/* Group 134.2 downloaded from the LMFDB on 22 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([2, -2, -67, 4]); a := Explode([GPC.1]); AssignNames(~GPC, ["a", "a2"]); GPerm := PermutationGroup< 69 | (1,2), (3,69,68,67,66,65,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4) >; GLFp := MatrixGroup< 2, GF(67) | [[1, 1, 0, 1], [66, 0, 0, 66]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_134_2 := rec< RF | Agroup := true, Zgroup := true, abelian := true, almost_simple := false, cyclic := true, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a^67>,< 67, 1, a^2>,< 67, 1, a^132>,< 67, 1, a^4>,< 67, 1, a^130>,< 67, 1, a^6>,< 67, 1, a^128>,< 67, 1, a^8>,< 67, 1, a^126>,< 67, 1, a^10>,< 67, 1, a^124>,< 67, 1, a^12>,< 67, 1, a^122>,< 67, 1, a^14>,< 67, 1, a^120>,< 67, 1, a^16>,< 67, 1, a^118>,< 67, 1, a^18>,< 67, 1, a^116>,< 67, 1, a^20>,< 67, 1, a^114>,< 67, 1, a^22>,< 67, 1, a^112>,< 67, 1, a^24>,< 67, 1, a^110>,< 67, 1, a^26>,< 67, 1, a^108>,< 67, 1, a^28>,< 67, 1, a^106>,< 67, 1, a^30>,< 67, 1, a^104>,< 67, 1, a^32>,< 67, 1, a^102>,< 67, 1, a^34>,< 67, 1, a^100>,< 67, 1, a^36>,< 67, 1, a^98>,< 67, 1, a^38>,< 67, 1, a^96>,< 67, 1, a^40>,< 67, 1, a^94>,< 67, 1, a^42>,< 67, 1, a^92>,< 67, 1, a^44>,< 67, 1, a^90>,< 67, 1, a^46>,< 67, 1, a^88>,< 67, 1, a^48>,< 67, 1, a^86>,< 67, 1, a^50>,< 67, 1, a^84>,< 67, 1, a^52>,< 67, 1, a^82>,< 67, 1, a^54>,< 67, 1, a^80>,< 67, 1, a^56>,< 67, 1, a^78>,< 67, 1, a^58>,< 67, 1, a^76>,< 67, 1, a^60>,< 67, 1, a^74>,< 67, 1, a^62>,< 67, 1, a^72>,< 67, 1, a^64>,< 67, 1, a^70>,< 67, 1, a^66>,< 67, 1, a^68>,< 134, 1, a>,< 134, 1, a^133>,< 134, 1, a^3>,< 134, 1, a^131>,< 134, 1, a^5>,< 134, 1, a^129>,< 134, 1, a^7>,< 134, 1, a^127>,< 134, 1, a^9>,< 134, 1, a^125>,< 134, 1, a^11>,< 134, 1, a^123>,< 134, 1, a^13>,< 134, 1, a^121>,< 134, 1, a^15>,< 134, 1, a^119>,< 134, 1, a^17>,< 134, 1, a^117>,< 134, 1, a^19>,< 134, 1, a^115>,< 134, 1, a^21>,< 134, 1, a^113>,< 134, 1, a^23>,< 134, 1, a^111>,< 134, 1, a^25>,< 134, 1, a^109>,< 134, 1, a^27>,< 134, 1, a^107>,< 134, 1, a^29>,< 134, 1, a^105>,< 134, 1, a^31>,< 134, 1, a^103>,< 134, 1, a^33>,< 134, 1, a^101>,< 134, 1, a^35>,< 134, 1, a^99>,< 134, 1, a^37>,< 134, 1, a^97>,< 134, 1, a^39>,< 134, 1, a^95>,< 134, 1, a^41>,< 134, 1, a^93>,< 134, 1, a^43>,< 134, 1, a^91>,< 134, 1, a^45>,< 134, 1, a^89>,< 134, 