,2,0,0,0,0,1,1,1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,2,-2,2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,2,-2,2,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,-2,2,-2,2,-2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,-2,2,-2,2,0,0,0,0,2,2,2,-2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,-2,2,-2,2,-2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,2,2,2,2,0,0,0,0,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^2,0,2*K.1^2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^-1,K.1+K.1^3,0,-2*K.1^2,0,2*K.1^2,0,0,0,0,2,-2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2,0,0,0,2,-2,-2,-2,2,0,0,0,-2,0,0,0,0,0,-2,0,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,-2*K.1^2,0,0,0,0,0,2*K.1^2,-2*K.1^2,0,2*K.1^2,2*K.1^2,-2*K.1^2,0,2*K.1^2,0,-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^2,0,-2*K.1^2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^3,0,2*K.1^2,0,-2*K.1^2,0,0,0,0,2,-2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2,0,0,0,2,-2,-2,-2,2,0,0,0,-2,0,0,0,0,0,-2,0,-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,2*K.1^2,0,0,0,0,0,-2*K.1^2,2*K.1^2,0,-2*K.1^2,-2*K.1^2,2*K.1^2,0,-2*K.1^2,0,2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^2,0,2*K.1^2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^3,0,-2*K.1^2,0,2*K.1^2,0,0,0,0,2,-2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2,0,0,0,2,-2,-2,-2,2,0,0,0,-2,0,0,0,0,0,-2,0,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,-2*K.1^2,0,0,0,0,0,2*K.1^2,-2*K.1^2,0,2*K.1^2,2*K.1^2,-2*K.1^2,0,2*K.1^2,0,-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^2,0,-2*K.1^2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^3,0,2*K.1^2,0,-2*K.1^2,0,0,0,0,2,-2,-2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2,0,0,0,2,-2,-2,-2,2,0,0,0,-2,0,0,0,0,0,-2,0,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,2*K.1^2,0,0,0,0,0,-2*K.1^2,2*K.1^2,0,-2*K.1^2,-2*K.1^2,2*K.1^2,0,-2*K.1^2,0,2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-2,2,-2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-2,2,-2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-2,2,-2,2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-2,2,-2,2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-2,2,-2,2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,-2,0,0,2,2,-2,2,-2,0,0,0,0,2,2,2,-2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-2,2,-2,2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,2,0,0,2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^4+K.1^-4,K.1^8+K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^9+K.1^-9,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^5+K.1^23,K.1^11+K.1^-11,-1*K.1^3-K.1^-3,-1*K.1^13-K.1^-13,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,K.1^5+K.1^-5,K.1^13+K.1^-13,K.1^10+K.1^-10,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^4+K.1^-4,-1*K.1^8-K.1^20,K.1^12+K.1^16,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,K.1^9+K.1^-9,-1*K.1^11-K.1^-11,K.1^5+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^23,K.1^11+K.1^-11,-1*K.1^3-K.1^-3,-1*K.1^13-K.1^-13,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,K.1^5+K.1^-5,K.1^13+K.1^-13,K.1^10+K.1^-10,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^22,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^4+K.1^-4,-1*K.1^8-K.1^20,K.1^12+K.1^16,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^9+K.1^19,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1^9-K.1^19,K.1^3+K.1^-3,-1*K.1^11-K.1^-11,K.1+K.1^-1,K.1^9+K.1^-9,K.1^11+K.1^-11,-1*K.1^13-K.1^-13,K.1^13+K.1^-13,K.1^5+K.1^-5,-1*K.1^9-K.1^-9,-1*K.1-K.1^-1,-1*K.1^10-K.1^-10,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^22,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^4+K.1^-4,K.1^8+K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^19,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1^9+K.1^19,K.1^3+K.1^-3,-1*K.1^11-K.1^-11,K.1+K.1^-1,K.1^9+K.1^-9,K.1^11+K.1^-11,-1*K.1^13-K.1^-13,K.1^13+K.1^-13,K.1^5+K.1^-5,-1*K.1^9-K.1^-9,-1*K.1-K.1^-1,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^4+K.1^-4,K.1^8+K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,-1*K.1^9-K.1^-9,K.1^11+K.1^-11,K.1^5+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^23,-1*K.1^11-K.1^-11,K.1^3+K.1^-3,K.1^13+K.1^-13,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^9+K.1^-9,-1*K.1^5-K.1^-5,-1*K.1^13-K.1^-13,K.1^10+K.1^-10,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^4+K.1^-4,-1*K.1^8-K.1^20,K.1^12+K.1^16,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^9-K.1^-9,K.1^11+K.1^-11,-1*K.1^5-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^5+K.1^23,-1*K.1^11-K.1^-11,K.1^3+K.1^-3,K.1^13+K.1^-13,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^9+K.1^-9,-1*K.1^5-K.1^-5,-1*K.1^13-K.1^-13,K.1^10+K.1^-10,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^22,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^4+K.1^-4,-1*K.1^8-K.1^20,K.1^12+K.1^16,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^9-K.1^19,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1^9+K.1^19,-1*K.1^3-K.1^-3,K.1^11+K.1^-11,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,-1*K.1^11-K.1^-11,K.1^13+K.1^-13,-1*K.1^13-K.1^-13,-1*K.1^5-K.1^-5,K.1^9+K.1^-9,K.1+K.1^-1,-1*K.1^10-K.1^-10,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^22,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^20,K.1^8+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^4+K.1^-4,K.1^8+K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^9+K.1^19,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1^9-K.1^19,-1*K.1^3-K.1^-3,K.1^11+K.1^-11,-1*K.1-K.1^-1,-1*K.1^9-K.1^-9,-1*K.1^11-K.1^-11,K.1^13+K.1^-13,-1*K.1^13-K.1^-13,-1*K.1^5-K.1^-5,K.1