/* Group 1344.2337 downloaded from the LMFDB on 26 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -7, -2, -2, -2, -3, 865, 41, 1250, 66, 1539, 19052, 116, 13453, 141, 31374, 166, 28687]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4", "c8"]); GPerm := PermutationGroup< 22 | (2,3)(4,5)(6,7)(9,11)(12,13)(14,16)(15,17)(18,19), (8,9,10,11)(21,22), (8,10)(9,11)(12,14,15,18,13,16,17,19), (12,15,13,17)(14,18,16,19), (8,10)(9,11), (12,13)(14,16)(15,17)(18,19), (20,21,22), (1,2,4,6,7,5,3) >; GLZN := MatrixGroup< 2, Integers(84) | [[71, 0, 0, 71], [1, 56, 56, 29], [43, 42, 21, 1], [71, 50, 14, 69], [55, 3, 0, 1], [29, 0, 0, 29], [22, 63, 63, 1], [1, 12, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1344_2337 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^12>,< 2, 1, b^14>,< 2, 1, b^14*c^12>,< 2, 14, a>,< 2, 14, a*c^12>,< 2, 42, a*b^17>,< 2, 42, a*b^15*c^12>,< 3, 2, c^16>,< 4, 1, c^6>,< 4, 1, c^18>,< 4, 1, b^14*c^6>,< 4, 1, b^14*c^18>,< 4, 6, b^7>,< 4, 6, b^7*c^4>,< 4, 6, b^7*c^14>,< 4, 6, b^21*c^2>,< 4, 14, a*c^6>,< 4, 14, a*c^18>,< 4, 42, a*b^17*c^18>,< 4, 42, a*b^17*c^6>,< 6, 2, c^4>,< 6, 2, b^14*c^8>,< 6, 2, b^14*c^4>,< 6, 14, a*c^8>,< 6, 14, a*c^16>,< 6, 14, a*c^4>,< 6, 14, a*b^2*c^4>,< 7, 2, b^4>,< 7, 2, b^8>,< 7, 2, b^12>,< 8, 1, c^21>,< 8, 1, c^3>,< 8, 1, c^15>,< 8, 1, c^9>,< 8, 1, b^14*c^21>,< 8, 1, b^14*c^3>,< 8, 1, b^14*c^15>,< 8, 1, b^14*c^9>,< 8, 6, b^7*c^7>,< 8, 6, b^21*c>,< 8, 6, b^21*c^13>,< 8, 6, b^7*c^19>,< 8, 14, a*c^3>,< 8, 14, a*c^21>,< 8, 14, a*c^9>,< 8, 14, a*c^15>,< 8, 42, a*b^21*c^15>,< 8, 42, a*b^21*c^9>,< 8, 42, a*b^21*c^21>,< 8, 42, a*b^21*c^3>,< 12, 2, c^2>,< 12, 2, c^22>,< 12, 2, b^14*c^14>,< 12, 2, b^14*c^10>,< 12, 14, a*c^2>,< 12, 14, a*c^22>,< 12, 14, a*c^10>,< 12, 14, a*c^14>,< 14, 2, b^2>,< 14, 2, b^6>,< 14, 2, b^10>,< 14, 2, b^2*c^12>,< 14, 2, b^6*c^12>,< 14, 2, b^10*c^12>,< 14, 2, b^4*c^12>,< 14, 2, b^12*c^12>,< 14, 2, b^20*c^12>,< 21, 4, b^4*c^16>,< 21, 4, b^8*c^8>,< 21, 4, b^16*c^16>,< 24, 2, c^7>,< 24, 2, c^17>,< 24, 2, c^11>,< 24, 2, c^13>,< 24, 2, b^14*c^7>,< 24, 2, b^14*c^17>,< 24, 2, b^14*c^11>,< 24, 2, b^14*c^13>,< 24, 14, a*c>,< 24, 14, a*b^2*c^7>,< 24, 14, a*c^5>,< 24, 14, a*c^19>,< 24, 14, a*c^7>,< 24, 14, a*b^2*c>,< 24, 14, a*c^11>,< 24, 14, a*c^13>,< 28, 2, b^2*c^18>,< 28, 2, b^26*c^6>,< 28, 2, b^6*c^6>,< 28, 2, b^22*c^18>,< 28, 2, b^10*c^18>,< 28, 2, b^18*c^6>,< 28, 2, b^24*c^6>,< 28, 2, b^4*c^18>,< 28, 2, b^16*c^18>,< 28, 2, b^12*c^6>,< 28, 2, b^8*c^6>,< 28, 2, b^20*c^18>,< 28, 6, b>,< 28, 6, b^3>,< 28, 6, b^5>,< 28, 6, b^9>,< 28, 6, b^17>,< 28, 6, b^13>,< 28, 6, b*c^4>,< 28, 6, b^3*c^4>,< 28, 6, b^5*c^4>,< 28, 6, b^9*c^4>,< 28, 6, b^17*c^4>,< 28, 6, b^13*c^4>,< 28, 6, b*c^2>,< 28, 6, b*c^6>,< 28, 6, b^3*c^6>,< 28, 6, b^3*c^2>,< 28, 6, b^5*c^2>,< 28, 6, b^5*c^6>,< 28, 6, b^9*c^2>,< 28, 6, b^9*c^6>,< 28, 6, b^17*c^6>,< 28, 6, b^17*c^2>,< 28, 6, b^13*c^2>,< 28, 6, b^13*c^6>,< 42, 4, b^2*c^8>,< 42, 4, b^10*c^8>,< 42, 4, b^6*c^8>,< 42, 4, b^2*c^4>,< 42, 4, b^10*c^4>,< 42, 4, b^6*c^4>,< 42, 4, b^4*c^4>,< 42, 4, b^20*c^20>,< 42, 4, b^16*c^20>,< 56, 2, b^12*c^3>,< 56, 2, b^16*c^21>,< 56, 2, b^8*c^9>,< 56, 2, b^20*c^15>,< 56, 2, b^4*c^15>,< 56, 2, b^24*c^9>,< 56, 2, b^24*c^3>,< 56, 2, b^4*c^21>,< 56, 2, b^16*c^15>,< 56, 2, b^12*c^9>,< 56, 2, b^8*c^3>,< 56, 2, b^20*c^21>,< 56, 2, b^6*c^3>,< 56, 2, b^22*c^21>,< 56, 2, b^18*c^9>,< 56, 2, b^10*c^15>,< 56, 2, b^2*c^15>,< 56, 2, b^26*c^9>,< 56, 2, b^26*c^3>,< 56, 2, b^2*c^21>,< 56, 2, b^22*c^15>,< 56, 2, b^6*c^9>,< 56, 2, b^18*c^3>,< 56, 2, b^10*c^21>,< 56, 6, b*c>,< 56, 6, b*c^7>,< 56, 6, b^3*c^3>,< 56, 6, b^3*c^5>,< 56, 6, b^5*c^5>,< 56, 6, b^5*c^3>,< 56, 6, b^9*c>,< 56, 6, b^9*c^7>,< 56, 6, b^17*c^3>,< 56, 6, b^17*c^5>,< 56, 6, b^13*c^5>,< 56, 6, b^13*c^3>,< 56, 6, b^13*c^7>,< 56, 6, b^13*c>,< 56, 6, b^17*c>,< 56, 6, b^17*c^7>,< 56, 6, b^9*c^3>,< 56, 6, b^9*c^5>,< 56, 6, b^5*c^7>,< 56, 6, b^5*c>,< 56, 6, b^3*c>,< 56, 6, b^3*c^7>,< 56, 6, b*c^3>,< 56, 6, b*c^5>,< 84, 4, b^2*c^2>,< 84, 4, b^2*c^14>,< 84, 4, b^10*c^2>,< 84, 4, b^10*c^14>,< 84, 4, b^6*c^14>,< 84, 4, b^6*c^2>,< 84, 4, b^8*c^2>,< 84, 4, b^20*c^22>,< 84, 4, b^12*c^10>,< 84, 4, b^16*c^14>,< 84, 4, b^4*c^22>,< 84, 4, b^24*c^2>,< 168, 4, b^4*c>,< 168, 4, b^4*c^7>,< 168, 4, b^8*c^5>,< 168, 4, b^8*c^11>,< 168, 4, b^12*c^11>,< 168, 4, b^12*c^5>,< 168, 4, b^4*c^5>,< 168, 4, b^4*c^11>,< 168, 4, b^12*c>,< 168, 4, b^12*c^7>,< 168, 4, b^8*c^7>,< 168, 4, b^8*c>,< 168, 4, b^2*c>,< 168, 4, b^2*c^7>,< 168, 4, b^10*c^5>,< 168, 4, b^10*c^11>,< 168, 4, b^6*c^11>,< 168, 4, b^6*c^5>,< 168, 4, b^2*c^5>,< 168, 4, b^2*c^11>,< 168, 4, b^6*c>,< 168, 4, b^6*c^7>,< 168, 4, b^10*c^7>,< 168, 