/* Group 1344.2375 downloaded from the LMFDB on 02 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, 2, -2, -2, -3, -7, 97, 41, 3459, 3723, 91, 8324, 9292, 116, 19973, 22285, 141, 46598, 14350, 222, 73735]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4", "c8", "c24"]); GPerm := PermutationGroup< 22 | (2,3)(4,5)(6,7)(12,15)(16,18)(19,20)(21,22), (9,10)(12,15)(16,18)(19,20,22,21), (11,12,13,16,14,15,17,18)(19,21,22,20), (11,13,14,17)(12,16,15,18)(19,22)(20,21), (19,22)(20,21), (11,14)(12,15)(13,17)(16,18), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_2375 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^84>,< 2, 1, b^2>,< 2, 1, b^2*c^84>,< 2, 28, a*c^120>,< 2, 42, a*b*c^4>,< 2, 42, a*b^3*c^88>,< 3, 2, c^112>,< 4, 1, b^2*c^42>,< 4, 1, b^2*c^126>,< 4, 1, c^42>,< 4, 1, c^126>,< 4, 12, b^3>,< 4, 12, b^3*c^14>,< 4, 28, a*c^30>,< 4, 42, a*b^3*c^102>,< 4, 42, a*b^3*c^18>,< 6, 2, c^28>,< 6, 2, b^2*c^56>,< 6, 2, b^2*c^28>,< 6, 28, a*c^8>,< 6, 28, a*c^16>,< 7, 2, c^96>,< 7, 2, c^24>,< 7, 2, c^120>,< 8, 4, c^21>,< 8, 4, c^147>,< 8, 6, b^3*c^91>,< 8, 6, b*c^49>,< 8, 6, b^3*c^105>,< 8, 6, b*c^147>,< 8, 14, a*b^2*c^15>,< 8, 14, a*c^141>,< 8, 14, a*c^57>,< 8, 14, a*b^2*c^99>,< 8, 84, a*b^3*c^63>,< 8, 84, a*b*c^105>,< 12, 2, b^2*c^14>,< 12, 2, b^2*c^154>,< 12, 2, c^14>,< 12, 2, c^154>,< 12, 28, a*c^2>,< 12, 28, a*c^10>,< 14, 2, b^2*c^48>,< 14, 2, b^2*c^144>,< 14, 2, b^2*c^72>,< 14, 2, b^2*c^60>,< 14, 2, b^2*c^12>,< 14, 2, b^2*c^132>,< 14, 2, c^60>,< 14, 2, c^12>,< 14, 2, c^132>,< 21, 4, c^16>,< 21, 4, c^32>,< 21, 4, c^64>,< 24, 4, c^7>,< 24, 4, c^161>,< 24, 4, c^49>,< 24, 4, c^119>,< 24, 28, a*c>,< 24, 28, a*c^7>,< 24, 28, a*c^5>,< 24, 28, a*c^11>,< 28, 2, b^2*c^30>,< 28, 2, b^2*c^138>,< 28, 2, b^2*c^90>,< 28, 2, b^2*c^78>,< 28, 2, b^2*c^150>,< 28, 2, b^2*c^18>,< 28, 2, c^6>,< 28, 2, c^162>,< 28, 2, c^18>,< 28, 2, c^150>,< 28, 2, c^30>,< 28, 2, c^138>,< 28, 12, b*c^24>,< 28, 12, b*c^96>,< 28, 12, b*c^8>,< 28, 12, b*c^48>,< 28, 12, b*c^16>,< 28, 12, b*c^4>,< 28, 12, b*c^2>,< 28, 12, b*c^50>,< 28, 12, b*c^10>,< 28, 12, b*c^18>,< 28, 12, b*c^6>,< 28, 12, b*c^26>,< 42, 4, b^2*c^8>,< 42, 4, b^2*c^16>,< 42, 4, b^2*c^32>,< 42, 4, b^2*c^4>,< 42, 4, b^2*c^20>,< 42, 4, b^2*c^100>,< 42, 4, c^4>,< 42, 4, c^20>,< 42, 4, c^44>,< 56, 4, c^3>,< 56, 4, c^165>,< 56, 4, c^9>,< 56, 4, c^159>,< 56, 4, c^15>,< 56, 4, c^153>,< 56, 4, c^27>,< 56, 4, c^141>,< 56, 4, c^33>,< 56, 4, c^135>,< 56, 4, c^39>,< 56, 4, c^129>,< 56, 12, b*c>,< 56, 12, b^3*c^27>,< 56, 12, b^3*c^3>,< 56, 12, b*c^25>,< 56, 12, b*c^9>,< 56, 12, b^3*c^51>,< 56, 12, b*c^3>,< 56, 12, b^3*c^25>,< 56, 12, b^3*c^9>,< 56, 12, b*c^51>,< 56, 12, b*c^27>,< 56, 12, b^3*c>,< 84, 4, b^2*c^2>,< 84, 4, b^2*c^86>,< 84, 4, b^2*c^10>,< 84, 4, b^2*c^38>,< 84, 4, b^2*c^22>,< 84, 4, b^2*c^50>,< 84, 4, c^2>,< 84, 4, c^166>,< 84, 4, c^10>,< 84, 4, c^158>,< 84, 4, c^22>,< 84, 4, c^146>,< 168, 4, c>,< 168, 4, c^139>,< 168, 4, c^5>,< 168, 4, c^23>,< 168, 4, c^11>,< 168, 4, c^17>,< 168, 4, b^2*c>,< 168, 4, c^127>,< 168, 4, c^19>,< 168, 4, c^121>,< 168, 4, c^25>,< 168, 4, b^2*c^11>,< 168, 4, c^31>,< 168, 4, b^2*c^73>,< 168, 4, b^2*c^5>,< 168, 4, c^103>,< 168, 4, c^43>,< 168, 4, c^97>,< 168, 4, c^55>,< 168, 4, b^2*c^97>,< 168, 4, c^89>,< 168, 4, b^2*c^19>,< 168, 4, c^67>,< 168, 4, c^73>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 2, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 2, 2, 0, 0, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, -2, -2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, -1, 2, 2, 2, 2, 0, 0, -2, 0, 0, -1, -1, -1, 1, 1, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, 0, 0, -1, 2, 2, 2, 2, 0, 0, -2, 0, 0, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 2, 