/* Group 1344.262 downloaded from the LMFDB on 23 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -7, 16, 777, 2210, 66, 5891, 91, 7044, 116, 7685, 141, 7174, 18455]); a,b,c := Explode([GPC.1, GPC.3, GPC.8]); AssignNames(~GPC, ["a", "a2", "b", "b2", "b4", "b8", "b16", "c"]); GPerm := PermutationGroup< 42 | (2,3)(4,5)(6,7)(11,12,15,20,14,19,27,34,17,22,30,37,16,21,29,36)(13,23,25,38,31,42,41,33,26,39,40,32,24,35,28,18), (9,10)(11,13,14,24,17,26,16,31)(12,18,19,32,22,33,21,38)(15,28,27,40,30,41,29,25)(20,35,34,39,37,42,36,23), (11,14,17,16)(12,19,22,21)(13,24,26,31)(15,27,30,29)(18,32,33,38)(20,34,37,36)(23,35,39,42)(25,28,40,41), (11,15,14,27,17,30,16,29)(12,20,19,34,22,37,21,36)(13,25,31,41,26,40,24,28)(18,23,38,42,33,39,32,35), (11,16,17,14)(12,21,22,19)(13,24,26,31)(15,29,30,27)(18,32,33,38)(20,36,37,34)(23,35,39,42)(25,28,40,41), (11,17)(12,22)(13,26)(14,16)(15,30)(18,33)(19,21)(20,37)(23,39)(24,31)(25,40)(27,29)(28,41)(32,38)(34,36)(35,42), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_262 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^24>,< 2, 2, a^2*b^36>,< 3, 2, b^32>,< 4, 1, a^2*b^24>,< 4, 1, a^2>,< 4, 2, b^12>,< 6, 2, b^8>,< 6, 2, a^2*b^4>,< 6, 2, a^2*b^20>,< 7, 2, c^6>,< 7, 2, c^5>,< 7, 2, c^4>,< 8, 2, b^6>,< 8, 2, b^18>,< 8, 2, a^2*b^42>,< 8, 2, a^2*b^30>,< 8, 24, a^3*b^24>,< 8, 24, a>,< 8, 168, a*b^9*c^6>,< 8, 168, a^3*b^9*c^6>,< 12, 2, b^4>,< 12, 2, b^20>,< 12, 2, a^2*b^40>,< 12, 2, a^2*b^32>,< 14, 2, b^24*c^4>,< 14, 2, b^24*c^5>,< 14, 2, b^24*c^6>,< 14, 4, a^2*b^36*c^3>,< 14, 4, a^2*b^36*c^2>,< 14, 4, a^2*b^36*c>,< 16, 14, b^3>,< 16, 14, b^45>,< 16, 14, b^9>,< 16, 14, b^39>,< 16, 14, a^2*b^27>,< 16, 14, a^2*b^9>,< 16, 14, a^2*b^39>,< 16, 14, a^2*b^21>,< 21, 4, b^32*c^2>,< 21, 4, b^16*c^4>,< 21, 4, b^32*c>,< 24, 2, b^2>,< 24, 2, b^10>,< 24, 2, b^14>,< 24, 2, b^22>,< 24, 2, a^2*b^38>,< 24, 2, a^2*b^34>,< 24, 2, a^2*b^46>,< 24, 2, a^2*b^26>,< 28, 2, a^2*c^2>,< 28, 2, a^2*b^24*c^5>,< 28, 2, a^2*b^24*c^6>,< 28, 2, a^2*c>,< 28, 2, a^2*c^3>,< 28, 2, a^2*b^24*c^4>,< 28, 4, b^12*c^6>,< 28, 4, b^36*c^4>,< 28, 4, b^12*c^2>,< 42, 4, b^8*c^2>,< 42, 4, b^40*c^3>,< 42, 4, b^40*c>,< 42, 4, a^2*b^4*c>,< 42, 4, a^2*b^20*c>,< 42, 4, a^2*b^20*c^2>,< 42, 4, a^2*b^4*c^2>,< 42, 4, a^2*b^20*c^3>,< 42, 4, a^2*b^4*c^3>,< 48, 14, b>,< 48, 14, b^25>,< 48, 14, b^5>,< 48, 14, b^29>,< 48, 14, b^17>,< 48, 14, b^41>,< 48, 14, b^13>,< 48, 14, b^37>,< 48, 14, a^2*b>,< 48, 14, a^2*b^5>,< 48, 14, a^2*b^41>,< 48, 14, a^2*b^37>,< 48, 14, a^2*b^13>,< 48, 14, a^2*b^17>,< 48, 14, a^2*b^29>,< 48, 14, a^2*b^25>,< 56, 4, b^6*c^3>,< 56, 4, b^18*c^2>,< 56, 4, b^30*c>,< 56, 4, b^6*c^6>,< 56, 4, b^30*c^4>,< 56, 4, b^6*c^2>,< 56, 4, a^2*b^30*c^3>,< 56, 4, a^2*b^42*c^4>,< 56, 4, a^2*b^18*c^2>,< 56, 4, a^2*b^6*c^5>,< 56, 4, a^2*b^6*c>,< 56, 4, a^2*b^18*c^6>,< 56, 24, a*c>,< 56, 24, a^3*c^6>,< 56, 24, a^3*c^3>,< 56, 24, a*c^4>,< 56, 24, a*c^5>,< 56, 24, a^3*c^2>,< 56, 24, a*c^2>,< 56, 24, a^3*c^5>,< 56, 24, a^3*c^4>,< 56, 24, a*c^3>,< 56, 24, a*c^6>,< 56, 24, a^3*c>,< 84, 4, a^2*b^16*c>,< 84, 4, a^2*b^8*c>,< 84, 4, a^2*b^16*c^2>,< 84, 4, a^2*b^8*c^2>,< 84, 4, a^2*b^8*c^3>,< 84, 4, a^2*b^16*c^3>,< 84, 4, b^4*c^2>,< 84, 4, b^20*c^3>,< 84, 4, b^44*c>,< 84, 4, b^20*c^6>,< 84, 4, b^44*c^4>,< 84, 4, b^20*c^2>,< 168, 4, b^2*c>,< 168, 4, b^10*c^2>,< 168, 4, b^26*c^3>,< 168, 4, b^26*c>,< 168, 4, b^34*c^3>,< 168, 4, b^2*c^2>,< 168, 4, b^2*c^3>,< 168, 4, b^10*c>,< 168, 4, b^26*c^2>,< 168, 4, b^34*c>,< 168, 4, b^10*c^3>,< 168, 4, b^34*c^2>,< 168, 4, a^2*b^2*c>,< 168, 4, a^2*b^26*c>,< 168, 4, a^2*b^10*c^2>,< 168, 4, a^2*b^34*c^2>,< 168, 4, a^2*b^2*c^3>,< 168, 4, a^2*b^26*c^3>,< 168, 4, a^2*b^34*c^3>,< 168, 4, a^2*b^10*c^3>,< 168, 4, a^2*b^26*c^2>,< 168, 4, a^2*b^2*c^2>,< 168, 4, a^2*b^10*c>,< 168, 4, a^2*b^34*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, -1, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -1, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, -2, -2, 2, 2, -2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 2]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -1, -2, -2, 2, 1, 1, -1, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 1, -1, 1, -1, 2, 2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -2, -2, -2, -2, -2, -2, 2, 2, 2, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -1, -2, -2, 2, 1, 1, -1, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 1, -1, 1, -1, 2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -2, -2, -2, -2, -2, -2, 