4, b^10*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,-1*K.1^2,1,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,-1,K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,K.1^2,1,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1,-1*K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,-1*K.1^2,1,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,-1,K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,K.1^2,1,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1,-1*K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,K.1^2,-1,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,1,-1*K.1^2,-1,-1*K.1^2,1,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1*K.1^2,-1,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,1,K.1^2,-1,K.1^2,1,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,K.1^2,-1,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,1,-1*K.1^2,-1,-1*K.1^2,1,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1*K.1^2,-1,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,1,K.1^2,-1,K.1^2,1,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,K.1^2,-1,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,1,-1*K.1^2,-1,-1*K.1^2,1,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1*K.1^2,-1,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,1,K.1^2,-1,K.1^2,1,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,K.1^2,-1,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,1,-1*K.1^2,-1,-1*K.1^2,1,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1*K.1^2,-1,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,1,K.1^2,-1,K.1^2,1,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1,-1,-1,1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,-1*K.1^2,1,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,-1,K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,K.1^2,1,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1,-1*K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,K.1^2,K.1^2,-1,-1*K.1^2,-1,-1*K.1^2,1,-1,-1*K.1^2,-1*K.1^2,1,K.1^2,1,-1,K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1,1,1,1,-1,-1,1,1,1,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,-1*K.1^2,-1*K.1^2,-1,K.1^2,-1,K.1^2,1,-1,K.1^2,K.1^2,1,-1*K.1^2,1,-1,-1*K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, 0, 0, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,2,2,2,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2,-2,-2,2,2,2,-2,-2,-2,2,2,2,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,2,-2,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,2,2,2,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2,-2,-2,2,2,2,-2,-2,-2,2,2,2,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,2,-2,-2,2,2,-2,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,2,2,2,-2,-2,-2,-2,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,-1,-2,-2,-2,-2,0,0,0,0,2,2,0,0,-1,-1,-1,1,1,1,1,2,2,2,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,1,1,1,1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,-2,-2,0,0,-1,-2,-2,-2,-2,0,0,0,0,2,2,0,0,-1,-1,-1,1,1,1,1,2,2,2,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,1,1,1,1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,0,0,-2,-2,0,0,-1,-1,-1,-1,-1,-1,-1,2,2,2,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,2,0,0,-1,-2,-2,-2,-2,0,0,0,0,-2,-2,0,0,-1,-1,-1,-1,-1,-1,-1,2,2,2,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-2,-2,0,0,0,0,0,0,0,0,1,-1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,2,-2,2,2,2,-2,-2,2,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-2,-2,0,0,0,0,0,0,0,0,1,-1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,2,-2,2,2,2,-2,-2,2,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-2,-2,0,0,0,0,0,0,0,0,1,-1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,2,2,2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,2,2,-2,-2,0,0,0,0,0,0,0,0,1,-1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,2,2,2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-2,2,2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,-2,2,-2,-2,-2,2,2,-2,-2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,2,2,2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,2,-2,2,-2,-2,-2,-2,2,-2,2,2,2,-2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,-2,-2,-2,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1,2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,2,2,2,-2*K.1,2*K.1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,2,-2,2,-2,-2,-2,-2,2,-2,2,2,2,2*K.1^3,-2*K.1,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,-2,-2,-2,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,2,2,2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,2,-2,2,-2,-2,-2,-2,2,-2,2,2,2,2*K.1,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,-2,-2,-2,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,-2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,2*K.1^3,2*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,2,2,2,2*K.1,-2*K.1,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,2,-2,2,-2,-2,-2,-2,2,-2,2,2,2,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,2,-2,-2,-2,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,2*K.1,2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,1,-1,1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,2,2,2,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-1,-2,-2,2,2,0,0,0,0,0,0,0,0,1,-1,1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,2,2,2,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-2,-2,-2,2,2,2,-2,-2,-2,-1,-1,-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2,-2,-2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,1,-1,-1,1,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,-2*K.1^2,0,0,1,1,-1,1,1,-1,-1,2,2,2,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1,0,0,0,0,