/* Group 1344.2770 downloaded from the LMFDB on 17 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, 2, -2, -2, -3, -7, 14083, 9163, 91, 35204, 22732, 116, 19973, 22285, 141, 46598, 14350, 222, 73735]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.4]); AssignNames(~GPC, ["a", "b", "c", "d", "d2", "d4", "d8", "d24"]); GPerm := PermutationGroup< 22 | (2,3)(4,5)(6,7)(11,12)(13,17)(15,18)(21,22), (9,10)(13,18)(14,16)(15,17)(19,20)(21,22), (11,13,16,17,12,15,14,18)(19,21,20,22), (11,14,12,16)(13,18,15,17), (11,14,12,16)(13,18,15,17)(19,20)(21,22), (11,12)(13,15)(14,16)(17,18), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_2770 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c>,< 2, 1, c*d^84>,< 2, 1, d^84>,< 2, 12, b>,< 2, 12, b*d^98>,< 2, 28, a*d^54>,< 2, 28, a*c*d^156>,< 2, 42, a*b*d^88>,< 2, 42, a*b*d^4>,< 2, 56, a*d^111>,< 3, 2, d^112>,< 4, 2, c*d^42>,< 4, 2, d^42>,< 4, 24, b*c*d^49>,< 4, 84, a*b*d^18>,< 6, 2, c*d^56>,< 6, 2, c*d^28>,< 6, 2, d^28>,< 6, 56, a*d^110>,< 6, 56, a*c*d^100>,< 6, 56, a*d^167>,< 6, 56, a*d^55>,< 7, 2, d^48>,< 7, 2, d^96>,< 7, 2, d^144>,< 8, 4, d^21>,< 8, 4, d^63>,< 8, 84, a*b*d^63>,< 8, 84, a*b*c*d^21>,< 12, 4, c*d^14>,< 12, 4, d^14>,< 14, 2, c*d^72>,< 14, 2, c*d^48>,< 14, 2, c*d^24>,< 14, 2, c*d^12>,< 14, 2, c*d^36>,< 14, 2, c*d^60>,< 14, 2, d^12>,< 14, 2, d^36>,< 14, 2, d^60>,< 14, 24, b*d^24>,< 14, 24, b*d^16>,< 14, 24, b*d^8>,< 14, 24, b*d^2>,< 14, 24, b*d^6>,< 14, 24, b*d^10>,< 21, 4, d^16>,< 21, 4, d^32>,< 21, 4, d^64>,< 24, 4, d^7>,< 24, 4, d^161>,< 24, 4, d^35>,< 24, 4, d^133>,< 28, 4, c*d^6>,< 28, 4, c*d^18>,< 28, 4, c*d^30>,< 28, 4, d^6>,< 28, 4, d^18>,< 28, 4, d^30>,< 28, 24, b*d>,< 28, 24, b*d^25>,< 28, 24, b*d^5>,< 28, 24, b*d^9>,< 28, 24, b*d^17>,< 28, 24, b*c*d>,< 42, 4, c*d^8>,< 42, 4, c*d^16>,< 42, 4, c*d^32>,< 42, 4, c*d^4>,< 42, 4, c*d^20>,< 42, 4, c*d^100>,< 42, 4, d^4>,< 42, 4, d^20>,< 42, 4, d^44>,< 56, 4, d^3>,< 56, 4, d^9>,< 56, 4, d^15>,< 56, 4, d^27>,< 56, 4, d^33>,< 56, 4, d^39>,< 56, 4, d^45>,< 56, 4, d^51>,< 56, 4, d^57>,< 56, 4, d^69>,< 56, 4, d^75>,< 56, 4, d^81>,< 84, 4, c*d^2>,< 84, 4, c*d^26>,< 84, 4, c*d^10>,< 84, 4, c*d^122>,< 84, 4, c*d^50>,< 84, 4, c*d^146>,< 84, 4, d^2>,< 84, 4, d^166>,< 84, 4, d^10>,< 84, 4, d^158>,< 84, 4, d^22>,< 84, 4, d^146>,< 168, 4, d>,< 168, 4, c*d^97>,< 168, 4, d^5>,< 168, 4, d^61>,< 168, 4, d^11>,< 168, 4, c*d^53>,< 168, 4, d^13>,< 168, 4, d^125>,< 168, 4, d^17>,< 168, 4, d^73>,< 168, 4, c*d^5>,< 168, 4, d^149>,< 168, 4, d^89>,< 168, 4, d^145>,< 168, 4, d^25>,< 168, 4, c*d^73>,< 168, 4, d^29>,< 168, 4, d^85>,< 168, 4, c*d>,< 168, 4, d^97>,< 168, 4, d^65>,< 168, 4, d^121>,< 168, 4, d^53>,< 168, 4, c*d^11>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, -1, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, -2, 2, 0, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, 2, 0, -2, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 2, -2, 0, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, -2, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 0, 0, -2, -2, 0, 2, -2, -2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, -2, -2, 0, -2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, 0, 0, -2, -1, 2, 2, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -2, -2, 0, 0, 2, -1, 2, 2, 0, 0, -1, -1, -1, 1, -1, 1, -1, 2, 2, 2, -2, -2, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 0, 0, -2, -1, 2, 2, 0, 0, -1, -1, -1, -1, 1, -1, 1, 2, 2, 2, -2, -2, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,0,2,0,0,0,0,-2,-2,2,0,0,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,-2,2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,0,2,0,0,0,0,-2,-2,2,0,0,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,-2,2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2,0,2,0,0,0,0,-2,-2,2,0,0,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,-2,2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2,0,2,0,0,0,0,-2,-2,2,0,0,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,-2,2,-2,-2,2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,0,-1,-2,2,0,0,1,-1,1,-1,-1-2*K.1,1,1+2*K.1,2,2,2,0,0,0,0,1,-1,-2,2,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,-1,-1,-1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-2,2,2,-2,-2,2,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,2,0,0,0,-1,-2,2,0,0,1,-1,1,-1,1+2*K.1,1,-1-2*K.1,2,2,2,0,0,0,0,1,-1,-2,2,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,-1,-1,-1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-2,2,2,-2,-2,2,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,0,-1,-2,2,0,0,1,-1,1,1,-1-2*K.1,-1,1+2*K.1,2,2,2,0,0,0,0,1,-1,-2,2,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,-1,-1,-1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-2,2,2,-2,-2,2,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2,0,0,0,-1,-2,2,0,0,1,-1,1,1,1+2*K.1,-1,-1-2*K.1,2,2,2,0,0,0,0,1,-1,-2,2,2,-2,-2,-2,2,-2,-2,0,0,0,0,0,0,-1,-1,-1