2, 2, 2, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,2,2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,-2,-2,-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,2,-2,-2,-2,2,-2,2,-2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,2,2,2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,-2,-2,-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,2,-2,-2,-2,2,-2,2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,2,-1,2,2,2,-1,-1,-1,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,2,-1,2,2,2,-1,-1,-1,2,2,2,-2,-2,-2,-2,0,0,0,0,-1,-1,-1,-1,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,2,2,2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,2,2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-1,-2,-2,2,1,1,-1,2,2,2,-2,-2,2,2,0,0,0,0,1,-1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,-2,-2,-2,-2,-2,-2,2,2,2,-1,1,1,1,-1,1,-1,1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-1,-2,-2,2,1,1,-1,2,2,2,-2,-2,2,2,0,0,0,0,1,-1,1,-1,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,-2,-2,-2,-2,-2,-2,2,2,2,-1,1,1,1,-1,1,-1,1,1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,-2,-2,2,2,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,0,0,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,0,0,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,0,0,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,-2,-2,0,0,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,-2,-2,0,0,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,-2,-2,0,0,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-1,2,2,-2,1,1,-1,2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,2,2,2,-2,-2,-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1,-1,-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,2,2,2,2,2,-2,-2,-2,-1,1,1,1,-1,1,-1,1,1,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-1,2,2,-2,1,1,-1,2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,2,2,2,-2,-2,-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1,-1,-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,2,2,2,2,2,-2,-2,-2,-1,1,1,1,-1,1,-1,1,1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-1,2,2,-2,1,1,-1,2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,2,2,2,-2,-2,-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1,-1,-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,2,2,2,2,2,-2,-2,-2,-1,1,1,1,-1,1,-1,1,1,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-1,2,2,-2,1,1,-1,2,2,2,0,0,0,0,0,0,0,0,-1,1,-1,1,2,2,2,-2,-2,-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1,-1,-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,2,2,2,2,2,-2,-2,-2,-1,1,1,1,-1,1,-1,1,1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,2,-1,-2,-2,-2,-1,-1,-1,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,2,-1,-2,-2,-2,-1,-1,-1,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,2,-1,-2,-2,-2,-1,-1,-1,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,2,-1,-2,-2,-2,-1,-1,-1,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,2,2,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,2,-2,-2,-2*K.1^7,2*K.1^7,0,0,-2,2,-2,2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,2,-2,-2,-2,2,2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,2,-2,-2,2*K.1^7,-2*K.1^7,0,0,-2,2,-2,2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,2,-2,-2,-2,2,2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,-2,-2*K.1^7,2*K.1^7,0,0,-2,2,-2,2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,2,2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,-2,2*K.1^7,-2*K.1^7,0,0,-2,2,-2,2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,2,2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,2,-2,-2,-2*K.1^7,2*K.1^7,0,0,-2,2,-2,2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,2,-2,-2,-2,2,2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,2,-2,-2,2*K.1^7,-2*K.1^7,0,0,-2,2,-2,2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,2,-2,-2,-2,2,2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,-2,2,2,0,0,0,0,-2,2,-2,2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,-2,2,2,2,-2,-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,-2,2,2,0,0,0,0,-2,2,-2,2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,-2,2,2,2,-2,-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,-2,2,2,0,0,0,0,-2,2,-2,2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