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,2*K.1^2,0,0,1,1,-1,1,1,-1,-1,2,2,2,-2*K.1,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,2*K.1^2,-2*K.1^2,0,0,1,1,-1,1,1,-1,-1,2,2,2,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1,2*K.1,0,0,0,0,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,-2,2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,-2*K.1^2,2*K.1^2,0,0,1,1,-1,1,1,-1,-1,2,2,2,2*K.1,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,-2*K.1^2,2*K.1^2,0,0,1,1,-1,-1,-1,1,1,2,2,2,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1,0,0,0,0,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,2*K.1^2,-2*K.1^2,0,0,1,1,-1,-1,-1,1,1,2,2,2,-2*K.1,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,-2*K.1^2,2*K.1^2,0,0,1,1,-1,-1,-1,1,1,2,2,2,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1,2*K.1,2*K.1,0,0,0,0,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,2,-2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,0,0,2*K.1^2,-2*K.1^2,0,0,1,1,-1,-1,-1,1,1,2,2,2,2*K.1,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-2,2,-2,-2,-2,-2,2,-2,2,-1,-1,-1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,1,-1,1,1,1,-1,2*K.1^3,2*K.1,2*K.1,-2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,2,2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,2,2,2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^5+K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,2,2,2,2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,K.1^3,-1*K.1^9,K.1^3,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,-2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,2,2,2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^3,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,2,2,2,-2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,K.1^3,-1*K.1^9,K.1^3,K.1^9,K.1^9,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,2,2,2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,K.1^9,-1*K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,2,2,2,2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,K.1^3,-1*K.1^9,K.1^3,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,-2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,2,2,2,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^3,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,2,2,2,-2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,K.1^3,-1*K.1^9,K.1^3,K.1^9,K.1^9,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-1,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,-1,1,1,1-2*K.1^4,-1+2*K.1^4,1-2*K.1^4,-1+2*K.1^4,2,2,2,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,-2,2,-2,-2,-2,-2,2,-2,-1,-1,-1,K.1^9,-1*K.1^3,K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,1,1,1,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^4+K.1^-4,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^10+K.1^18,K.1^4+K.1^-4,-1*K.1^6-K.1^22,-1*K.1^12-K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1-K.1^13,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^4+K.1^-4,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^18,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^4+K.1^-4,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^10+K.1^18,K.1^4+K.1^-4,-1*K.1^6-K.1^22,-1*K.1^12-K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^4+K.1^-4,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^18,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,K.1^3+K.1^11,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^12+K.1^-12,-1*K.1^6-K.1^22,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,K.1^8+K.1^-8,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1+K.1^13,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^12+K.1^-12,K.1^6+K.1^22,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^8+K.1^-8,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1+K.1^13,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^12+K.1^-12,-1*K.1^6-K.1^22,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,K.1^8+K.1^-8,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^12+K.1^-12,K.1^6+K.1^22,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^8+K.1^-8,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,K.1^10+K.1^18,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^4-K.1^-4,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^10-K.1^18,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^6+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1-K.1^13,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,-2,2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,K.1^10+K.1^18,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^4-K.1^-4,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,-2,2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^10-K.1^18,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^6+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,K.1^6+K.1^22,K.1^12+K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1-K.1^13,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^4+K.1^-4,K.1^6+K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^4-K.1^-4,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^12+K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,K.1^6+K.1^22,K.1^12+K