/* Group 1344.2752 downloaded from the LMFDB on 23 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -3, -2, -2, -2, -7, 5376, 11105, 41, 16610, 66, 22019, 2715, 26412, 116, 31117, 141, 34958, 166, 36879]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4", "c8"]); GPerm := PermutationGroup< 42 | (2,3)(4,5)(6,7)(11,12,16,20,17,21,15,31)(13,22,24,35,25,34,32,18)(14,26,29,37,30,40,28,19)(23,33,39,38,27,36,41,42), (9,10)(11,13,17,25)(12,18,21,35)(14,27,30,23)(15,24,16,32)(19,36,37,33)(20,34,31,22)(26,38,40,42)(28,41,29,39), (11,14,15,28,17,30,16,29)(12,19,20,26,21,37,31,40)(13,23,24,39,25,27,32,41)(18,33,34,42,35,36,22,38), (11,15,17,16)(12,20,21,31)(13,24,25,32)(14,28,30,29)(18,34,35,22)(19,26,37,40)(23,39,27,41)(33,42,36,38), (11,16,17,15)(12,20,21,31)(13,24,25,32)(14,29,30,28)(18,22,35,34)(19,26,37,40)(23,39,27,41)(33,38,36,42), (11,17)(12,21)(13,25)(14,30)(15,16)(18,35)(19,37)(20,31)(22,34)(23,27)(24,32)(26,40)(28,29)(33,36)(38,42)(39,41), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_2752 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^28>,< 2, 2, b^6*c^14>,< 2, 12, a*c^42>,< 3, 2, b^4*c^28>,< 4, 2, c^42>,< 4, 2, b^6*c^28>,< 4, 12, a*c^28>,< 4, 168, a*b^5*c^53>,< 4, 168, a*b*c^12>,< 6, 2, b^4>,< 6, 4, b^2*c^42>,< 7, 2, c^32>,< 7, 2, c^8>,< 7, 2, c^40>,< 8, 2, c^49>,< 8, 2, c^35>,< 8, 4, b^6*c^49>,< 8, 12, a*c^35>,< 8, 12, a*c^49>,< 8, 56, b^3*c^33>,< 8, 56, b^9*c^40>,< 12, 2, b^2*c^28>,< 12, 2, b^10*c^28>,< 12, 4, b^8*c^14>,< 14, 2, c^44>,< 14, 2, c^20>,< 14, 2, c^52>,< 14, 4, b^6*c^6>,< 14, 4, b^6*c^46>,< 14, 4, b^6*c^30>,< 14, 12, a*c^2>,< 14, 12, a*b^2*c^2>,< 14, 12, a*c^6>,< 14, 12, a*c^50>,< 14, 12, a*c^10>,< 14, 12, a*c^18>,< 21, 4, b^4*c^4>,< 21, 4, b^8*c^8>,< 21, 4, b^4*c^44>,< 24, 4, b^4*c^7>,< 24, 4, b^8*c^7>,< 24, 4, b^2*c^35>,< 24, 4, b^2*c^49>,< 24, 56, b^5*c^5>,< 24, 56, b*c^5>,< 24, 56, b^11*c^40>,< 24, 56, b^7*c^40>,< 28, 2, c^30>,< 28, 2, c^34>,< 28, 2, c^38>,< 28, 2, c^46>,< 28, 2, c^50>,< 28, 2, c^54>,< 28, 4, b^6*c^24>,< 28, 4, b^6*c^44>,< 28, 4, b^6*c^8>,< 28, 12, a*c^8>,< 28, 12, a*c^48>,< 28, 12, a*c^24>,< 28, 12, a*c^4>,< 28, 12, a*c^40>,< 28, 12, a*c^16>,< 42, 4, b^4*c^16>,< 42, 4, b^8*c^52>,< 42, 4, b^8*c^36>,< 42, 4, b^2*c^2>,< 42, 4, b^2*c^18>,< 42, 4, b^2*c^34>,< 42, 4, b^10*c^2>,< 42, 4, b^2*c^6>,< 42, 4, b^2*c^10>,< 56, 2, c^31>,< 56, 2, c^37>,< 56, 2, c^43>,< 56, 2, c^55>,< 56, 2, c^5>,< 56, 2, c^11>,< 56, 2, c^17>,< 56, 2, c^23>,< 56, 2, c^29>,< 56, 2, c^41>,< 56, 2, c^47>,< 56, 2, c^53>,< 56, 4, b^6*c^3>,< 56, 4, b^6*c^37>,< 56, 4, b^6*c^15>,< 56, 4, b^6*c^27>,< 56, 4, b^6*c^5>,< 56, 4, b^6*c^39>,< 56, 12, a*c>,< 56, 12, a*b^2*c>,< 56, 12, a*c^3>,< 56, 12, a*c^25>,< 56, 12, a*c^5>,< 56, 12, a*b^2*c^5>,< 56, 12, a*c^9>,< 56, 12, a*b^2*c^9>,< 56, 12, a*c^11>,< 56, 12, a*c^17>,< 56, 12, a*c^41>,< 56, 12, a*c^43>,< 84, 4, b^2*c^8>,< 84, 4, b^2*c^12>,< 84, 4, b^2*c^24>,< 84, 4, b^2*c^4>,< 84, 4, b^2*c^16>,< 84, 4, b^2*c^20>,< 84, 4, b^8*c^2>,< 84, 4, b^4*c^38>,< 84, 4, b^4*c^50>,< 84, 4, b^8*c^26>,< 84, 4, b^8*c^38>,< 84, 4, b^8*c^50>,< 168, 4, b^4*c>,< 168, 4, b^4*c^5>,< 168, 4, b^8*c^17>,< 168, 4, b^8*c^41>,< 168, 4, b^4*c^17>,< 168, 4, b^8*c^9>,< 168, 4, b^8*c^5>,< 168, 4, b^8*c^3>,< 168, 4, b^8*c>,< 168, 4, b^4*c^41>,< 168, 4, b^4*c^9>,< 168, 4, b^4*c^3>,< 168, 4, b^2*c>,< 168, 4, b^2*c^33>,< 168, 4, b^2*c^11>,< 168, 4, b^2*c^13>,< 168, 4, b^2*c^9>,< 168, 4, b^2*c^25>,< 168, 4, b^2*c^3>,< 168, 4, b^2*c^19>,< 168, 4, b^2*c^41>,< 168, 4, b^10*c>,< 168, 4, b^2*c^5>,< 168, 4, b^2*c^17>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -1, 2, 2, 0, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 2, 2, 0, 0, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 2, 2, -2, 0, 0, 0, 2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, -2, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, 2, 2, -2, 0, 0, 0, 2, -2, 2, 2, 2, 2, 2, -2, 0, 0, 0, 0, -2, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -1, 2, 2, 0, 0, 0, -1, -1, 2, 2, 2, -2, -2, -2, 0, 0, -2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -1, 2, 2, 0, 0, 0, -1, -1, 2, 2, 2, -2, -2, -2, 0, 0, 2, -2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, -1, 2, 2, 0, 0, 0, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,2,2,2,0,0,0,-2*K.1,2*K.1,0,0,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,2,2,2,0,0,0,2*K.1,-2*K.1,0,0,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,0,-1,2,-2,0,0,0,-1,1,2,2,2,-2,-2,2,0,0,0,0,1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,0,-1,2,-2,0,0,0,-1,1,2,2,2,-2,-2,2,0,0,0,0,1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,0,-1,2,-2,0,0,0,-1,1,2,2,2,2,2,-2,0,0,0,0,1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,-1,-1,-1,-1,-1,1,1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,0,-1,2,-2,0,0,0,-1,1,2,2,2,2,2,-2,0,0,0,0,1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,-1,-1,-1,-1,-1,1,1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,2,2,2,2,-2,-2,-2,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,0,0,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,0,0,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