1, a^47>,< 134, 1, a^87>,< 134, 1, a^49>,< 134, 1, a^85>,< 134, 1, a^51>,< 134, 1, a^83>,< 134, 1, a^53>,< 134, 1, a^81>,< 134, 1, a^55>,< 134, 1, a^79>,< 134, 1, a^57>,< 134, 1, a^77>,< 134, 1, a^59>,< 134, 1, a^75>,< 134, 1, a^61>,< 134, 1, a^73>,< 134, 1, a^63>,< 134, 1, a^71>,< 134, 1, a^65>,< 134, 1, a^69>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-33,K.1^-16,K.1,K.1^18,K.1^-32,K.1^-15,K.1^2,K.1^19,K.1^-31,K.1^-14,K.1^3,K.1^20,K.1^-30,K.1^-13,K.1^4,K.1^21,K.1^-29,K.1^-12,K.1^5,K.1^22,K.1^-28,K.1^-11,K.1^6,K.1^23,K.1^-27,K.1^-10,K.1^7,K.1^24,K.1^-26,K.1^-9,K.1^8,K.1^25,K.1^-25,K.1^-17,K.1^33,K.1^16,K.1^-1,K.1^-18,K.1^32,K.1^15,K.1^-2,K.1^-19,K.1^31,K.1^14,K.1^-3,K.1^-20,K.1^30,K.1^13,K.1^-4,K.1^-21,K.1^29,K.1^12,K.1^-5,K.1^-22,K.1^28,K.1^11,K.1^-6,K.1^-23,K.1^27,K.1^10,K.1^-7,K.1^-24,K.1^26,K.1^9,K.1^-8,K.1^17,K.1^-29,K.1^30,K.1^-20,K.1^-3,K.1^14,K.1^31,K.1^-19,K.1^-2,K.1^15,K.1^32,K.1^-18,K.1^-1,K.1^16,K.1^33,K.1^-17,K.1^21,K.1^17,K.1^-33,K.1^-16,K.1,K.1^18,K.1^-32,K.1^-15,K.1^2,K.1^19,K.1^-31,K.1^-14,K.1^3,K.1^20,K.1^-30,K.1^-13,K.1^4,K.1^-21,K.1^-4,K.1^29,K.1^12,K.1^-5,K.1^-22,K.1^28,K.1^11,K.1^-6,K.1^-23,K.1^27,K.1^10,K.1^-7,K.1^-24,K.1^26,K.1^9,K.1^-8,K.1^-25,K.1^25,K.1^8,K.1^-9,K.1^-26,K.1^24,K.1^7,K.1^-10,K.1^-27,K.1^23,K.1^6,K.1^-11,K.1^-28,K.1^22,K.1^5,K.1^-12,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^33,K.1^16,K.1^-1,K.1^-18,K.1^32,K.1^15,K.1^-2,K.1^-19,K.1^31,K.1^14,K.1^-3,K.1^-20,K.1^30,K.1^13,K.1^-4,K.1^-21,K.1^29,K.1^12,K.1^-5,K.1^-22,K.1^28,K.1^11,K.1^-6,K.1^-23,K.1^27,K.1^10,K.1^-7,K.1^-24,K.1^26,K.1^9,K.1^-8,K.1^-25,K.1^25,K.1^17,K.1^-33,K.1^-16,K.1,K.1^18,K.1^-32,K.1^-15,K.1^2,K.1^19,K.1^-31,K.1^-14,K.1^3,K.1^20,K.1^-30,K.1^-13,K.1^4,K.1^21,K.1^-29,K.1^-12,K.1^5,K.1^22,K.1^-28,K.1^-11,K.1^6,K.1^23,K.1^-27,K.1^-10,K.1^7,K.1^24,K.1^-26,K.1^-9,K.1^8,K.1^-17,K.1^29,K.1^-30,K.1^20,K.1^3,K.1^-14,K.1^-31,K.1^19,K.1^2,K.1^-15,K.1^-32,K.1^18,K.1,K.1^-16,K.1^-33,K.1^17,K.1^-21,K.1^-17,K.1^33,K.1^16,K.1^-1,K.1^-18,K.1^32,K.1^15,K.1^-2,K.1^-19,K.1^31,K.1^14,K.1^-3,K.1^-20,K.1^30,K.1^13,K.1^-4,K.1^21,K.1^4,K.1^-29,K.1^-12,K.1^5,K.1^22,K.1^-28,K.1^-11,K.1^6,K.1^23,K.1^-27,K.1^-10,K.1^7,K.1^24,K.1^-26,K.1^-9,K.1^8,K.1^25,K.1^-25,K.1^-8,K.1^9,K.1^26,K.1^-24,K.1^-7,K.1^10,K.1^27,K.1^-23,K.1^-6,K.1^11,K.1^28,K.1^-22,K.1^-5,K.1^12,K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