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^4+K.1^-4,K.1^6+K.1^22,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^4-K.1^-4,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^12+K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,K.1^3+K.1^11,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^12-K.1^-12,K.1^6+K.1^22,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,-1*K.1^8-K.1^-8,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1+K.1^13,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^4+K.1^-4,K.1^6+K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^8-K.1^-8,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^12-K.1^-12,K.1^6+K.1^22,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,-1*K.1^10-K.1^18,-1*K.1^8-K.1^-8,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^4+K.1^-4,K.1^6+K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^10+K.1^18,-1*K.1^8-K.1^-8,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1+K.1^13,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^6+K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^4+K.1^-4,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^10+K.1^18,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^6-K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^4+K.1^-4,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1-K.1^13,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,2,-2,-2*K.1^14,2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,-1*K.1^4-K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^-12,K.1^10+K.1^18,-1*K.1^8-K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^8+K.1^-8,-1*K.1^10-K.1^18,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^6+K.1^22,K.1^8+K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^4+K.1^-4,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,2,-2,2*K.1^14,-2*K.1^14,0,0,0,0,-2,-2,2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^-12,-1*K.1^10-K.1^18,-1*K.1^8-K.1^-8,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^8+K.1^-8,K.1^10+K.1^18,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^6-K.1^22,K.1^8+K.1^-8,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^4+K.1^-4,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^6+K.1^8,-1*K.1^6-K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^5+K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^4-K.1^10,K.1^4+K.1^10,-1*K.1^6-K.1^8,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,-1*K.1^6-K.1^8,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^4-K.1^10,K.1^4+K.1^10,K.1^4+K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,-1*K.1^6-K.1^8,-1*K.1^4-K.1^10,K.1^6+K.1^8,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^-3,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^5-K.1^-5,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^5+K.1^-5,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1-K.1^-1,K.1^5+K.1^-5,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^4+K.1^10,-1*K.1^4-K.1^10,K.1^6+K.1^8,-1*K.1^4-K.1^10,K.1^4+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1*K.1^6-K.1^8,K.1^6+K.1^8,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^4+K.1^10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,K.1^6+K.1^8,K.1^6+K.1^8,K.1^4+K.1^10,-1*K.1^6-K.1^8,-1+2*K.1^2-K.1^4+K.1^6-K.1^8+K.1^10,1-2*K.1^2+K.1^4-K.1^6+K.1^8-K.1^10,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^12+K.1^16,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,K.1^2+K.1^-2,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^11,K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1-K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1+K.1^13,-1*K.1-K.1^13,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^5-K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^10+K.1^-10,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^10+K.1^-10,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^2+K.1^-2,K.1^12+K.1^16,K.1^12+K.1^16,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1+K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,-1*K.1^5-K.1^9,K.1^19+K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^12-K.1^16,K.1^6+K.1^-6,K.1^10+K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,-1*K.1^2-K.1^-2,K.1^12+K.1^16,K.1^12+K.1^16,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1^3+K.1^11,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^3+K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^11,-1*K.1^19-K.1^23,K.1^19+K.1^23,K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1-K.1^13,K.1+K.1^13,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^5+K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^10-K.1^-10,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,K.1^12+K.1^16,K.1^6+K.1^-6,K.1^10+K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^19+K.1^23,K.1^19+K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,K.1^5+K.1^9,-1*K.1^19-K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^12+K.1^16,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,K.1^2+K.1^-2,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^3+K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^11,-1*K.1^19-K.1^23,K.1^19+K.1^23,K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1-K.1^13,K.1+K.1^13,