,-2,2,2,2,-2,-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,-2,2,2,0,0,0,0,-2,2,-2,2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,-2,2,2,2,-2,-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,-2,2,2,0,0,0,0,-2,2,-2,2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,-2,2,2,2,-2,-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,2,-2,-2,2,-2,-2,2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,-2,2,2,0,0,0,0,-2,2,-2,2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,-2,2,2,2,-2,-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^4,2*K.1^4,0,0,0,-2,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,0,0,0,0,2*K.1^4,0,-2*K.1^4,0,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^5,K.1+K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^7,-1*K.1^3-K.1^5,2,2,2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^5,K.1+K.1^7,-1*K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1-K.1^7,-1*K.1^3-K.1^5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,-2*K.1^4,-2*K.1^4,0,0,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,2*K.1^4,-2*K.1^4,0,0,0,-2,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,0,0,0,0,-2*K.1^4,0,2*K.1^4,0,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^5,-1*K.1-K.1^7,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^7,K.1^3+K.1^5,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,-1*K.1-K.1^7,K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1+K.1^7,K.1^3+K.1^5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^4,0,0,0,0,0,-2*K.1^4,2*K.1^4,-2*K.1^4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^4,2*K.1^4,0,0,0,-2,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,0,0,0,0,2*K.1^4,0,-2*K.1^4,0,-2,-2,-2,0,0,0,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^5,-1*K.1-K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^7,K.1^3+K.1^5,2,2,2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,-1*K.1-K.1^7,K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1+K.1^7,K.1^3+K.1^5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,-2*K.1^4,-2*K.1^4,0,0,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,2*K.1^4,-2*K.1^4,0,0,0,-2,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,0,0,0,0,-2*K.1^4,0,2*K.1^4,0,-2,-2,-2,0,0,0,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^5,K.1+K.1^7,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^7,-1*K.1^3-K.1^5,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^5,K.1+K.1^7,-1*K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1-K.1^7,-1*K.1^3-K.1^5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^4,0,0,0,0,0,-2*K.1^4,2*K.1^4,-2*K.1^4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^4,2*K.1^4,0,0,0,-2,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,0,0,0,0,2*K.1^4,0,-2*K.1^4,0,-2,-2,-2,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^7,K.1^3+K.1^5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^5,K.1+K.1^7,2,2,2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1-K.1^7,K.1^3+K.1^5,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,K.1+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,-2*K.1^4,-2*K.1^4,0,0,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,2*K.1^4,-2*K.1^4,0,0,0,-2,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,0,0,0,0,-2*K.1^4,0,2*K.1^4,0,-2,-2,-2,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^7,-1*K.1^3-K.1^5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^5,-1*K.1-K.1^7,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1+K.1^7,-1*K.1^3-K.1^5,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^5,-1*K.1-K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^4,0,0,0,0,0,-2*K.1^4,2*K.1^4,-2*K.1^4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,-2*K.1^4,2*K.1^4,0,0,0,-2,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,0,0,0,0,2*K.1^4,0,-2*K.1^4,0,-2,-2,-2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^7,-1*K.1^3-K.1^5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^5,-1*K.1-K.1^7,2,2,2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^5,-1*K.1^3-K.1^5,K.1+K.1^7,-1*K.1^3-K.1^5,-1*K.1-K.1^7,K.1+K.1^7,K.1^3+K.1^5,-1*K.1-K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,-2*K.1^4,-2*K.1^4,0,0,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |2,-2,0,2,2*K.1^4,-2*K.1^4,0,0,0,-2,2,2,2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,0,0,0,0,-2*K.1^4,0,2*K.1^4,0,-2,