^9+K.1^-9,K.1+K.1^-1,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,K.1^12+K.1^-12,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^13-K.1^15,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^5-K.1^23,K.1^5+K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,K.1^13+K.1^15,K.1^5+K.1^-5,K.1^9+K.1^-9,-1*K.1^11-K.1^-11,-1*K.1^13-K.1^-13,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^13+K.1^-13,K.1^11+K.1^-11,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^18,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^-12,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^8+K.1^20,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^-8,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^13+K.1^15,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^5+K.1^23,-1*K.1^5-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,-1*K.1^13-K.1^15,K.1^5+K.1^-5,K.1^9+K.1^-9,-1*K.1^11-K.1^-11,-1*K.1^13-K.1^-13,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^13+K.1^-13,K.1^11+K.1^-11,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^-12,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^8+K.1^20,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1*K.1^13-K.1^-13,K.1^9+K.1^-9,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1^9+K.1^19,-1*K.1^9-K.1^19,-1*K.1^13-K.1^15,K.1^13+K.1^15,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^11+K.1^17,-1*K.1^11-K.1^17,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,-1*K.1^9-K.1^-9,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,K.1^11+K.1^-11,K.1^13+K.1^-13,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,K.1^12+K.1^-12,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,-1*K.1^13-K.1^-13,K.1^9+K.1^-9,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1^9-K.1^19,K.1^9+K.1^19,K.1^13+K.1^15,-1*K.1^13-K.1^15,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^11-K.1^17,K.1^11+K.1^17,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^9-K.1^-9,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,K.1^11+K.1^-11,K.1^13+K.1^-13,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,K.1^12+K.1^-12,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^13+K.1^15,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^5+K.1^23,-1*K.1^5-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,K.1^11+K.1^17,-1*K.1^11-K.1^17,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,-1*K.1^13-K.1^15,-1*K.1^5-K.1^-5,-1*K.1^9-K.1^-9,K.1^11+K.1^-11,K.1^13+K.1^-13,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^13-K.1^-13,-1*K.1^11-K.1^-11,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^18,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^-12,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^8+K.1^20,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^-8,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^13-K.1^15,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^5-K.1^23,K.1^5+K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,-1*K.1^11-K.1^17,K.1^11+K.1^17,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,K.1^13+K.1^15,-1*K.1^5-K.1^-5,-1*K.1^9-K.1^-9,K.1^11+K.1^-11,K.1^13+K.1^-13,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^13-K.1^-13,-1*K.1^11-K.1^-11,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^-12,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^8+K.1^20,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^12+K.1^16,-1*K.1^8-K.1^-8,K.1^13+K.1^-13,-1*K.1^9-K.1^-9,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1^9-K.1^19,K.1^9+K.1^19,K.1^13+K.1^15,-1*K.1^13-K.1^15,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^11-K.1^17,K.1^11+K.1^17,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,K.1^9+K.1^-9,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,-1*K.1^11-K.1^-11,-1*K.1^13-K.1^-13,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^16,K.1^12+K.1^-12,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^12-K.1^16,-1*K.1^8-K.1^-8,K.1^13+K.1^-13,-1*K.1^9-K.1^-9,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1^9+K.1^19,-1*K.1^9-K.1^19,-1*K.1^13-K.1^15,K.1^13+K.1^15,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^11+K.1^17,-1*K.1^11-K.1^17,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^9+K.1^-9,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,-1*K.1^11-K.1^-11,-1*K.1^13-K.1^-13,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^11-K.1^-11,K.1+K.1^-1,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^11+K.1^17,-1*K.1^11-K.1^17,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^5-K.1^23,K.1^5+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1-K.1^-1,-1*K.1^13-K.1^-13,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^13+K.1^-13,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^11+K.1^-11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^22,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^8+K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^-8,K.1^12+K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^8-K.1^20,K.1^4+K.1^-4,-1*K.1^11-K.1^-11,K.1+K.1^-1,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^11-K.1^17,K.1^11+K.1^17,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^5+K.1^23,-1*K.1^5-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,-1*K.1-K.1^-1,-1*K.1^13-K.1^-13,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^13+K.1^-13,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^11+K.1^-11,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,K.1^7+K.1^-7,K.1^7+K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^-8,K.1^12+K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^8-K.1^20,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^13-K.1^-13,K.1^11+K.1^17,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