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^5+K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^10+K.1^-10,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^10+K.1^-10,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,-1*K.1^10-K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^2+K.1^-2,K.1^12+K.1^16,K.1^12+K.1^16,K.1^6+K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^19+K.1^23,K.1^19+K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,K.1^5+K.1^9,-1*K.1^19-K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^12-K.1^16,K.1^6+K.1^-6,K.1^10+K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,-1*K.1^2-K.1^-2,K.1^12+K.1^16,K.1^12+K.1^16,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^11,K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1-K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1+K.1^13,-1*K.1-K.1^13,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^5-K.1^9,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^8+K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^10-K.1^-10,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,K.1^12+K.1^16,K.1^6+K.1^-6,K.1^10+K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^12-K.1^16,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1+K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,-1*K.1^5-K.1^9,K.1^19+K.1^23,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^12+K.1^16,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^6-K.1^-6,K.1^8+K.1^20,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^19-K.1^23,-1*K.1^3+K.1^11,K.1^19+K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1-K.1^13,-1*K.1-K.1^13,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1+K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^16,-1*K.1^6-K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^6-K.1^-6,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,K.1^19+K.1^23,K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1+K.1^13,-1*K.1-K.1^13,-1*K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^16,K.1^6+K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^12-K.1^16,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^6+K.1^-6,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^5+K.1^9,K.1^19+K.1^23,K.1^3-K.1^11,-1*K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1+K.1^13,K.1+K.1^13,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^16,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^12+K.1^16,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^6+K.1^-6,K.1^8+K.1^20,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1-K.1^13,K.1+K.1^13,K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,K.1^12+K.1^16,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^6-K.1^-6,K.1^8+K.1^20,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^5+K.1^9,K.1^19+K.1^23,K.1^3-K.1^11,-1*K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1+K.1^13,K.1+K.1^13,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1-K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^12+K.1^16,-1*K.1^6-K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^2-K.1^-2,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^6-K.1^-6,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1-K.1^13,K.1+K.1^13,K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,-1*K.1^3+K.1^11,K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^12+K.1^16,K.1^6+K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^2+K.1^-2,-1*K.1^12-K.1^16,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^6+K.1^-6,-1*K.1^8-K.1^20,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^19-K.1^23,-1*K.1^3+K.1^11,K.1^19+K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1-K.1^13,-1*K.1-K.1^13,-1*K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1+K.1^13,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^12-K.1^16,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,K.1^12+K.1^16,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^8-K.1^20,K.1^10+K.1^-10,K.1^2+K.1^-2,K.1^12+K.1^16,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^6+K.1^-6,K.1^8+K.1^20,K.1^8+K.1^20,-1*K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5+K.1^9,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^19+K.1^23,K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1+K.1^13,-1*K.1-K.1^13,-1*K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^3-K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1-K.1^13,K.1^3-K.1^11,-1*K.1^3+K.1^11,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1+K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^8-K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,K.1^6+K.1^-6,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^10+K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1-K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^11,K.1^5+K.1^9,K.1^19+K.1^23,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1+K.1^13,-1*K.1-K.1^13,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^6+K.1^-6,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^10+K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3+K.1^11,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1+K.1^13,K.1^5+K.1^9,-1*K.1-K.1^13,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