-2,-2,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^7,K.1^3+K.1^5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^5,K.1+K.1^7,2,2,2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^4,0,0,0,-2,0,0,0,-2,0,-2,0,0,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^5,K.1^3+K.1^5,-1*K.1-K.1^7,K.1^3+K.1^5,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3-K.1^5,K.1+K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^4,0,0,0,0,0,-2*K.1^4,2*K.1^4,-2*K.1^4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,K.1^2+K.1^6,-1*K.1^2-K.1^6,K.1^2+K.1^-2,K.1^2+K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^6,K.1^2+K.1^6,K.1^2+K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^15,K.1^3-K.1^5+K.1^13,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^5-K.1^13,-1*K.1^9-K.1^15,-1,-1,-1,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,K.1^11+K.1^13,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7-K.1^15,-1*K.1^11-K.1^13,-1*K.1+K.1^7+K.1^9,K.1-K.1^7-K.1^9,K.1^3-K.1^5-K.1^11,K.1-K.1^7+K.1^15,K.1^11+K.1^-11,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1-K.1^-1,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^10-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^15,-1*K.1^3+K.1^5-K.1^13,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^5+K.1^13,K.1^9+K.1^15,-1,-1,-1,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^11-K.1^13,K.1^3-K.1^5-K.1^11,K.1-K.1^7+K.1^15,K.1^11+K.1^13,K.1-K.1^7-K.1^9,-1*K.1+K.1^7+K.1^9,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7-K.1^15,K.1^11+K.1^-11,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^7-K.1^-7,K.1^7+K.1^-7,-1*K.1-K.1^-1,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12,-1*K.1^12,K.1^12,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^10+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^15,-1*K.1^3+K.1^5-K.1^13,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^3-K.1^5+K.1^13,K.1^9+K.1^15,-1,-1,-1,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,-1*K.1^11-K.1^13,K.1^3-K.1^5-K.1^11,K.1-K.1^7+K.1^15,K.1^11+K.1^13,K.1-K.1^7-K.1^9,-1*K.1+K.1^7+K.1^9,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7-K.1^15,-1*K.1^11-K.1^-11,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1+K.1^-1,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^10-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^15,K.1^3-K.1^5+K.1^13,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^5-K.1^13,-1*K.1^9-K.1^15,-1,-1,-1,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,K.1^11+K.1^13,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7-K.1^15,-1*K.1^11-K.1^13,-1*K.1+K.1^7+K.1^9,K.1-K.1^7-K.1^9,K.1^3-K.1^5-K.1^11,K.1-K.1^7+K.1^15,-1*K.1^11-K.1^-11,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^7+K.1^-7,-1*K.1^7-K.1^-7,K.1+K.1^-1,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12,-1*K.1^12,K.1^12,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^10+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^5-K.1^13,K.1^9+K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^15,K.1^3-K.1^5+K.1^13,-1,-1,-1,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,K.1^7+K.1^-7,K.1+K.1^-1,K.1-K.1^7+K.1^15,K.1-K.1^7-K.1^9,K.1^11+K.1^13,-1*K.1+K.1^7-K.1^15,-1*K.1^3+K.1^5+K.1^11,K.1^3-K.1^5-K.1^11,-1*K.1+K.1^7+K.1^9,-1*K.1^11-K.1^13,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,K.1^11+K.1^-11,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^10+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3-K.1^5+K.1^13,-1*K.1^9-K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^15,-1*K.1^3+K.1^5-K.1^13,-1,-1,-1,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,K.1^7+K.1^-7,K.1+K.1^-1,-1*K.1+K.1^7-K.1^15,-1*K.1+K.1^7+K.1^9,-1*K.1^11-K.1^13,K.1-K.1^7+K.1^15,K.1^3-K.1^5-K.1^11,-1*K.1^3+K.1^5+K.1^11,K.1-K.1^7-K.1^9,K.1^11+K.1^13,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,K.1^11+K.1^-11,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^10-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^5+K.1^13,-1*K.1^9-K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^15,-1*K.1^3+K.1^5-K.1^13,-1,-1,-1,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,-1*K.1+K.1^7-K.1^15,-1*K.1+K.1^7+K.1^9,-1*K.1^11-K.1^13,K.1-K.1^7+K.1^15,K.1^3-K.1^5-K.1^11,-1*K.1^3+K.1^5+K.1^11,K.1-K.1^7-K.1^9,K.1^11+K.1^13,K.1+K.1^-1,K.1^7+K.1^-7,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^11+K.1^-11,