,0,0,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,2,2,0,0,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,2,2,0,0,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,2,2,0,0,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,-2,-2,0,0,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,-2,-2,0,0,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,2,2,2,-2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,-2,-2,0,0,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,0,0,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,0,0,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,0,0,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,2,0,0,0,0,-2,-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,2,0,0,0,0,-2,-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,2,0,0,0,0,-2,-2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,2,0,0,0,0,-2,-2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,2,0,0,0,0,-2,-2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,2,0,0,0,0,-2,-2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,0,0,0,0,-2,-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,0,0,0,0,-2,-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,-2,0,0,0,0,-2,-2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,-2,0,0,0,0,-2,-2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,-2,0,0,0,0,-2,-2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,2,2,-2,0,0,0,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,-2,0,0,0,0,-2,-2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,2,2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,2,2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,2,2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,2,2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,2,2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,2,0,0,2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,2,2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,2,2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,2,2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,2,2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,2,2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,2,2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,2,-2,2,-2,0,0,2,-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,2,2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,-2*K.1^7,2*K.1^7,0,0,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,0,2,-2,-2,0,0,0,2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,2*K.1^7,-2*K.1^7,0,0,-2,-2,-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, -4, 0, -2, -4, 4, 0, 0, 0, -2, 2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 4, 4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 0, -2, -4, -4, 0, 0, 0, -2, -2, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,4,4,4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,4,4,4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,0,-2*K.1-2*K.1^-1,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,4,4,4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,4,4,4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,-4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,0,2*K.1+2*K.1^-1,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,2*K.1+2*K.1^-1,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,-2*K.1-2*K.1^-1,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,4,0,0,0,0,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,4,0,0,0,0,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,4,0,0,0,0,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,-4,0,0,0,0,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,-4,0,0,0,0,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,0,-2,4,4,0,0,0,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,-4,0,0,0,0,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,4,0,0,0,0,2,2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,4,0,0,0,0,2,2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,4,0,0,0,0,2,2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,-4,0,0,0,0,2,2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,-4,0,0,0,0,2,2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,0,-2,4,-4,0,0,0,-2,2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,-4,0,0,0,0,2,2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,4,4,4,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,4,4,4,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,4,4,4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,4,4,4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,-4,-4,-4,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7,-1*K.1-K.1^3-K.1^5+2*K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^3+K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,-2,-2,2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,-2,-2,2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,-2,-2,2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,-2,-2,2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2,-2,2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,