^19-K.1^23,-1*K.1^5-K.1^9,K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^11,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^3+K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,-2*K.1^21,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^10-K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^19-K.1^23,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^13,K.1+K.1^13,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^6-K.1^-6,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^8+K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^10-K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3+K.1^11,K.1-K.1^13,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^13,-1*K.1^5-K.1^9,K.1+K.1^13,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^19+K.1^23,K.1^5+K.1^9,-1*K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^3-K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^8-K.1^20,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^2+K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,K.1^6+K.1^-6,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,K.1^8+K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^10+K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^19-K.1^23,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1-K.1^13,K.1+K.1^13,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^8+K.1^20,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,K.1^2+K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,K.1^6+K.1^-6,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^8-K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^10+K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,-1*K.1^10-K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1-K.1^13,-1*K.1^5-K.1^9,K.1+K.1^13,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^19+K.1^23,K.1^5+K.1^9,-1*K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1-K.1^13,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^3-K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,2*K.1^21,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^8+K.1^20,-1*K.1^10-K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^2-K.1^-2,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^6-K.1^-6,K.1^12+K.1^16,K.1^2+K.1^-2,K.1^10+K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^6-K.1^-6,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,-1*K.1^8-K.1^20,K.1^6+K.1^-6,-1*K.1^12-K.1^16,-1*K.1^10-K.1^-10,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^13,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,-1*K.1-K.1^13,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^11,K.1^5+K.1^9,K.1^19+K.1^23,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1+K.1^13,-1*K.1-K.1^13,K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^19-K.1^23,K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^19+K.1^23,-1*K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^8-K.1^20,-1*K.1^10-K.1^-10,-1*K.1^8-K.1^20,-1*K.1^12-K.1^16,-1*K.1^2-K.1^-2,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^16,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^20,K.1^12+K.1^16,-1*K.1^6-K.1^-6,-1+2*K.1^4-K.1^8+K.1^12-K.1^16+K.1^20,-1*K.1^2-K.1^-2,K.1^6+K.1^-6,K.1^8+K.1^20,K.1^6+K.1^-6,K.1^12+K.1^16,-1*K.1^10-K.1^-10,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,1-2*K.1^4+K.1^8-K.1^12+K.1^16-K.1^20,K.1^2+K.1^-2,K.1^10+K.1^-10,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-1*K.1^8-K.1^-8,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1+K.1^13,K.1^5+K.1^9,-1*K.1-K.1^13,-1*K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,-1*K.1^19-K.1^23,-1*K.1^5-K.1^9,K.1^19+K.1^23,-1*K.1^3+K.1^11,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11+2*K.1^15-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11-2*K.1^15+K.1^19-K.1^23,K.1^3-K.1^11,K.1^3-K.1^11,K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13+2*K.1^17-K.1^21,K.1^19+K.1^23,-1*K.1^19-K.1^23,K.1+K.1^13,-1*K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13-2*K.1^17+K.1^21,-1*K.1^3+K.1^11,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,4,4,4,4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,4,4,4,-4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,4,4,4,-4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,4,4,4,-4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,-2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,-4,-4,-4,4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,-4,-4,-4,4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,-4,-4,-4,4,4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,2,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,2,2,2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^6+K.1^-6,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,4,4,0,0,0,0,-2,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^5+K.1^9,-1*K.1^5-K.1^9,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3+K.1^11,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,4,-4,-4,0,0,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,0,0,2,-2,2,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,4*K.1^7,-4*K.1^7,-4*K.1^7,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,2*K.1^3-2*K.1^5+2*K.1^7-2*K.1^9+2