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^14,K.1^10+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^4+K.1^-4,-2,-2,-2,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^5-K.1^13,K.1^9+K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^15,K.1^3-K.1^5+K.1^13,-1,-1,-1,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,K.1-K.1^7+K.1^15,K.1-K.1^7-K.1^9,K.1^11+K.1^13,-1*K.1+K.1^7-K.1^15,-1*K.1^3+K.1^5+K.1^11,K.1^3-K.1^5-K.1^11,-1*K.1+K.1^7+K.1^9,-1*K.1^11-K.1^13,K.1+K.1^-1,K.1^7+K.1^-7,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^11+K.1^-11,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^14,-1*K.1^10-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^15,K.1^3-K.1^5+K.1^13,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^5-K.1^13,-1*K.1^9-K.1^15,-1,-1,-1,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,K.1^11+K.1^-11,-1*K.1^5-K.1^-5,K.1^3-K.1^5-K.1^11,-1*K.1^11-K.1^13,K.1-K.1^7-K.1^9,-1*K.1^3+K.1^5+K.1^11,K.1-K.1^7+K.1^15,-1*K.1+K.1^7-K.1^15,K.1^11+K.1^13,-1*K.1+K.1^7+K.1^9,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^7-K.1^-7,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^7+K.1^-7,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^2-K.1^6+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^15,-1*K.1^3+K.1^5-K.1^13,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^5+K.1^13,K.1^9+K.1^15,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,K.1^11+K.1^-11,-1*K.1^5-K.1^-5,-1*K.1^3+K.1^5+K.1^11,K.1^11+K.1^13,-1*K.1+K.1^7+K.1^9,K.1^3-K.1^5-K.1^11,-1*K.1+K.1^7-K.1^15,K.1-K.1^7+K.1^15,-1*K.1^11-K.1^13,K.1-K.1^7-K.1^9,K.1^5+K.1^-5,-1*K.1^11-K.1^-11,-1*K.1^7-K.1^-7,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^7+K.1^-7,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2+K.1^6-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^15,-1*K.1^3+K.1^5-K.1^13,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^3-K.1^5+K.1^13,K.1^9+K.1^15,-1,-1,-1,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,-1*K.1^11-K.1^-11,K.1^5+K.1^-5,-1*K.1^3+K.1^5+K.1^11,K.1^11+K.1^13,-1*K.1+K.1^7+K.1^9,K.1^3-K.1^5-K.1^11,-1*K.1+K.1^7-K.1^15,K.1-K.1^7+K.1^15,-1*K.1^11-K.1^13,K.1-K.1^7-K.1^9,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,K.1^7+K.1^-7,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^7-K.1^-7,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^2-K.1^6+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^15,K.1^3-K.1^5+K.1^13,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^5-K.1^13,-1*K.1^9-K.1^15,-1,-1,-1,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^-10,K.1^2+K.1^-2,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,-1*K.1^11-K.1^-11,K.1^5+K.1^-5,K.1^3-K.1^5-K.1^11,-1*K.1^11-K.1^13,K.1-K.1^7-K.1^9,-1*K.1^3+K.1^5+K.1^11,K.1-K.1^7+K.1^15,-1*K.1+K.1^7-K.1^15,K.1^11+K.1^13,-1*K.1+K.1^7+K.1^9,-1*K.1^5-K.1^-5,K.1^11+K.1^-11,K.1^7+K.1^-7,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^7-K.1^-7,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^2-K.1^-2,K.1^10+K.1^-10,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2+K.1^6-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3+K.1^5-K.1^13,K.1^9+K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^9-K.1^15,K.1^3-K.1^5+K.1^13,-1,-1,-1,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,-1*K.1+K.1^7+K.1^9,-1*K.1+K.1^7-K.1^15,K.1^3-K.1^5-K.1^11,K.1-K.1^7-K.1^9,-1*K.1^11-K.1^13,K.1^11+K.1^13,K.1-K.1^7+K.1^15,-1*K.1^3+K.1^5+K.1^11,K.1^7+K.1^-7,K.1+K.1^-1,K.1^5+K.1^-5,K.1^11+K.1^-11,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2+K.1^6-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3-K.1^5+K.1^13,-1*K.1^9-K.1^15,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^15,-1*K.1^3+K.1^5-K.1^13,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,-1*K.1-K.1^-1,-1*K.1^7-K.1^-7,K.1-K.1^7-K.1^9,K.1-K.1^7+K.1^15,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7+K.1^9,K.1^11+K.1^13,-1*K.1^11-K.1^13,-1*K.1+K.1^7-K.1^15,K.1^3-K.1^5-K.1^11,K.1^7+K.1^-7,K.1+K.1^-1,K.1^5+K.1^-5,K.1^11+K.1^-11,-1*K.1^11-K.1^-11,-1*K.1^5-K.1^-5,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12,-1*K.1^12,K.1^12,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^2-K.1^6+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,-2*K.1^12,2*K.1^12,0,-1+2*K.1^8,1-2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,K.1^2-K.1^6-K.1^10,0,0,0,0,-1*K.1^12,K.1^4+K.1^-4,K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