-32,K.1^19,K.1^3,K.1^-13,K.1^-29,K.1^22,K.1^6,K.1^-10,K.1^-26,K.1^25,K.1^9,K.1^-7,K.1^-23,K.1^28,K.1^12,K.1^-4,K.1^-20,K.1^31,K.1^15,K.1^-1,K.1^-17,K.1^-33,K.1^18,K.1^2,K.1^-14,K.1^-30,K.1^21,K.1^5,K.1^-11,K.1^-27,K.1^24,K.1^8,K.1^-8,K.1^16,K.1^32,K.1^-19,K.1^-3,K.1^13,K.1^29,K.1^-22,K.1^-6,K.1^10,K.1^26,K.1^-25,K.1^-9,K.1^7,K.1^23,K.1^-28,K.1^-12,K.1^4,K.1^20,K.1^-31,K.1^-15,K.1,K.1^17,K.1^33,K.1^-18,K.1^-2,K.1^14,K.1^30,K.1^-21,K.1^-5,K.1^11,K.1^27,K.1^-24,K.1^-16,K.1^-20,K.1^23,K.1^7,K.1^-9,K.1^-25,K.1^26,K.1^10,K.1^-6,K.1^-22,K.1^29,K.1^13,K.1^-3,K.1^-19,K.1^32,K.1^16,K.1^-4,K.1^-16,K.1^-32,K.1^19,K.1^3,K.1^-13,K.1^-29,K.1^22,K.1^6,K.1^-10,K.1^-26,K.1^25,K.1^9,K.1^-7,K.1^-23,K.1^28,K.1^12,K.1^4,K.1^-12,K.1^20,K.1^-31,K.1^-15,K.1,K.1^17,K.1^33,K.1^-18,K.1^-2,K.1^14,K.1^30,K.1^-21,K.1^-5,K.1^11,K.1^27,K.1^-24,K.1^-8,K.1^8,K.1^24,K.1^-27,K.1^-11,K.1^5,K.1^21,K.1^-30,K.1^-14,K.1^2,K.1^18,K.1^-33,K.1^-17,K.1^-1,K.1^15,K.1^31,K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^32,K.1^-19,K.1^-3,K.1^13,K.1^29,K.1^-22,K.1^-6,K.1^10,K.1^26,K.1^-25,K.1^-9,K.1^7,K.1^23,K.1^-28,K.1^-12,K.1^4,K.1^20,K.1^-31,K.1^-15,K.1,K.1^17,K.1^33,K.1^-18,K.1^-2,K.1^14,K.1^30,K.1^-21,K.1^-5,K.1^11,K.1^27,K.1^-24,K.1^-8,K.1^8,K.1^-16,K.1^-32,K.1^19,K.1^3,K.1^-13,K.1^-29,K.1^22,K.1^6,K.1^-10,K.1^-26,K.1^25,K.1^9,K.1^-7,K.1^-23,K.1^28,K.1^12,K.1^-4,K.1^-20,K.1^31,K.1^15,K.1^-1,K.1^-17,K.1^-33,K.1^18,K.1^2,K.1^-14,K.1^-30,K.1^21,K.1^5,K.1^-11,K.1^-27,K.1^24,K.1^16,K.1^20,K.1^-23,K.1^-7,K.1^9,K.1^25,K.1^-26,K.1^-10,K.1^6,K.1^22,K.1^-29,K.1^-13,K.1^3,K.1^19,K.1^-32,K.1^-16,K.1^4,K.1^16,K.1^32,K.1^-19,K.1^-3,K.1^13,K.1^29,K.1^-22,K.1^-6,K.1^10,K.1^26,K.1^-25,K.1^-9,K.1^7,K.1^23,K.1^-28,K.1^-12,K.1^-4,K.1^12,K.1^-20,K.1^31,K.1^15,K.1^-1,K.1^-17,K.1^-33,K.1^18,K.1^2,K.1^-14,K.1^-30,K.1^21,K.1^5,K.1^-11,K.1^-27,K.1^24,K.1^8,K.1^-8,K.1^-24,K.1^27,K.1^11,K.1^-5,K.1^-21,K.1^30,K.1^14,K.1^-2,K.1^-18,K.1^33,K.1^17,K.1,K.1^-15,K.1^-31,K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-31,K.1^-13,K.1^5,K.1^23,K.1^-26,K.1^-8,K.1^10,K.1^28,K.1^-21,K.1^-3,K.1^15,K.1^33,K.1^-16,K.1^2,K.1^20,K.1^-29,K.1^-11,K.1^7,K.1^25,K.1^-24,K.1^-6,K.1^12,K.1^30,K.1^-19,K.1^-1,K.1^17,K.1^-32,K.1^-14,K.1^4,K.1^22,K.1^-27,K.1^-9,K.1^9,K.1^-18,K.1^31,K.1^13,K.1^-5,K.1^-23,K.1^26,K.1^8,K.1^-10,K.1^-28,K.1^21,K.1^3,K.1^-15,K