0, 0, -1, -1, -1, -1, -1, 2, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,-2,2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,-2*K.1,2*K.1,2,-2,-2,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,-2,2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,2*K.1,-2*K.1,2,-2,-2,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,2,-2,2,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,2*K.1,-2*K.1,2,-2,-2,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,0,2,-2,2,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,-2*K.1,2*K.1,2,-2,-2,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,-2,-2,2,2,0,0,-2,2,-2,-2,-2,2,-2,2,-2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,2,2,2,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,-2,-2,2,2,0,0,-2,2,-2,-2,-2,2,-2,2,-2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,-2,0,0,-1,-2,-2,-2,-2,0,0,2,0,0,-1,-1,-1,1,1,2,2,2,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,1,1,1,1,-1,-1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,-2,0,0,-1,-2,-2,-2,-2,0,0,2,0,0,-1,-1,-1,1,1,2,2,2,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,1,1,1,1,-1,-1,2,2,2,2,2,2,2,2,2,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,-2,0,0,-1,-1,-1,-1,-1,2,2,2,-2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,-2,0,0,-1,-1,-1,-1,-1,2,2,2,2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,2,2,2,2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,-2,-2,0,0,0,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,2,2,2,2,2,2,0,0,0,2,2,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,2,2,2,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,-2,2,-2,0,0,2,2,2,0,0,0,0,0,0,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,-2,2,-2,0,0,2,2,2,0,0,0,0,0,0,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,-2,2,-2,0,0,2,2,2,0,0,0,0,0,0,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,-2,2,-2,0,0,2,2,2,0,0,0,0,0,0,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,2,-2,2,2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,-2,2,0,0,0,2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,2,-2,-2,-2,-2,2,-2,0,0,0,2,2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,-2,-2,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2,-2,2,2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,-2,-2,2,2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,2,2,-2,-2,0,0,0,0,0,0,2,2,-2,-2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,1,-1,1,1-2*K.1^4,-1+2*K.1^4,2,2,2,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,1,-1,1,-1+2*K.1^4,1-2*K.1^4,2,2,2,0,0,0,0,0,0,-2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^3,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,1,-1,1,1-2*K.1^4,-1+2*K.1^4,2,2,2,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,1,-1,1,-1+2*K.1^4,1-2*K.1^4,2,2,2,0,0,0,0,0,0,2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^3,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,1,-1,1,-1+2*K.1^4,1-2*K.1^4,2,2,2,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,1,-1,1,1-2*K.1^4,-1+2*K.1^4,2,2,2,0,0,0,0,0,0,-2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^3,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,1,-1,1,-1+2*K.1^4,1-2*K.1^4,2,2,2,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,1,-1,1,1-2*K.1^4,-1+2*K.1^4,2,2,2,0,0,0,0,0,0,2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^3,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2,-2,2,2,-2,-2,-2,-2,-2,-1,-1,-1,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,2,2,2,-2,-2,0,0,0,0,0,-2,-2,2,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,0,0,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,-2,-2,2,2,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, -2, -4, -4, 