1^9+K.1^19,-1*K.1^9-K.1^19,-1*K.1^11-K.1^17,K.1^13+K.1^-13,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,-1*K.1-K.1^-1,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^11+K.1^-11,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^7-K.1^-7,K.1^7+K.1^21,K.1^7+K.1^-7,-1*K.1^7-K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^8+K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^8+K.1^20,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^13-K.1^-13,-1*K.1^11-K.1^17,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1^9-K.1^19,K.1^9+K.1^19,K.1^11+K.1^17,K.1^13+K.1^-13,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,-1*K.1-K.1^-1,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^11+K.1^-11,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^8+K.1^20,K.1^4+K.1^-4,K.1^11+K.1^-11,-1*K.1-K.1^-1,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^11-K.1^17,K.1^11+K.1^17,K.1^9+K.1^19,-1*K.1^9-K.1^19,K.1^5+K.1^23,-1*K.1^5-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1+K.1^-1,K.1^13+K.1^-13,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^13-K.1^-13,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^22,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^8+K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^-8,K.1^12+K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^11+K.1^-11,-1*K.1-K.1^-1,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^11+K.1^17,-1*K.1^11-K.1^17,-1*K.1^9-K.1^19,K.1^9+K.1^19,-1*K.1^5-K.1^23,K.1^5+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,K.1+K.1^-1,K.1^13+K.1^-13,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^13-K.1^-13,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^10+K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^-10,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,-2*K.1^14,0,2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^7+K.1^-7,K.1^7+K.1^21,-1*K.1^7-K.1^-7,-1*K.1^7-K.1^21,0,-2*K.1^14,0,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^-8,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^8+K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1*K.1^8-K.1^-8,K.1^12+K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^12+K.1^-12,-1*K.1^8-K.1^20,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^13+K.1^-13,-1*K.1^11-K.1^17,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1^13+K.1^15,-1*K.1^13-K.1^15,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,-1*K.1^5-K.1^23,K.1^5+K.1^23,-1*K.1^9-K.1^19,K.1^9+K.1^19,K.1^11+K.1^17,-1*K.1^13-K.1^-13,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^11+K.1^-11,K.1+K.1^-1,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^2-K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^-10,-1*K.1^10-K.1^18,K.1^2+K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,2,2*K.1^14,0,-2*K.1^14,0,0,0,0,0,-2,-2,2,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^7+K.1^-7,-1*K.1^7-K.1^21,-1*K.1^7-K.1^-7,K.1^7+K.1^21,0,2*K.1^14,0,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^12-K.1^16,K.1^12+K.1^16,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^8+K.1^-8,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^16,-1*K.1^8-K.1^20,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12+K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^16,-1*K.1^12-K.1^16,-1*K.1^8-K.1^20,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^12+K.1^-12,K.1^8+K.1^20,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^13+K.1^-13,K.1^11+K.1^17,-1*K.1+K.1^3-K.1^7+K.1^11-K.1^15+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11+K.1^15-K.1^19+K.1^23,-1*K.1^13-K.1^15,K.1^13+K.1^15,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^13-K.1^17+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^13+K.1^17-K.1^21,K.1^5+K.1^23,-1*K.1^5-K.1^23,K.1^9+K.1^19,-1*K.1^9-K.1^19,-1*K.1^11-K.1^17,-1*K.1^13-K.1^-13,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^11+K.1^-11,K.1+K.1^-1,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^2-K.1^-2,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^-10,K.1^10+K.1^18,K.1^2+K.1^-2,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, -2, 0, -4, 0, 4, 0, 0, 0, 0, 2, -2, 2, 0, 0, 4, 4, 4, 0, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, -4, 4, -4, -4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 4, -4, -4, 4, 4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, -2, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, -2, 2, 0, -2, -2, 2, 2, 2, 0, 0, 2, 0, 0, 0, -2, 0, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, -2, 0, 4, 0, -4, 0, 0, 0, 0, 2, -2, 2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, -4, 4, -4, -4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -4, 4, 4, -4, -4, -4, 4, 4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, -2, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 2, -2, 0, 2, 2, -2, -2, -2, 0, 0, -2, 0, 0, 0, 2, 0, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -4, 4, -4, 