0,-2,-4,4,0,0,0,-2,2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,-2,-2,2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2,2,2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,2,2,2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2,2,2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,2,2,2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,2,2,2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,0,-2,-4,-4,0,0,0,-2,-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,2,2,2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^11+2*K.1^-11,-2*K.1^11-2*K.1^-11,-2*K.1^13-2*K.1^-13,2*K.1^13+2*K.1^-13,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,0,-2*K.1^10-2*K.1^-10,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,2*K.1^6+2*K.1^-6,0,2*K.1^2+2*K.1^-2,0,2*K.1^13+2*K.1^-13,0,2*K.1^11+2*K.1^-11,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^9+2*K.1^-9,0,0,-2*K.1-2*K.1^-1,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1^11-2*K.1^-11,0,0,-2*K.1^13-2*K.1^-13,0,0,-2*K.1^9-2*K.1^-9,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1^11-2*K.1^-11,2*K.1^5+2*K.1^-5,-2*K.1^13-2*K.1^-13,2*K.1^9+2*K.1^-9,2*K.1^11+2*K.1^-11,-2*K.1^9-2*K.1^-9,2*K.1^13+2*K.1^-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,0,2*K.1^10+2*K.1^-10,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,-2*K.1^6-2*K.1^-6,0,-2*K.1^2-2*K.1^-2,0,-2*K.1-2*K.1^-1,0,2*K.1^3+2*K.1^-3,0,-2*K.1^11-2*K.1^-11,-2*K.1^13-2*K.1^-13,-2*K.1^5-2*K.1^-5,0,0,2*K.1^13+2*K.1^-13,0,0,0,2*K.1^11+2*K.1^-11,-2*K.1^3-2*K.1^-3,0,0,2*K.1+2*K.1^-1,0,0,2*K.1^5+2*K.1^-5,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^11-2*K.1^-11,2*K.1^11+2*K.1^-11,2*K.1^13+2*K.1^-13,-2*K.1^13-2*K.1^-13,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,0,-2*K.1^10-2*K.1^-10,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,2*K.1^6+2*K.1^-6,0,2*K.1^2+2*K.1^-2,0,-2*K.1^13-2*K.1^-13,0,-2*K.1^11-2*K.1^-11,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^9-2*K.1^-9,0,0,2*K.1+2*K.1^-1,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1^11+2*K.1^-11,0,0,2*K.1^13+2*K.1^-13,0,0,2*K.1^9+2*K.1^-9,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1^11+2*K.1^-11,-2*K.1^5-2*K.1^-5,2*K.1^13+2*K.1^-13,-2*K.1^9-2*K.1^-9,-2*K.1^11-2*K.1^-11,2*K.1^9+2*K.1^-9,-2*K.1^13-2*K.1^-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,0,2*K.1^10+2*K.1^-10,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,-2*K.1^6-2*K.1^-6,0,-2*K.1^2-2*K.1^-2,0,2*K.1+2*K.1^-1,0,-2*K.1^3-2*K.1^-3,0,2*K.1^11+2*K.1^-11,2*K.1^13+2*K.1^-13,2*K.1^5+2*K.1^-5,0,0,-2*K.1^13-2*K.1^-13,0,0,0,-2*K.1^11-2*K.1^-11,2*K.1^3+2*K.1^-3,0,0,-2*K.1-2*K.1^-1,0,0,-2*K.1^5-2*K.1^-5,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^13-2*K.1^-13,-2*K.1^5-2*K.1^-5,2*K.1^13+2*K.1^-13,-2*K.1^11-2*K.1^-11,2*K.1+2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^11+2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,0,2*K.1^10+2*K.1^-10,0,-2*K.1^6-2*K.1^-6,0,2*K.1^3+2*K.1^-3,0,-2*K.1^9-2*K.1^-9,0,-2*K.1^5-2*K.1^-5,-2*K.1^11-2*K.1^-11,-2*K.1^13-2*K.1^-13,0,0,2*K.1^11+2*K.1^-11,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^9+2*K.1^-9,0,0,-2*K.1^3-2*K.1^-3,0,0,2*K.1^13+2*K.1^-13,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^11-2*K.1^-11,2*K.1^11+2*K.1^-11,2*K.1+2*K.1^-1,2*K.1^9+2*K.1^-9,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^13-2*K.1^-13,-2*K.1^9-2*K.1^-9,2*K.1^13+2*K.1^-13,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,0,0,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,0,-2*K.1^10-2*K.1^-10,0,2*K.1^6+2*K.1^-6,0,2*K.1^11+2*K.1^-11,0,2*K.1^5+2*K.1^-5,0,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,0,0,2*K.1^3+2*K.1^-3,0,0,0,-2*K.1^9-2*K.1^-9,-2*K.1^5-2*K.1^-5,0,0,-2*K.1^11-2*K.1^-11,0,0,-2*K.1-2*K.1^-1,2*K.1^13+2*K.1^-13,-2*K.1^13-2*K.1^-13,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^13+2*K.1^-13,2*K.1^5+2*K.1^-5,-2*K.1^13-2*K.1^-13,2*K.1^11+2*K.1^-11,-2*K.1-2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^11-2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,0,-2*K.1^2-2*K.1^-2,0,0,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,0,2*K.1^10+2*K.1^-10,0,-2*K.1^6-2*K.1^-6,0,-2*K.1^3-2*K.1^-3,0,2*K.1^9+2*K.1^-9,0,2*K.1^5+2*K.1^-5,2*K.1^11+2*K.1^-11,2*K.1^13+2*K.1^-13,0,0,-2*K.1^11-2*K.1^-11,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^9-2*K.1^-9,0,0,2*K.1^3+2*K.1^-3,0,0,-2*K.1^13-2*K.1^-13,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^11+2*K.1^-11,-2*K.1^11-2*K.1^-11,-2*K.1-2*K.1^-1,-2*K.1^9-2*K.1^-9,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^13+2*K.1^-13,2*K.1^9+2*K.1^-9,-2*K.1^13-2*K.1^-13,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,0,2*K.1^2+2*K.1^-2,0,0,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,0,-2*K.1^10-2*K.1^-10,0,2*K.1^6+2*K.1^-6,0,-2*K.1^11-2*K.1^-11,0,-2*K.1^5-2*K.1^-5,0,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,0,0,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^5+2*K.1^-5,0,0,2*K.1^11+2*K.1^-11,0,0,2*K.1+2*K.1^-1,-2*K.1^13-2*K.1^-13,2*K.1^13+2*K.1^-13,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^10+2*K.1^