4, 4, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -4, 4, -4, -4, -4, 4, -4, 4, -4, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 0, 0, 0, -2, 4, 4, -4, -4, 0, 0, 0, 0, 0, 2, 2, -2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, -4, 4, -4, -4, -4, 4, -4, 4, -4, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, 4, -4, 4, 4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1,4*K.1,-4*K.1,4*K.1,0,0,0,0,0,-2,2,2,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,-4,-4,-4,-4,4,-4,4,-4,4,-2,-2,-2,0,0,0,0,0,0,0,0,-4*K.1,-4*K.1,4*K.1,-4*K.1,4*K.1,-4*K.1,4*K.1,4*K.1,-4*K.1,-4*K.1,4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1,-4*K.1,4*K.1,-4*K.1,0,0,0,0,0,-2,2,2,0,0,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,-4,-4,-4,-4,4,-4,4,-4,4,-2,-2,-2,0,0,0,0,0,0,0,0,4*K.1,4*K.1,-4*K.1,4*K.1,-4*K.1,4*K.1,-4*K.1,-4*K.1,4*K.1,4*K.1,-4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,2,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,4,4,4,4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,4,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,4,-4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^5-2*K.1^-5,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,2,2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^5+2*K.1^-5,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^5+2*K.1^-5,-2*K.1^3-2*K.1^-3,-2*K.1^5-2*K.1^-5,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,-2,-2,-2,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,4,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,-4,4,-4,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,2*K.1-2*K.1^-1,-2*K.1+2*K.1^-1,2*K.1^2-2*K.1^-2,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1+K.1^-1,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,-2*K.1+2*K.1^-1,2*K.1-2*K.1^-1,-2*K.1^2+2*K.1^-2,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1-K.1^-1,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-2*K.1^2+2*K.1^-2,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^-1,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,2*K.1^2-2*K.1^-2,2*K.1^2-2*K.1^-2,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^-3,2*K.1-2*K.1^-1,-2*K.1^2+2*K.1^-2,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1-K.1^-1,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^3-K.1^-3,K.1^3-K.1^-3,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-2*K.1+2*K.1^-1,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,-2*K.1^2+2*K.1^-2,2*K.1^2-2*K.1^-2,2*K.1^3-2*K.1^-3,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1+K.1^-1,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,2,2,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,2*K.1-2*K.1^-1,2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^-3,2*K.1^2-2*K.1^-2,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,2*K.1^2-2*K.1^-2,-2*K.1^2+2*K.1^-2,-2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^-1,2*K.1^3-2*K.1^-3,-2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,K.1^2-K.1^-2,K.1^3-K.1^-3,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1+K.1^13+K.1^29+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1+K.1^13+K.1^29+K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1+K.1^13+K.1^29+K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1+K.1^13+K.1^29+K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^36+2*K.1^-36,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,K.1+K.1^13+K.1^29+K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1+K.1^13+K.1^29+K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1+K.1^13+K.1^29+K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1+K