3-K.1^5+K.1^13,-1*K.1^9-K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^9+K.1^15,-1*K.1^3+K.1^5-K.1^13,-1,-1,-1,K.1^2+K.1^-2,K.1^10+K.1^14,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,0,0,0,1,1-2*K.1^8,1-2*K.1^8,-1+2*K.1^8,1,1-2*K.1^8,1,-1+2*K.1^8,-1+2*K.1^8,K.1+K.1^-1,K.1^7+K.1^-7,K.1-K.1^7-K.1^9,K.1-K.1^7+K.1^15,-1*K.1^3+K.1^5+K.1^11,-1*K.1+K.1^7+K.1^9,K.1^11+K.1^13,-1*K.1^11-K.1^13,-1*K.1+K.1^7-K.1^15,K.1^3-K.1^5-K.1^11,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,K.1^11+K.1^-11,K.1^5+K.1^-5,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^12,K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,K.1^10+K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^2-K.1^6+K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^10-K.1^14,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,K.1^2-K.1^6+K.1^14,-1*K.1^2+K.1^6-K.1^14,-1*K.1^2+K.1^6-K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |2,-2,0,-1,2*K.1^12,-2*K.1^12,0,1-2*K.1^8,-1+2*K.1^8,1,2,2,2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,-1*K.1^2+K.1^6+K.1^10,0,0,0,0,K.1^12,K.1^4+K.1^-4,-1*K.1^12,-1*K.1^4-K.1^-4,-2,-2,-2,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3+K.1^5-K.1^13,K.1^9+K.1^15,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^15,K.1^3-K.1^5+K.1^13,-1,-1,-1,K.1^2+K.1^-2,-1*K.1^10-K.1^14,-1*K.1^10-K.1^-10,K.1^10+K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^-10,-1*K.1^2-K.1^-2,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^12,2*K.1^12,-2*K.1^12,0,0,0,1,-1+2*K.1^8,-1+2*K.1^8,1-2*K.1^8,1,-1+2*K.1^8,1,1-2*K.1^8,1-2*K.1^8,K.1+K.1^-1,K.1^7+K.1^-7,-1*K.1+K.1^7+K.1^9,-1*K.1+K.1^7-K.1^15,K.1^3-K.1^5-K.1^11,K.1-K.1^7-K.1^9,-1*K.1^11-K.1^13,K.1^11+K.1^13,K.1-K.1^7+K.1^15,-1*K.1^3+K.1^5+K.1^11,-1*K.1^7-K.1^-7,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^11-K.1^-11,K.1^11+K.1^-11,K.1^5+K.1^-5,K.1^2-K.1^6-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^2+K.1^6+K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2+K.1^6+K.1^10,-1*K.1^6-K.1^-6,K.1^2-K.1^6-K.1^10,K.1^2-K.1^6-K.1^10,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^4-K.1^-4,-1*K.1^12,-1*K.1^12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12,-1*K.1^12,K.1^12,K.1^2+K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^10-K.1^14,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^10+K.1^14,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^2+K.1^6-K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^2-K.1^6+K.1^14,K.1^10+K.1^14,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^14,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^10-K.1^-10,-1*K.1^2+K.1^6-K.1^14,K.1^2-K.1^6+K.1^14,K.1^2-K.1^6+K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,4,4,0,0,0,0,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,4,4,0,0,0,0,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,4,4,0,0,0,0,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,-4,-4,-4,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,4,-4,4,-4,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,-4,-4,-4,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,4,-4,4,-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,4,4,4,-4,-4,-4,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,4,-4,4,-4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,-4,-4,0,0,0,0,2,-2,2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,2,-2,2,2,2,-2,-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,-4,-4,0,0,0,0,2,-2,2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,2,-2,2,2,2,-2,-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,-4,-4,0,0,0,0,2,-2,2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,2,-2,2,2,2,-2,-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2,2,2,2,2,2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2,2,2,2,2,2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,-2,4,4,4,-2,-2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,-4,-4,0,0,0,0,-2,-2,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,2,2,2,2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,-4,4,4,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-4,-4,-4,-4,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,-4,4,4,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-4,-4,-4,-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,-4,-4,-4,4,4,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-4,-4,-4,-4