-10,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^13+2*K.1^-13,-2*K.1^13-2*K.1^-13,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,-2*K.1^11-2*K.1^-11,-2*K.1-2*K.1^-1,2*K.1^11+2*K.1^-11,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,0,2*K.1^6+2*K.1^-6,0,0,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,0,2*K.1^2+2*K.1^-2,0,-2*K.1^10-2*K.1^-10,0,2*K.1^5+2*K.1^-5,0,2*K.1^13+2*K.1^-13,0,2*K.1+2*K.1^-1,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,0,0,-2*K.1^9-2*K.1^-9,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^13-2*K.1^-13,0,0,-2*K.1^5-2*K.1^-5,0,0,2*K.1^3+2*K.1^-3,2*K.1^11+2*K.1^-11,-2*K.1^11-2*K.1^-11,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^10-2*K.1^-10,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1^11-2*K.1^-11,-2*K.1^13-2*K.1^-13,2*K.1^11+2*K.1^-11,-2*K.1^5-2*K.1^-5,-2*K.1^3-2*K.1^-3,2*K.1^13+2*K.1^-13,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,0,-2*K.1^6-2*K.1^-6,0,0,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,0,-2*K.1^2-2*K.1^-2,0,2*K.1^10+2*K.1^-10,0,-2*K.1^9-2*K.1^-9,0,-2*K.1-2*K.1^-1,0,-2*K.1^13-2*K.1^-13,-2*K.1^5-2*K.1^-5,-2*K.1^11-2*K.1^-11,0,0,2*K.1^5+2*K.1^-5,0,0,0,2*K.1^13+2*K.1^-13,2*K.1+2*K.1^-1,0,0,2*K.1^9+2*K.1^-9,0,0,2*K.1^11+2*K.1^-11,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^10+2*K.1^-10,-2*K.1^10-2*K.1^-10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^13-2*K.1^-13,2*K.1^13+2*K.1^-13,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,2*K.1^11+2*K.1^-11,2*K.1+2*K.1^-1,-2*K.1^11-2*K.1^-11,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,0,2*K.1^6+2*K.1^-6,0,0,-2*K.1^2-2*K.1^-2,2*K.1^10+2*K.1^-10,0,2*K.1^2+2*K.1^-2,0,-2*K.1^10-2*K.1^-10,0,-2*K.1^5-2*K.1^-5,0,-2*K.1^13-2*K.1^-13,0,-2*K.1-2*K.1^-1,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,2*K.1^9+2*K.1^-9,0,0,0,2*K.1+2*K.1^-1,2*K.1^13+2*K.1^-13,0,0,2*K.1^5+2*K.1^-5,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^11-2*K.1^-11,2*K.1^11+2*K.1^-11,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,4,0,0,0,0,0,-4,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^10-2*K.1^-10,2*K.1^10+2*K.1^-10,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1^11+2*K.1^-11,2*K.1^13+2*K.1^-13,-2*K.1^11-2*K.1^-11,2*K.1^5+2*K.1^-5,2*K.1^3+2*K.1^-3,-2*K.1^13-2*K.1^-13,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,0,-2*K.1^6-2*K.1^-6,0,0,2*K.1^2+2*K.1^-2,-2*K.1^10-2*K.1^-10,0,-2*K.1^2-2*K.1^-2,0,2*K.1^10+2*K.1^-10,0,2*K.1^9+2*K.1^-9,0,2*K.1+2*K.1^-1,0,2*K.1^13+2*K.1^-13,2*K.1^5+2*K.1^-5,2*K.1^11+2*K.1^-11,0,0,-2*K.1^5-2*K.1^-5,0,0,0,-2*K.1^13-2*K.1^-13,-2*K.1-2*K.1^-1,0,0,-2*K.1^9-2*K.1^-9,0,0,-2*K.1^11-2*K.1^-11,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,0,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,2*K.1^33+2*K.1^-33,-2*K.1^33-2*K.1^-33,-2*K.1^39-2*K.1^-39,2*K.1^39+2*K.1^-39,2*K.1^27+2*K.1^-27,-2*K.1^9-2*K.1^-9,-2*K.1^27-2*K.1^-27,2*K.1^3+2*K.1^-3,-2*K.1^15-2*K.1^-15,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30-K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^39-K.1^-39,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^33-K.1^-33,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^27-K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^3+K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^9-K.1^-9,K.1^33+K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^39+K.1^-39,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^27+K.1^-27,-1*K.1^15-K.1^-15,K.1^15+K.1^-15,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^15-2*K.1^-15,-2*K.1^33-2*K.1^-33,2*K.1^15+2*K.1^-15,-2*K.1^39-2*K.1^-39,2*K.1^27+2*K.1^-27,2*K.1^33+2*K.1^-33,-2*K.1^27-2*K.1^-27,2*K.1^39+2*K.1^-39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30+K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^3+K.1^-3,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^9-K.1^-9,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^33+K.1^-33,K.1^39+K.1^-39,K.1^15+K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^39-K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^33-K.1^-33,K.1^9+K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^15-K.1^-15,K.1^27+K.1^-27,-1*K.1^27-K.1^-27,2*K.1^11+2*K.1^17-K.1^39-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,0,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,2*K.1^33+2*K.1^-33,-2*K.1^33-2*K.1^-33,-2*K.1^39-2*K.1^-39,2*K.1^39+2*K.1^-39,2*K.1^27+2*K.1^-27,-2*K.1^9-2*K.1^-9,-2*K.1^27-2*K.1^-27,2*K.1^3+2*K.1^-3,-2*K.1^15-2*K.1^-15,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30-K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^39-K.1^-39,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^33-K.1^-33,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^27-K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^3+K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^9-K.1^-9,K.1^33+K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^39+K.1^-39,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^27+K.1^-27,-1*K.1^15-K.1^-15,K.1^15+K.1^-15,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^15-2*K.1^-15,-2*K.1^33-2*K.1^-33,2