.1^13+K.1^29+K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1+K.1^13+K.1^29+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,K.1+K.1^13+K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1+K.1^13+K.1^29+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^24-2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,2*K.1^12+2*K.1^-12,-2*K.1^36-2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1+K.1^13+K.1^29+K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1+K.1^13+K.1^29+K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,K.1+K.1^13+K.1^29+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1+K.1^13+K.1^29+K.1^41,K.1+K.1^13+K.1^29+K.1^41,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,-1*K.1-K.1^13-K.1^29-K.1^41,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,-4*K.1^42,4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,-2,2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1+K.1^13+K.1^29+K.1^41,K.1+K.1^13+K.1^29+K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,-2,4*K.1^42,-4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,-2,2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,-2*K.1^24-2*K.1^-24,2*K.1^36+2*K.1^-36,-2*K.1^36-2*K.1^-36,-2*K.1^24-2*K.1^-24,-2*K.1^12-2*K.1^-12,2*K.1^36+2*K.1^-36,2*K.1^24+2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^24-K.1^-24,K.1^24+K.1^-24,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^36+K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,2*K.1^5-K.1^9-K.1^33+2*K.1^37,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15+2*K.1^19-2*K.1^23-K.1^27+K.1^35+K.1^39,-1*K.1-K.1^13-K.1^29-K.1^41,-1*K.1-K.1^13-K.1^29-K.1^41,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-2*K.1^3+2*K.1^11+3*K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-4*K.1^43-2*K.1^47,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1^3+2*K.1^11-2*K.1^31-K.1^39,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13-2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41,2*K.1^5-K.1^9-K.1^33+2*K.1^37,K.1+K.1^13+K.1^29+K.1^41,-1*K.1^3-2*K.1^11+2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-3*K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+4*K.1^43+2*K.1^47,K.1^3+K.1^7-K.1^15-2*K.1^19+2*K.1^23+K.1^27-K.1^35-K.1^39,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41,-2*K.1^5+K.1^9+K.1^33-2*K.1^37,K.1-K.1^9-K.1^13+2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,0,0,0,0,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1-K.1^13+K.1^29-K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,0,0,0,0,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1^3-2*K.1^11-2*K.1^31+K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,0,0,0,0,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1^3-2*K.1^11-2*K.1^31+K.1^39,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,0,0,0,0,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24-K.1^-24,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,0,0,0,0,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1-K.1^13+K.1^29-K.1^41,K.1-K.1^13+K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,0,0,0,0,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1+K.1^13-K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1-K.1^13+K.1^29-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,0,0,0,0,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^10+K.1^18+K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41,-1*K.1+K.1^13-K.1^29+K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,2*K.1^24+2*K.1^-24,-2*K.1^24-2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,0,0,0,0,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^36-K.1^-36,-1*K.1^36-K.1^-36,K.1^24+K