4, -4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1,0,4*K.1,0,0,0,0,0,2,2,-2,0,0,4,4,4,0,0,0,0,0,2*K.1,0,-2*K.1,0,0,0,0,4,-4,-4,-4,4,-4,-4,-4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1,4*K.1,4*K.1,4*K.1,-4*K.1,-4*K.1,-2,0,0,0,-2,2,2,2,-2,0,0,0,2,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,2*K.1,0,0,0,0,0,-2*K.1,2*K.1,0,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,0,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1,0,-4*K.1,0,0,0,0,0,2,2,-2,0,0,4,4,4,0,0,0,0,0,-2*K.1,0,2*K.1,0,0,0,0,4,-4,-4,-4,4,-4,-4,-4,4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,-4*K.1,-4*K.1,-4*K.1,4*K.1,4*K.1,-2,0,0,0,-2,2,2,2,-2,0,0,0,2,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,-2*K.1,0,0,0,0,0,2*K.1,-2*K.1,0,2*K.1,2*K.1,-2*K.1,0,2*K.1,0,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2-4*K.1,2+4*K.1,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,-4,4,-4,-4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2+4*K.1,2+4*K.1,-2-4*K.1,2,-2,2,-2,2,-2-4*K.1,2+4*K.1,2+4*K.1,2,-2-4*K.1,2+4*K.1,-2-4*K.1,2+4*K.1,-2-4*K.1,-2,-2-4*K.1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2+4*K.1,-2-4*K.1,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,-4,4,-4,-4,-4,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2-4*K.1,-2-4*K.1,2+4*K.1,2,-2,2,-2,2,2+4*K.1,-2-4*K.1,-2-4*K.1,2,2+4*K.1,-2-4*K.1,2+4*K.1,-2-4*K.1,2+4*K.1,-2,2+4*K.1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,4,4,4,4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,4,4,4,4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,4,4,4,4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,-4,0,4,0,0,0,0,-4,4,-4,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,4,0,-4,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,-2*K.1-2*K.1^-1,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,-2*K.1-2*K.1^-1,0,0,0,2*K.1^2+2*K.1^-2,0,2*K.1+2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,-4,0,4,0,0,0,0,-4,4,-4,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,4,0,-4,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1+2*K.1^-1,0,2*K.1^3+2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,-4,0,4,0,0,0,0,-4,4,-4,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,4,0,-4,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1^3+2*K.1^-3,0,2*K.1^2+2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,4,0,-4,0,0,0,0,-4,4,-4,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-4,0,4,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,-2*K.1-2*K.1^-1,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,2*K.1+2*K.1^-1,0,0,0,-2*K.1^2-2*K.1^-2,0,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,4,0,-4,0,0,0,0,-4,4,-4,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-4,0,4,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,2*K.1^3+2*K.1^-3,0,0,0,-2*K.1-2*K.1^-1,0,-2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,4,0,4,0,-4,0,0,0,0,-4,4,-4,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-4,0,4,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,2*K.1^2+2*K.1^-2,0,0,0,-2*K.1^3-2*K.1^-3,0,-2*K.1^2-2*K.1^-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,-4,4,-4,4,0,0,0,0,-2,-2,-2,2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,-4,4,-4,4,0,0,0,0,-2,-2,-2,2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,-4,4,-4,4,0,0,0,0,-2,-2,-2,2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,4,-4,4,-4,0,0,0,0,-2,-2,-2,2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,4,-4,4,-4,0,0,0,0,-2,-2,-2,2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,0,0,-2,4,-4,4,-4,0,0,0,0,-2,-2,-2,2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,2,2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,2,2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,4,0,0,-2,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,2,2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^9-K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^6-K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^6-K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^3-K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,-4,0,4,0,0,0,0,2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,-2,0,2,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3-K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^9-K.1^-9,K.1^3-K.1^4+2*K.1^10+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^6-K.1^-6,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^6-K.1^-6,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,K.1^3+K.1^-3,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^3-K.1^-3,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^6-K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,K.1^9+K.1^-9,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,0,4,0,-4,0,0,0,0,2,-2,2,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,2,0,-2,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,K.1^3+K.1^-3,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^3-K.1^-3,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,K.1^3-K.1^4+2*K.1^10+K.1^-10,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^3-K.1^4+2*K.1^10+K.1^-10,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10,K.1^3-K.1^4+2*K.1^10+K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,-1*K.1^6-K.1^-6,-2-K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+3*K.1^8-2*K.1^10+2*K.1^-10,1-K.1+2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8+2*K.1^9-K.1^-10,-1*K.1^3+K.1^4-2*K.1^10-K.1^-10,K.1^9+K.1^-9,-1+K.1-2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8-2*K.1^9+K.1^-10,K.1^6+K.1^-6,2+K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-3*K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,2*K.1^4+2*K.1^-4,0,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,0,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1+2*K.1^-1,0,-2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,2*K.1^4+2*K.1^-4,0,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,0,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,2*K.1^3+2*K.1^-3,0,0,0,-2*K.1-2*K.1^-1,0,2*K.1^3+2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^6+2*K.1^-6,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,2*K.1^5+2*K.1^-5,0,0,0,2*K.1^3+2*K.1^-3,0,2*K.1^5+2*K.1^-5,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^6+2*K.1^-6,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,-2*K.1^5-2*K.1^-5,0,0,0,-2*K.1^3-2*K.1^-3,0,-2*K.1^5-2*K.1^-5,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,-2*K.1^4-2*K.1^-4,0,0,0,0,0,-2*K.1