*K.1^15+2*K.1^-15,-2*K.1^39-2*K.1^-39,2*K.1^27+2*K.1^-27,2*K.1^33+2*K.1^-33,-2*K.1^27-2*K.1^-27,2*K.1^39+2*K.1^-39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30+K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^3+K.1^-3,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^9-K.1^-9,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^33+K.1^-33,K.1^39+K.1^-39,K.1^15+K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^39-K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^33-K.1^-33,K.1^9+K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^3-K.1^-3,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^15-K.1^-15,K.1^27+K.1^-27,-1*K.1^27-K.1^-27,-2*K.1^11-2*K.1^17+K.1^39+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,0,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-2*K.1^33-2*K.1^-33,2*K.1^33+2*K.1^-33,2*K.1^39+2*K.1^-39,-2*K.1^39-2*K.1^-39,-2*K.1^27-2*K.1^-27,2*K.1^9+2*K.1^-9,2*K.1^27+2*K.1^-27,-2*K.1^3-2*K.1^-3,2*K.1^15+2*K.1^-15,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30-K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^39+K.1^-39,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^33+K.1^-33,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^27+K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^3-K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^9+K.1^-9,-1*K.1^33-K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^39-K.1^-39,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^27-K.1^-27,K.1^15+K.1^-15,-1*K.1^15-K.1^-15,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^15+2*K.1^-15,2*K.1^33+2*K.1^-33,-2*K.1^15-2*K.1^-15,2*K.1^39+2*K.1^-39,-2*K.1^27-2*K.1^-27,-2*K.1^33-2*K.1^-33,2*K.1^27+2*K.1^-27,-2*K.1^39-2*K.1^-39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30+K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^3-K.1^-3,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^9+K.1^-9,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^33-K.1^-33,-1*K.1^39-K.1^-39,-1*K.1^15-K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^39+K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^33+K.1^-33,-1*K.1^9-K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^3+K.1^-3,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^15+K.1^-15,-1*K.1^27-K.1^-27,K.1^27+K.1^-27,-2*K.1^11-2*K.1^17+K.1^39+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,0,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-2*K.1^33-2*K.1^-33,2*K.1^33+2*K.1^-33,2*K.1^39+2*K.1^-39,-2*K.1^39-2*K.1^-39,-2*K.1^27-2*K.1^-27,2*K.1^9+2*K.1^-9,2*K.1^27+2*K.1^-27,-2*K.1^3-2*K.1^-3,2*K.1^15+2*K.1^-15,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^30-K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^39+K.1^-39,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^33+K.1^-33,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^27+K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^3-K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^9+K.1^-9,-1*K.1^33-K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^39-K.1^-39,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^27-K.1^-27,K.1^15+K.1^-15,-1*K.1^15-K.1^-15,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,0,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^15+2*K.1^-15,2*K.1^33+2*K.1^-33,-2*K.1^15-2*K.1^-15,2*K.1^39+2*K.1^-39,-2*K.1^27-2*K.1^-27,-2*K.1^33-2*K.1^-33,2*K.1^27+2*K.1^-27,-2*K.1^39-2*K.1^-39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^30+K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^3-K.1^-3,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^9+K.1^-9,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^33-K.1^-33,-1*K.1^39-K.1^-39,-1*K.1^15-K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^39+K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^33+K.1^-33,-1*K.1^9-K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^3+K.1^-3,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^15+K.1^-15,-1*K.1^27-K.1^-27,K.1^27+K.1^-27,2*K.1^11+2*K.1^17-K.1^39-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,0,0,0,0,0,0,0,0,0,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-2*K.1^27-2*K.1^-27,2*K.1^27+2*K.1^-27,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^15-2*K.1^-15,2*K.1^39+2*K.1^-39,-2*K.1^33-2*K.1^-33,2*K.1^3+2*K.1^-3,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^33+2*K.1^-33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^18-K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^9-K.1^-9,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^27+K.1^-27,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^15+K.1^-15,K.1^33+K.1^-33,K.1^39+K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^33-K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^15-K.1^-15,-1*K.1^27-K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^9+K.1^-9,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^39-K.1^-39,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,0,0,0,0,0,0,0,0,0,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^33-2*K.1^-33,2*K.1^33+2*K.1^-33,2*K.1^3+2*K.1^-3,2*K.1^27+2*K.1^-27,