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-2,2,2,-2,-2,2,0,0,0,0,0,0,1,1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,0,0,0,2,2,2,2,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,0,0,0,2,2,2,-2,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,2,-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,2,-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,2,-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,2,-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,2,-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,2,-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,2,-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,2,-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,2,-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,2,-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,2,-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,0,0,0,2,2,-2,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,2,-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, -4, -4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -4, -4, -4, 4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, -4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, -2, 4, -4, 0, 0, 2, -2, 2, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, -2, 2, -4, 4, 4, -4, -4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, -2, -4, -4, 0, 0, -2, -2, -2, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,4,4,4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,4,-4,-4,-4,4,4,-4,-4,-4,0,0,0,0,0,0,-2,-2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,2,-2,2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,4,4,4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,4,-4,-4,-4,4,4,-4,-4,-4,0,0,0,0,0,0,-2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,2,2,-2,2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,4,4,4,0,0,0,0,0,0,-4,-4,-4,4,-4,-4,-4,4,4,0,0,0,0,0,0,-2,-2,-2,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,4,4,4,0,0,0,0,0,0,-4,-4,-4,4,-4,-4,-4,4,4,0,0,0,0,0,0,-2,-2,-2,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,-1*K.1+K.1^3-K.1^5-2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7,K.1-K.1^3+K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,0,0,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,0,0,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,0,0,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,4,-4,4,0,0,-4,4,-4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-4,4,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,4,-4,4,0,0,-4,4,-4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-4,4,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,4,-4,4,0,0,-4,4,-4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-4,4,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,4,-4,-4,0,0,4,4,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-4,-4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,4,-4,-4,0,0,4,4,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-4,-4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,4,-4,-4,0,0,4,4,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-4,-4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,0,0,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2,2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,0,0,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2,2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,4,4,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,0,0,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,4,0,0,0,0,-4,-4,4,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,4,0,0,0,0,4,-4,-4,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1^5+K.1^9-K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9-K.1^11-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9-K.1^19-K.1^23,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11+K.1^13-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9+K.1^11+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9+K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11-K.1^13+2*K.1^15-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,2,-2,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-2-4*K.1^7,2+4*K.1^7,2+4*K.1^7,-2-4*K.1^7,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,2,-2,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,2+4*K.1^7,-2-4*K.1^7,-2-4*K.1^7,2+4*K.1^7,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,2,-2,-2*K.1^6-2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-2-4*K.1^7,2+4*K.1^7,2+4*K.1^7,-2-4*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,2,-2,-2*K.1^6-2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,2+4*K.1^7,-2-4*K.1^7,-2-4*K.1^7,2+4*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9+K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,2,-2,-2*K.1^3-2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2-4*K.1^7,2+4*K.1^7,2+4*K.1^7,-2-4*K.1^7,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