^6-2*K.1^-6,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,0,0,2*K.1+2*K.1^-1,0,0,0,2*K.1^5+2*K.1^-5,0,2*K.1+2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,0,0,0,0,0,0,0,0,4,-4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,-2*K.1^4-2*K.1^-4,0,0,0,0,0,-2*K.1^6-2*K.1^-6,0,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,0,0,0,-2*K.1^5-2*K.1^-5,0,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^8,2*K.1^4+2*K.1^10,-2*K.1^4-2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2*K.1^6+2*K.1^8,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,K.1^2+K.1^-2,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^11,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1+K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^8,-2*K.1^4-2*K.1^10,2*K.1^4+2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2*K.1^6-2*K.1^8,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,K.1^2+K.1^-2,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^2-K.1^-2,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^11,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^-3,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^8,-2*K.1^4-2*K.1^10,2*K.1^4+2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2*K.1^6-2*K.1^8,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,K.1^2+K.1^-2,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^2-K.1^-2,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^11,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^-3,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^8,2*K.1^4+2*K.1^10,-2*K.1^4-2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2*K.1^6+2*K.1^8,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,K.1^2+K.1^-2,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^11,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,-2*K.1^6-2*K.1^8,2*K.1^4+2*K.1^10,2*K.1^6+2*K.1^8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,K.1^6+K.1^8,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^9,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^-5,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1^3-K.1^11,K.1^5+K.1^-5,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,2*K.1^6+2*K.1^8,-2*K.1^4-2*K.1^10,-2*K.1^6-2*K.1^8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,K.1^6+K.1^-6,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^8,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^9,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^-3,K.1^3+K.1^11,K.1^5+K.1^-5,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,2*K.1^6+2*K.1^8,-2*K.1^4-2*K.1^10,-2*K.1^6-2*K.1^8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,K.1^6+K.1^-6,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^8,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^9,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^-5,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^11,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,-2*K.1^6-2*K.1^8,2*K.1^4+2*K.1^10,2*K.1^6+2*K.1^8,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,K.1^6+K.1^-6,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,K.1^6+K.1^8,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^9,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^-5,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1^3+K.1^11,-1*K.1^5-K.1^-5,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2*K.1^6-2*K.1^8,2*K.1^6+2*K.1^8,2*K.1^4+2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,-2*K.1^4-2*K.1^10,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^4+K.1^-4,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^-5,K.1^5+K.1^9,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2*K.1^6+2*K.1^8,-2*K.1^6-2*K.1^8,-2*K.1^4-2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,2*K.1^4+2*K.1^10,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,K.1^4+K.1^10,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^-5,-1*K.1^5-K.1^9,K.1+K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^7,0,4*K.1^7,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,2*K.1^7,0,-2*K.1^7,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,2*K.1^6+2*K.1^8,-2*K.1^6-2*K.1^8,-2*K.1^4-2*K.1^10,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,2*K.1^4+2*K.1^10,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,K.1^4+K.1^10,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1+K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^-5,K.1^5+K.1^9,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^7,0,-4*K.1^7,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,-2*K.1^7,0,2*K.1^7,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6+2*K.1^8-2*K.1^10,-2*K.1^6-2*K.1^8,2*K.1^6+2*K.1^8,2*K.1^4+2*K.1^10,-2+4*K.1^2-2*K.1^4+2*K.1^6-2*K.1^8+2*K.1^10,-2*K.1^4-2*K.1^10,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^4+K.1^-4,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^11,K.1^5+K.1^9,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^9,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6-K.1^-6,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^15-K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^3+K.1^-3,K.1^15+K.1^-15,-1*K.1^3-K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,K.1^15+K.1^-15,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^9+K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3-K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^9+K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,-1*K.1^6-K.1^-6,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^6-K.1^-6,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^12-K.1^-12,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^15-K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^3+K.1^-3,K.1^15+K