*K.1^11,-2*K.1^3+2*K.1^5-2*K.1^7+2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^5-2*K.1^9,2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^6+K.1^-6,K.1^2+K.1^-2,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^2+K.1^-2,K.1^6+K.1^-6,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,-1*K.1^5-K.1^9,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^3+K.1^5-K.1^7+K.1^9-K.1^11,-1*K.1^5-K.1^9,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^5+K.1^9,K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3-K.1^5+K.1^7-K.1^9+K.1^11,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-2*K.1^3-2*K.1^11,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1-2*K.1^13,2*K.1^3+2*K.1^11,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^5+2*K.1^9,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,2*K.1^3+2*K.1^11,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1-2*K.1^13,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^3-2*K.1^11,2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^5-2*K.1^9,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1-K.1^13,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^13,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5-2*K.1^9,2*K.1-2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,2*K.1-2*K.1^13,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^13,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1+K.1^13,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^13,2*K.1-2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5+2*K.1^9,-2*K.1+2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^13,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,4*K.1^7,-4*K.1^21,4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,2*K.1-2*K.1^13,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^13,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^13,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^13,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1-K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,2,2,-2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,-4*K.1^7,4*K.1^21,-4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,-1*K.1^8-K.1^-8,-2*K.1+2*K.1^13,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^13,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^13,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,-4*K.1^21,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,2*K.1^3+2*K.1^11,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1^3+2*K.1^11,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^5+2*K.1^9,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^5-K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,K.1^3+K.1^11,K.1^3+K.1^11,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,4*K.1^7,-4*K.1^21,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,2*K.1-2*K.1^13,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,4*K.1^21,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-2*K.1^3-2*K.1^11,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^3-2*K.1^11,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^5-2*K.1^9,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^5+K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^19-K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,-1*K.1^3-K.1^11,-1*K.1^3-K.1^11,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,-4*K.1^7,4*K.1^21,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^12-K.1^-12,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,K.1^8+K.1^-8,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^13,2*K.1-2*K.1^13,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,-2*K.1+2*K.1^13,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,-4*K.1^21,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^13,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,-1*K.1+K.1^13,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1^19-K.1^23,K.1^19-K.1^23,-1*K.1^19+K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,4*K.1^7,-4*K.1^21,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,2*K.1^5-2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^5-K.1^9,K.1^5-K.1^9,-1*K.1^5+K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3+K.1^11,K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,4*K.1^21,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^10-2*K.1^18,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^3+2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^13,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1^6-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1-K.1^13,K.1^3+K.1^11,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^19+K.1^23,K.1^19-K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3-K.1^11,K.1-K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1+K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,K.1^3+K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,-4*K.1^7,4*K.1^21,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^-4,K.1^12+K.1^-12,K.1^4+K.1^-4,-1*K.1^8-K.1^-8,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^10+2*K.1^18,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,K.1^8+K.1^-8,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^8-K.1^-8,K