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,4,4,0,0,0,0,2,-2,2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,-2,2,-2,-2,-2,2,2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,4,4,0,0,0,0,2,-2,2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,-2,2,-2,-2,-2,2,2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-2,-4,-4,4,2,2,-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,4,4,0,0,0,0,2,-2,2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,2,2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,-2,2,-2,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,-2,2,-2,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,-2,2,-2,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,-2,2,-2,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2,2,-2,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,-4,-2,4,4,-4,2,2,-2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2,2,-2,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^18+K.1^-18,-1*K.1^18-K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,-1*K.1^6-K.1^-6,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,K.1^18+K.1^-18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,2,2,2,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,2,2,2,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,4,-2,-4,-4,-4,-2,-2,-2,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,2,2,2,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,K.1+K.1^5+K.1^7-K.1^11+K.1^13+K.1^17-K.1^21-K.1^23,K.1^5+K.1^9+K.1^19-2*K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^17+K.1^19-K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,-1*K.1^5-K.1^9-K.1^19+2*K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^17-K.1^19+K.1^23,-1*K.1-K.1^5-K.1^7+K.1^11-K.1^13-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^8-2*K.1^-8,0,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,0,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^8-2*K.1^-8,0,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,0,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^8-2*K.1^-8,0,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,0,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^8-2*K.1^-8,0,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,0,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,0,0,0,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^4+2*K.1^-4,0,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,0,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,0,0,0,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^4+2*K.1^-4,0,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,0,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,0,0,0,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^4+2*K.1^-4,0,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,0,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,0,0,0,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^4+2*K.1^-4,0,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,0,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^12+2*K.1^-12,0,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,0,0,0,0,0,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^12+2*K.1^-12,0,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,0,0,0,0,0,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,-4*K.1^14,4*K.1^14,0,0,0,-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,4*K.1^14,0,-4*K.1^14,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^12+2*K.1^-12,0,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,0,0,0,0,0,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,4,4*K.1^14,-4*K.1^14,0,0,0,-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,-4*K.1^14,0,4*K.1^14,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^-7,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^-7,2*K.1^7+2*K.1^-7,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^12+2*K.1^-12,0,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,0,0,0,0,0,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^36-K.1^-36,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^36-K.1^-36,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,K.1^24+K.1^-24,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,K.1^24+K.1^-24,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,K.1^24+K.1^-24,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,K.1^24+K.1^-24,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