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^27-2*K.1^-27,2*K.1^39+2*K.1^-39,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,K.1^18+K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^33-K.1^-33,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^15-K.1^-15,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^27-K.1^-27,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^9-K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^27+K.1^-27,K.1^15+K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^33+K.1^-33,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^3+K.1^-3,-1*K.1^39-K.1^-39,K.1^39+K.1^-39,-1*K.1^9-K.1^19+2*K.1^37-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,0,0,0,0,0,0,0,0,0,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-2*K.1^27-2*K.1^-27,2*K.1^27+2*K.1^-27,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^15-2*K.1^-15,2*K.1^39+2*K.1^-39,-2*K.1^33-2*K.1^-33,2*K.1^3+2*K.1^-3,2*K.1^15+2*K.1^-15,-2*K.1^3-2*K.1^-3,2*K.1^33+2*K.1^-33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,-1*K.1^18-K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^9-K.1^-9,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^27+K.1^-27,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^15+K.1^-15,K.1^33+K.1^-33,K.1^39+K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^33-K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^15-K.1^-15,-1*K.1^27-K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^9+K.1^-9,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^39-K.1^-39,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,0,0,0,0,0,0,0,0,0,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^33-2*K.1^-33,2*K.1^33+2*K.1^-33,2*K.1^3+2*K.1^-3,2*K.1^27+2*K.1^-27,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^27-2*K.1^-27,2*K.1^39+2*K.1^-39,2*K.1^9+2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^18+K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^33-K.1^-33,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^15-K.1^-15,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^27-K.1^-27,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^9-K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^27+K.1^-27,K.1^15+K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^33+K.1^-33,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^3+K.1^-3,-1*K.1^39-K.1^-39,K.1^39+K.1^-39,K.1^9+K.1^19-2*K.1^37+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,0,0,0,0,0,0,0,0,0,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,2*K.1^27+2*K.1^-27,-2*K.1^27-2*K.1^-27,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^15+2*K.1^-15,-2*K.1^39-2*K.1^-39,2*K.1^33+2*K.1^-33,-2*K.1^3-2*K.1^-3,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^33-2*K.1^-33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^18-K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^9+K.1^-9,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^27-K.1^-27,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^15-K.1^-15,-1*K.1^33-K.1^-33,-1*K.1^39-K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^33+K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^15+K.1^-15,K.1^27+K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^9-K.1^-9,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^39+K.1^-39,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,0,0,0,0,0,0,0,0,0,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^33+2*K.1^-33,-2*K.1^33-2*K.1^-33,-2*K.1^3-2*K.1^-3,-2*K.1^27-2*K.1^-27,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^27+2*K.1^-27,-2*K.1^39-2*K.1^-39,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,K.1^18+K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^33+K.1^-33,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^15+K.1^-15,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^27+K.1^-27,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^9+K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^27-K.1^-27,-1*K.1^15-K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^33-K.1^-33,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^3-K.1^-3,K.1^39+K.1^-39,-1*K.1^39-K.1^-39,K.1^9+K.1^19-2*K.1^37+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^30-2*K.1^-30,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^30+2*K.1^-30,0,0,0,0,0,0,0,0,0,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,2*K.1^27+2*K.1^-27,-2*K.1^27-2*K.1^-27,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^15+2*K.1^-15,-2*K.1^39-2*K.1^-39,2*K.1^33+2*K.1^-33,-2*K.1^3-2*K.1^-3,-2*K.1^15-2*K.1^-15,2*K.1^3+2*K.1^-3,-2*K.1^33-2*K.1^-33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,-1*K.1^18-K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^9+K.1^-9,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^27-K.1^-27,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^15-K.1^-15,-1*K.1^33-K.1^-33,-1*K.1^39-K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^33+K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^15+K.1^-15,K.1^27+K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^9-K.1^-9,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^39+