.1^8+K.1^-8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-2*K.1^5+2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^6+K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^5+K.1^9,-1*K.1^5+K.1^9,K.1^5-K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1-K.1^13,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1-K.1^13,K.1^19-K.1^23,K.1^3+K.1^11,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1+K.1^13,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,4*K.1^21,-4*K.1^21,4*K.1^21,-4*K.1^7,-4*K.1^21,4*K.1^7,4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^7,-2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,-2*K.1+2*K.1^13,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1^5+K.1^9,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1+K.1^13,K.1^5-K.1^9,K.1^19-K.1^23,K.1^3+K.1^11,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,K.1-K.1^13,-1*K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-4*K.1^7,4*K.1^7,-4*K.1^7,4*K.1^21,4*K.1^7,-4*K.1^21,-4*K.1^21,4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-2*K.1^21,2*K.1^7,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^21,2*K.1^21,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,-2*K.1+2*K.1^13,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,2*K.1-2*K.1^13,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^13,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,K.1^3+K.1^11,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^19+K.1^23,K.1-K.1^13,-1*K.1+K.1^13,-1*K.1+K.1^13,K.1-K.1^13,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,-4*K.1^14,4*K.1^14,4*K.1^14,-4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-4*K.1^21,4*K.1^21,-4*K.1^21,4*K.1^7,4*K.1^21,-4*K.1^7,-4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^14,-2*K.1^14,2*K.1^14,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^7,2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6+2*K.1^22,2*K.1^10+2*K.1^18,-2*K.1^10-2*K.1^18,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,2*K.1-2*K.1^13,2*K.1^19-2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1^5-2*K.1^9,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3+2*K.1^11,2*K.1-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^10-K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,K.1^10+K.1^18,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^10-K.1^18,K.1^10+K.1^18,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,K.1^19-K.1^23,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,K.1^5-K.1^9,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1-K.1^13,-1*K.1^5+K.1^9,-1*K.1^19+K.1^23,-1*K.1^3-K.1^11,-1*K.1^19+K.1^23,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3-K.1^11,-1*K.1+K.1^13,K.1^5-K.1^9,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^3+K.1^11,-1*K.1+K.1^13,K.1^19-K.1^23,-1*K.1^5+K.1^9,K.1-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,-2,4*K.1^14,-4*K.1^14,-4*K.1^14,4*K.1^14,0,0,0,0,0,0,0,0,-2,2,2,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,4*K.1^7,-4*K.1^7,4*K.1^7,-4*K.1^21,-4*K.1^7,4*K.1^21,4*K.1^21,-4*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^14,2*K.1^14,-2*K.1^14,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^8-2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^12+2*K.1^-12,-1*K.1^8-K.1^-8,K.1^12+K.1^-12,K.1^4+K.1^-4,2*K.1^21,-2*K.1^7,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^21,-2*K.1^21,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6-2*K.1^22,-2*K.1^10-2*K.1^18,2*K.1^10+2*K.1^18,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6+2*K.1^22,-2*K.1^6+2*K.1^10-2*K.1^14+2*K.1^18-2*K.1^22,2*K.1^6-2*K.1^10+2*K.1^14-2*K.1^18+2*K.1^22,-2*K.1^6-2*K.1^22,2*K.1^6+2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8-K.1^-8,-1*K.1^4-K.1^-4,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^8+K.1^-8,K.1^8+K.1^-8,2*K.1-2*K.1^13,-2*K.1^3-2*K.1^11,2*K.1^3+2*K.1^11,-2*K.1+2*K.1^13,-2*K.1^3-2*K.1^11,-2*K.1+2*K.1^13,-2*K.1^5+2*K.1^9,-2*K.1^5+2*K.1^9,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,2*K.1^5-2*K.1^9,2*K.1^5-2*K.1^9,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,-2*K.1^19+2*K.1^23,2*K.1^19-2*K.1^23,2*K.1-2*K.1^13,-2*K.1+2*K.1^5-2*K.1^9+2*K.1^13+2*K.1^21,-2*K.1^3+2*K.1^7-2*K.1^11-2*K.1^19+2*K.1^23,2*K.1^3+2*K.1^11,2*K.1-2*K.1^5+2*K.1^9-2*K.1^13-2*K.1^21,2*K.1^3-2*K.1^7+2*K.1^11+2*K.1^19-2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,K.1^10+K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6+K.1^10-K.1^14+K.1^18-K.1^22,-1*K.1^10-K.1^18,K.1^6-K.1^10+K.1^14-K.1^18+K.1^22,-1*K.1^6-K.1^22,K.1^6+K.1^22,-1*K.1^6-K.1^22,K.1^10+K.1^18,-1*K.1^10-K.1^18,-1*K.1^3-K.1^11,K.1^5-K.1^9,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,K.1^19-K.1^23,-1*K.1+K.1^13,K.1-K.1^13,K.1-K.1^13,-1*K.1+K.1^13,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23,-1*K.1^19+K.1^23,-1*K.1^5+K.1^9,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^5+K.1^9,-1*K.1^3-K.1^11,-1*K.1+K.1^5-K.1^9+K.1^13+K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^19-K.1^23,K.1^3+K.1^11,K.1-K.1^5+K.1^9-K.1^13-K.1^21,-1*K.1^3+K.1^7-K.1^11-K.1^19+K.1^23,K.1^5-K.1^9,-1*K.1^19+K.1^23,K.1^3-K.1^7+K.1^11+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1344_2337:= KnownIrreducibles(CR);