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^10-K.1^18-K.1^38,K.1^10-K.1^18-K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1-K.1^13+K.1^29-K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,0,0,0,0,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,K.1-K.1^13+K.1^29-K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1+K.1^13-K.1^29+K.1^41,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,0,0,0,0,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,-1*K.1+K.1^13-K.1^29+K.1^41,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,-4*K.1^42,4*K.1^42,4*K.1^42,-4*K.1^42,0,0,0,0,0,2,-2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^42,2*K.1^42,2*K.1^42,-2*K.1^42,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,2*K.1^7+2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,-2*K.1^7-2*K.1^35,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,0,0,0,0,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1-K.1^13+K.1^29-K.1^41,-1*K.1+K.1^13-K.1^29+K.1^41,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,2*K.1^5+K.1^9-K.1^33-2*K.1^37,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,K.1-K.1^13+K.1^29-K.1^41,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1^3-2*K.1^11-2*K.1^31+K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,-2,4*K.1^42,-4*K.1^42,-4*K.1^42,4*K.1^42,0,0,0,0,0,2,-2,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^42,-2*K.1^42,2*K.1^42,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,4*K.1+4*K.1^5-4*K.1^13-4*K.1^17+2*K.1^21+4*K.1^25-4*K.1^33-4*K.1^37+4*K.1^45,-2*K.1^7-2*K.1^35,-4*K.1-4*K.1^5+4*K.1^13+4*K.1^17-2*K.1^21-4*K.1^25+4*K.1^33+4*K.1^37-4*K.1^45,2*K.1^7+2*K.1^35,0,0,0,0,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,-2*K.1^2+2*K.1^10+2*K.1^14-2*K.1^22-2*K.1^26+2*K.1^34-2*K.1^42-2*K.1^46,2*K.1^10-2*K.1^18-2*K.1^38,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,2*K.1^2-2*K.1^10-2*K.1^14+2*K.1^22+2*K.1^26-2*K.1^34+2*K.1^42+2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,-2*K.1^2+2*K.1^14+2*K.1^18-2*K.1^22-2*K.1^26+2*K.1^34+2*K.1^38-2*K.1^46,-2*K.1^10+2*K.1^18+2*K.1^38,2*K.1^2-2*K.1^14-2*K.1^18+2*K.1^22+2*K.1^26-2*K.1^34-2*K.1^38+2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,K.1^36+K.1^-36,K.1^24+K.1^-24,K.1^24+K.1^-24,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^36-K.1^-36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,K.1^2-K.1^10-K.1^14+K.1^22+K.1^26-K.1^34+K.1^42+K.1^46,-1*K.1^10+K.1^18+K.1^38,K.1^2-K.1^14-K.1^18+K.1^22+K.1^26-K.1^34-K.1^38+K.1^46,K.1^10-K.1^18-K.1^38,-1*K.1^2+K.1^10+K.1^14-K.1^22-K.1^26+K.1^34-K.1^42-K.1^46,-1*K.1^2+K.1^14+K.1^18-K.1^22-K.1^26+K.1^34+K.1^38-K.1^46,2*K.1^5+K.1^9-K.1^33-2*K.1^37,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,-1*K.1^3+2*K.1^11+2*K.1^31-K.1^39,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,-1*K.1+K.1^13-K.1^29+K.1^41,K.1-K.1^13+K.1^29-K.1^41,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,2*K.1^3-2*K.1^11-K.1^15+2*K.1^23+K.1^27-2*K.1^31-2*K.1^35+2*K.1^47,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45,K.1^3+K.1^7-K.1^15+2*K.1^23+K.1^27-K.1^35-K.1^39+2*K.1^47,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,K.1-K.1^13+K.1^29-K.1^41,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,-2*K.1^5-K.1^9+K.1^33+2*K.1^37,-1*K.1+K.1^13-K.1^29+K.1^41,K.1^3-2*K.1^11-2*K.1^31+K.1^39,-2*K.1^3+2*K.1^11+K.1^15-2*K.1^23-K.1^27+2*K.1^31+2*K.1^35-2*K.1^47,-1*K.1^3-K.1^7+K.1^15-2*K.1^23-K.1^27+K.1^35+K.1^39-2*K.1^47,K.1-K.1^9-K.1^13-2*K.1^17+K.1^21+2*K.1^25-K.1^29-K.1^33+K.1^41+2*K.1^45,2*K.1^5+K.1^9-K.1^33-2*K.1^37,-1*K.1+K.1^9+K.1^13+2*K.1^17-K.1^21-2*K.1^25+K.1^29+K.1^33-K.1^41-2*K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_2375:= KnownIrreducibles(CR);