K.1^-39,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^30+2*K.1^-30,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,-2*K.1^30-2*K.1^-30,0,0,0,0,0,0,0,0,0,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^33+2*K.1^-33,-2*K.1^33-2*K.1^-33,-2*K.1^3-2*K.1^-3,-2*K.1^27-2*K.1^-27,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^27+2*K.1^-27,-2*K.1^39-2*K.1^-39,-2*K.1^9-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^18+K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^33+K.1^-33,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^15+K.1^-15,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^27+K.1^-27,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^9+K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^27-K.1^-27,-1*K.1^15-K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^33-K.1^-33,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^3-K.1^-3,K.1^39+K.1^-39,-1*K.1^39-K.1^-39,-1*K.1^9-K.1^19+2*K.1^37-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,2*K.1^39+2*K.1^-39,-2*K.1^39-2*K.1^-39,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^27+2*K.1^-27,-2*K.1^33-2*K.1^-33,-2*K.1^3-2*K.1^-3,2*K.1^33+2*K.1^-33,-2*K.1^27-2*K.1^-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,-1*K.1^30-K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^15-K.1^-15,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^39-K.1^-39,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^3-K.1^-3,-1*K.1^27-K.1^-27,K.1^9+K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^27+K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^3+K.1^-3,K.1^39+K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^15+K.1^-15,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1^9-K.1^-9,-1*K.1^33-K.1^-33,K.1^33+K.1^-33,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^27+2*K.1^-27,-2*K.1^27-2*K.1^-27,-2*K.1^33-2*K.1^-33,-2*K.1^39-2*K.1^-39,2*K.1^33+2*K.1^-33,-2*K.1^15-2*K.1^-15,-2*K.1^9-2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^30+K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^27+K.1^-27,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^3+K.1^-3,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^39+K.1^-39,K.1^15+K.1^-15,K.1^33+K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^15-K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^39-K.1^-39,-1*K.1^3-K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^27-K.1^-27,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1^33-K.1^-33,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^13+K.1^15+K.1^41-2*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,2*K.1^39+2*K.1^-39,-2*K.1^39-2*K.1^-39,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,-2*K.1^9-2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^27+2*K.1^-27,-2*K.1^33-2*K.1^-33,-2*K.1^3-2*K.1^-3,2*K.1^33+2*K.1^-33,-2*K.1^27-2*K.1^-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^30-K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^15-K.1^-15,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1^39-K.1^-39,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^3-K.1^-3,-1*K.1^27-K.1^-27,K.1^9+K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^27+K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^3+K.1^-3,K.1^39+K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^15+K.1^-15,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^13+K.1^15+K.1^41-2*K.1^43,-1*K.1^9-K.1^-9,-1*K.1^33-K.1^-33,K.1^33+K.1^-33,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^27+2*K.1^-27,-2*K.1^27-2*K.1^-27,-2*K.1^33-2*K.1^-33,-2*K.1^39-2*K.1^-39,2*K.1^33+2*K.1^-33,-2*K.1^15-2*K.1^-15,-2*K.1^9-2*K.1^-9,2*K.1^39+2*K.1^-39,2*K.1^9+2*K.1^-9,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,K.1^30+K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^27+K.1^-27,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,K.1^3+K.1^-3,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,K.1^39+K.1^-39,K.1^15+K.1^-15,K.1^33+K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^15-K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^39-K.1^-39,-1*K.1^3-K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,-1*K.1^27-K.1^-27,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^33-K.1^-33,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^13-K.1^15-K.1^41+2*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-2*K.1^39-2*K.1^-39,2*K.1^39+2*K.1^-39,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^27-2*K.1^-27,2*K.1^33+2*K.1^-33,2*K.1^3+2*K.1^-3,-2*K.1^33-2*K.1^-33,2*K.1^27+2*K.1^-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^18-K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^6+K.1^-6,-1*K.1^30-K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^30+K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^15+K.1^-15,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^39+K.1^-39,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^3+K.1^-3,K.1^27+K.1^-27,-1*K.1^9-K.1^-9,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^27-K.1^-27,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^3-K.1^-3,-1*K.1^39-K.1^-39