^12-K.1^-12,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1^35-2*K.1^-35,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^12-K.1^-12,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^12-K.1^-12,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^7-2*K.1^-7,2*K.1^35+2*K.1^-35,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^12-K.1^-12,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^36-K.1^-36,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^36-K.1^-36,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^36-K.1^-36,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,K.1^24+K.1^-24,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,K.1^24+K.1^-24,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,-1*K.1^12-K.1^-12,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,K.1^24+K.1^-24,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1*K.1^12-K.1^-12,K.1^12-K.1^16-2*K.1^40-K.1^44,K.1^24+K.1^-24,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1^7-2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^12-K.1^-12,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1^7-2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1^7+2*K.1^-7,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^12-K.1^-12,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,-4*K.1^42,4*K.1^42,0,-2+4*K.1^28,2-4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,-2*K.1^42,2*K.1^14+2*K.1^-14,2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1^7+2*K.1^-7,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1^35-2*K.1^-35,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,K.1^24+K.1^-24,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^36-K.1^-36,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^12-K.1^-12,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,-2,4*K.1^42,-4*K.1^42,0,2-4*K.1^28,-2+4*K.1^28,2,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,2*K.1^42,2*K.1^14+2*K.1^-14,-2*K.1^42,-2*K.1^14-2*K.1^-14,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1^7+2*K.1^-7,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1^35-2*K.1^-35,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1^35+2*K.1^-35,-2*K.1^7-2*K.1^-7,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,K.1^24+K.1^-24,2+K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+K.1^24-2*K.1^28-K.1^32+2*K.1^40+2*K.1^44,K.1^12-K.1^16-2*K.1^40-K.1^44,1+K.1^4-2*K.1^8-K.1^12-K.1^16+2*K.1^20+K.1^24-K.1^32+K.1^44,-1*K.1^36-K.1^-36,-1-K.1^4+2*K.1^8+K.1^12+K.1^16-2*K.1^20-K.1^24+K.1^32-K.1^44,-1*K.1^12-K.1^-12,-2-K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-K.1^24+2*K.1^28+K.1^32-2*K.1^40-2*K.1^44,-1*K.1^12+K.1^16+2*K.1^40+K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10-K.1^18-K.1^38+2*K.1^46,-1*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-K.1^34+K.1^42+K.1^46,K.1^10+K.1^18+K.1^38-2*K.1^46,K.1^2-K.1^14-K.1^18-K.1^22+K.1^26+K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18+K.1^22-K.1^26-K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^39-K.1^41-K.1^45,K.1^5+K.1^23-K.1^33-K.1^37+K.1^47,K.1^3-K.1^11+K.1^17-K.1^25-K.1^31-K.1^45,K.1^3-K.1^5+K.1^7-K.1^9-K.1^15+K.1^23+K.1^27-K.1^35+K.1^37-K.1^39+K.1^47,-1*K.1^5-K.1^23+K.1^33+K.1^37-K.1^47,K.1-K.1^3+K.1^11-K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7+K.1^9-K.1^15+K.1^23+K.1^27-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3+K.1^11-K.1^17+K.1^25+K.1^31+K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1+K.1^9-K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33+K.1^39-K.1^41-K.1^45,K.1^5-K.1^23-K.1^33-K.1^37-K.1^47,K.1-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^39+K.1^41+K.1^45,-1*K.1^5+K.1^23+K.1^33+K.1^37+K.1^47,K.1-K.1^9+K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33-K.1^39+K.1^41+K.1^45,K.1+K.1^3-K.1^11-K.1^13+K.1^23-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1-K.1^3+K.1^11+K.1^13-K.1^23+K.1^31+K.1^35-K.1^47,-1*K.1^3-K.1^5-K.1^7-K.1^9+K.1^15-K.1^23-K.1^27+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11+K.1^17-K.1^25+K.1^31-K.1^45,K.1^3-K.1^11-K.1^17+K.1^25-K.1^31+K.1^45,-1*K.1^3+K.1^11+K.1^15-K.1^23-K.1^27-K.1^29+K.1^31+K.1^35+K.1^41-K.1^47,K.1^3-K.1^11-K.1^15+K.1^23+K.1^27+K.1^29-K.1^31-K.1^35-K.1^41+K.1^47,-1*K.1^3+K.1^5-K.1^7+K.1^9+K.1^15-K.1^23-K.1^27+K.1^35-K.1^37+K.1^39-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_262:= KnownIrreducibles(CR);