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,K.1^15+K.1^-15,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^9+K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3-K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^9+K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6-K.1^-6,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^15+K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,K.1^3+K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^15+K.1^-15,K.1^9+K.1^-9,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^9-K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^3+K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^9-K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^6-K.1^-6,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1*K.1^6-K.1^-6,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^12-K.1^-12,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^15+K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,K.1^3+K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^15+K.1^-15,K.1^9+K.1^-9,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^9-K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^3+K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^9-K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,-1*K.1^18-K.1^-18,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^18-K.1^-18,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6+K.1^-6,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^3+K.1^-3,K.1^15+K.1^-15,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^15+K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^15-K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^9-K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^15-K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^18-K.1^-18,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6+K.1^-6,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^3+K.1^-3,K.1^15+K.1^-15,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^15+K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^15-K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^9-K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^15-K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-1*K.1^18-K.1^-18,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^18-K.1^-18,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6+K.1^-6,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^15+K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^9+K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^15+K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1*K.1^18-K.1^-18,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^6+K.1^-6,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3-K.1^-3,-1*K.1^15-K.1^-15,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^15+K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^9+K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^15+K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^15-2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^12+K.1^-12,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^18+K.1^-18,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^15+K.1^-15,K.1^9+K.1^-9,-1*K.1^15-K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^15+K.1^-15,K.1^3+K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3-K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^15-K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3-K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^15-2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^12+K.1^-12,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^18+K.1^-18,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9-K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^15+K.1^-15,K.1^9+K.1^-9,-1*K.1^15-K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^15+K.1^-15,K.1^3+K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^3-K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^15-K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^3-K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,2-4*K.1^14,-2+4*K.1^14,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^15+2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^6-K.1^8-2*K.1^20-K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,K.1^12+K.1^-12,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^18+K.1^-18,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,K.1^15+K.1^-15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^3+K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^15+K.1^-15,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^3+K.1^-3,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,0,0,0,0,0,0,0,0,-2,2,2,-2+4*K.1^14,2-4*K.1^14,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^15+2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^15-2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,1+K.1^2-2*K.1^4-K.1^6-K.1^8+2*K.1^10+K.1^12-K.1^16+K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^12+K.1^-12,-1-K.1^2+2*K.1^4+K.1^6+K.1^8-2*K.1^10-K.1^12+K.1^16-K.1^22,-1*K.1^6+K.1^8+2*K.1^20+K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,-2-K.1^2+2*K.1^4+2*K.1^6-2*K.1^10-K.1^12+2*K.1^14+K.1^16-2*K.1^20-2*K.1^22,K.1^6-K.1^8-2*K.1^20-K.1^22,K.1^18+K.1^-18,2+K.1^2-2*K.1^4-2*K.1^6+2*K.1^10+K.1^12-2*K.1^14-K.1^16+2*K.1^20+2*K.1^22,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^-9,K.1^15+K.1^-15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^15-K.1^-15,-1*K.1^3-K.1^-3,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^3+K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^15+K.1^-15,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^3+K.1^-3,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_3515:= KnownIrreducibles(CR);