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^15-K.1^-15,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1^9+K.1^-9,K.1^33+K.1^-33,-1*K.1^33-K.1^-33,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^14+2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^27-2*K.1^-27,2*K.1^27+2*K.1^-27,2*K.1^33+2*K.1^-33,2*K.1^39+2*K.1^-39,-2*K.1^33-2*K.1^-33,2*K.1^15+2*K.1^-15,2*K.1^9+2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^18+K.1^-18,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^6-K.1^-6,K.1^30+K.1^-30,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^6+K.1^-6,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^30-K.1^-30,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^27-K.1^-27,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^3-K.1^-3,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^39-K.1^-39,-1*K.1^15-K.1^-15,-1*K.1^33-K.1^-33,K.1^9+K.1^19-2*K.1^37+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1^15+K.1^-15,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^13+K.1^15+K.1^41-2*K.1^43,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^39+K.1^-39,K.1^3+K.1^-3,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^27+K.1^-27,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,K.1^33+K.1^-33,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^13-K.1^15-K.1^41+2*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^30+2*K.1^-30,-2*K.1^30-2*K.1^-30,2*K.1^18+2*K.1^-18,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,K.1^12+K.1^16-2*K.1^40+K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-2*K.1^39-2*K.1^-39,2*K.1^39+2*K.1^-39,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,2*K.1^9+2*K.1^-9,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^27-2*K.1^-27,2*K.1^33+2*K.1^-33,2*K.1^3+2*K.1^-3,-2*K.1^33-2*K.1^-33,2*K.1^27+2*K.1^-27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^18-K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^6+K.1^-6,-1*K.1^30-K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^6-K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^30+K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^15+K.1^-15,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1^39+K.1^-39,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^3+K.1^-3,K.1^27+K.1^-27,-1*K.1^9-K.1^-9,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,-1*K.1^27-K.1^-27,K.1^13+K.1^15+K.1^41-2*K.1^43,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^3-K.1^-3,-1*K.1^39-K.1^-39,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^15-K.1^-15,2*K.1^11+2*K.1^17-K.1^39-K.1^45,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,K.1^9+K.1^-9,K.1^33+K.1^-33,-1*K.1^33-K.1^-33,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,-2,0,0,0,0,0,2,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^14-2*K.1^-14,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,2*K.1+2*K.1^5+K.1^7-2*K.1^13-2*K.1^17+K.1^21+2*K.1^25-2*K.1^33+K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-K.1^7+2*K.1^13+2*K.1^17-K.1^21-2*K.1^25+2*K.1^33-K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^30-2*K.1^-30,2*K.1^30+2*K.1^-30,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,K.1^12+K.1^16-2*K.1^40+K.1^44,-1*K.1^12-K.1^16+2*K.1^40-K.1^44,-2+K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+3*K.1^32-2*K.1^40-2*K.1^44,2-K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-3*K.1^32+2*K.1^40+2*K.1^44,-1-K.1^4-2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32+2*K.1^36-K.1^44,1+K.1^4+2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32-2*K.1^36+K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^27-2*K.1^-27,2*K.1^27+2*K.1^-27,2*K.1^33+2*K.1^-33,2*K.1^39+2*K.1^-39,-2*K.1^33-2*K.1^-33,2*K.1^15+2*K.1^-15,2*K.1^9+2*K.1^-9,-2*K.1^39-2*K.1^-39,-2*K.1^9-2*K.1^-9,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^18+K.1^-18,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^6-K.1^-6,K.1^30+K.1^-30,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^6+K.1^-6,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^30-K.1^-30,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^27-K.1^-27,-1*K.1^3-2*K.1^5-K.1^7+K.1^15+K.1^19-2*K.1^23-K.1^27+K.1^33+K.1^35+K.1^39-K.1^47,-1*K.1^3-K.1^-3,K.1^3+2*K.1^5+K.1^7-K.1^15-K.1^19+2*K.1^23+K.1^27-K.1^33-K.1^35-K.1^39+K.1^47,-1*K.1^39-K.1^-39,-1*K.1^15-K.1^-15,-1*K.1^33-K.1^-33,-1*K.1^9-K.1^19+2*K.1^37-K.1^47,K.1+K.1^3-K.1^9-K.1^13+K.1^21+2*K.1^25-K.1^29-2*K.1^31-K.1^33+K.1^41+K.1^45,K.1^15+K.1^-15,-1*K.1+2*K.1^3-2*K.1^11-2*K.1^15+2*K.1^23+K.1^27-K.1^29-2*K.1^31-2*K.1^35+2*K.1^43+2*K.1^47,-1*K.1^13-K.1^15-K.1^41+2*K.1^43,2*K.1^11+2*K.1^17-K.1^39-K.1^45,K.1^39+K.1^-39,K.1^3+K.1^-3,-2*K.1^11-2*K.1^17+K.1^39+K.1^45,K.1^9+K.1^19-2*K.1^37+K.1^47,K.1^27+K.1^-27,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21-2*K.1^25+K.1^29+2*K.1^31+K.1^33-K.1^41-K.1^45,K.1-2*K.1^3+2*K.1^11+2*K.1^15-2*K.1^23-K.1^27+K.1^29+2*K.1^31+2*K.1^35-2*K.1^43-2*K.1^47,K.1^33+K.1^-33,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^13+K.1^15+K.1^41-2*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_2752:= KnownIrreducibles(CR);