,-4,4,0,0,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,2,-2,-2*K.1^3-2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2+4*K.1^7,-2-4*K.1^7,-2-4*K.1^7,2+4*K.1^7,-2*K.1^9-2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^6-2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,-2+K.1+2*K.1^2-2*K.1^3+2*K.1^5-K.1^6-2*K.1^7+K.1^8-2*K.1^10+2*K.1^-10,1-K.1-2*K.1^2+K.1^3-K.1^4-2*K.1^5+K.1^6-K.1^8-K.1^-10,K.1^3+K.1^4+2*K.1^10-K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10,-1+K.1+2*K.1^2-K.1^3+K.1^4+2*K.1^5-K.1^6+K.1^8+K.1^-10,2-K.1-2*K.1^2+2*K.1^3-2*K.1^5+K.1^6+2*K.1^7-K.1^8+2*K.1^10-2*K.1^-10,-1*K.1^3-K.1^4-2*K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,-2,2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,-2,2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,-2,2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,-2,2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,-2,2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,-2,4,-4,0,0,2,-2,2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,-2,2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,2,2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,2,2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,2,2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,2,2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,2,2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,0,0,0,-2,-4,-4,0,0,-2,-2,-2,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,2,2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,-2*K.1^36-2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,-2*K.1^36-2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,-2*K.1^36-2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,-2*K.1^36-2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,2*K.1^24+2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1^5+K.1^19-K.1^23+K.1^37,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,2*K.1^24+2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,2*K.1^24+2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^24+K.1^-24,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,-2,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,2*K.1^24+2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^24+K.1^-24,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,K.1^5-K.1^19-K.1^23-K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^5-K.1^19-K.1^23-K.1^37,K.1^5-K.1^19-K.1^23-K.1^37,K.1^11-K.1^17+K.1^25+K.1^31,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^24+K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^11-K.1^17+K.1^25+K.1^31,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^24+K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^5-K.1^19-K.1^23-K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^24+K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1^11-K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^24+K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,K.1^11-K.1^17+K.1^25+K.1^31,K.1^11-K.1^17+K.1^25+K.1^31,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^11+K.1^17-K.1^25-K.1^31,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,K.1^11-K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^5-K.1^19-K.1^23-K.1^37,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^11-K.1^17+K.1^25+K.1^31,K.1^5-K.1^19-K.1^23-K.1^37,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,K.1^5-K.1^19-K.1^23-K.1^37,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,0,0,0,-2,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33+K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33-K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15+2*K.1^19-K.1^27-K.1^33+K.1^35+K.1^39-2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,-1*K.1-K.1^13-K.1^15-K.1^27+K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41+2*K.1^45,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1+K.1^13+K.1^15+K.1^27-K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15-2*K.1^19+K.1^27+K.1^33-K.1^35-K.1^39+2*K.1^47,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1+K.1^3+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-2*K.1^45,K.1^11-K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35+K.1^37-K.1^39+2*K.1^47,-1*K.1^3+K.1^11+K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-K.1^47,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1-K.1^3-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+2*K.1^45,K.1^3-K.1^11-K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+K.1^47,K.1^5-K.1^19-K.1^23-K.1^37,-1*K.1-K.1^3+K.1^11-K.1^23-K.1^27+K.1^31+K.1^35+K.1^41-K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^5+K.1^19+K.1^23+K.1^37,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35-K.1^37+K.1^39-2*K.1^47,K.1+K.1^3-K.1^11+K.1^23+K.1^27-K.1^31-K.1^35-K.1^41+K.1^47,K.1^11-K.1^17+K.1^25+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_2770:= KnownIrreducibles(CR);