.1^-33,K.1^16,K.1^-2,K.1^-20,K.1^29,K.1^11,K.1^-7,K.1^-25,K.1^24,K.1^6,K.1^-12,K.1^-30,K.1^19,K.1,K.1^-17,K.1^32,K.1^14,K.1^-4,K.1^-22,K.1^27,K.1^18,K.1^-11,K.1^16,K.1^-33,K.1^-15,K.1^3,K.1^21,K.1^-28,K.1^-10,K.1^8,K.1^26,K.1^-23,K.1^-5,K.1^13,K.1^31,K.1^-18,K.1^-29,K.1^18,K.1^-31,K.1^-13,K.1^5,K.1^23,K.1^-26,K.1^-8,K.1^10,K.1^28,K.1^-21,K.1^-3,K.1^15,K.1^33,K.1^-16,K.1^2,K.1^20,K.1^29,K.1^-20,K.1^11,K.1^-7,K.1^-25,K.1^24,K.1^6,K.1^-12,K.1^-30,K.1^19,K.1,K.1^-17,K.1^32,K.1^14,K.1^-4,K.1^-22,K.1^27,K.1^9,K.1^-9,K.1^-27,K.1^22,K.1^4,K.1^-14,K.1^-32,K.1^17,K.1^-1,K.1^-19,K.1^30,K.1^12,K.1^-6,K.1^-24,K.1^25,K.1^7,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^31,K.1^13,K.1^-5,K.1^-23,K.1^26,K.1^8,K.1^-10,K.1^-28,K.1^21,K.1^3,K.1^-15,K.1^-33,K.1^16,K.1^-2,K.1^-20,K.1^29,K.1^11,K.1^-7,K.1^-25,K.1^24,K.1^6,K.1^-12,K.1^-30,K.1^19,K.1,K.1^-17,K.1^32,K.1^14,K.1^-4,K.1^-22,K.1^27,K.1^9,K.1^-9,K.1^18,K.1^-31,K.1^-13,K.1^5,K.1^23,K.1^-26,K.1^-8,K.1^10,K.1^28,K.1^-21,K.1^-3,K.1^15,K.1^33,K.1^-16,K.1^2,K.1^20,K.1^-29,K.1^-11,K.1^7,K.1^25,K.1^-24,K.1^-6,K.1^12,K.1^30,K.1^-19,K.1^-1,K.1^17,K.1^-32,K.1^-14,K.1^4,K.1^22,K.1^-27,K.1^-18,K.1^11,K.1^-16,K.1^33,K.1^15,K.1^-3,K.1^-21,K.1^28,K.1^10,K.1^-8,K.1^-26,K.1^23,K.1^5,K.1^-13,K.1^-31,K.1^18,K.1^29,K.1^-18,K.1^31,K.1^13,K.1^-5,K.1^-23,K.1^26,K.1^8,K.1^-10,K.1^-28,K.1^21,K.1^3,K.1^-15,K.1^-33,K.1^16,K.1^-2,K.1^-20,K.1^-29,K.1^20,K.1^-11,K.1^7,K.1^25,K.1^-24,K.1^-6,K.1^12,K.1^30,K.1^-19,K.1^-1,K.1^17,K.1^-32,K.1^-14,K.1^4,K.1^22,K.1^-27,K.1^-9,K.1^9,K.1^27,K.1^-22,K.1^-4,K.1^14,K.1^32,K.1^-17,K.1,K.1^19,K.1^-30,K.1^-12,K.1^6,K.1^24,K.1^-25,K.1^-7,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-30,K.1^22,K.1^7,K.1^-8,K.1^-23,K.1^29,K.1^14,K.1^-1,K.1^-16,K.1^-31,K.1^21,K.1^6,K.1^-9,K.1^-24,K.1^28,K.1^13,K.1^-2,K.1^-17,K.1^-32,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^27,K.1^12,K.1^-3,K.1^-18,K.1^-33,K.1^19,K.1^4,K.1^-11,K.1^-26,K.1^26,K.1^15,K.1^30,K.1^-22,K.1^-7,K.1^8,K.1^23,K.1^-29,K.1^-14,K.1,K.1^16,K.1^31,K.1^-21,K.1^-6,K.1^9,K.1^24,K.1^-28,K.1^-13,K.1^2,K.1^17,K.1^32,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^-27,K.1^-12,K.1^3,K.1^18,K.1^33,K.1^-19,K.1^-4,K.1^11,K.1^-15,K.1^-2,K.1^9,K.1^-6,K.1^-21,K.1^31,K.1^16,K.1,K.1^-14,K.1^-29,K.1^23,K.1^8,K.1^-7,K.1^-22,K.1^30,K.1^15,K.1^13,K.1^-15,K.1^-30,K.1^22,K.1^7,K.1^-8,K.1^-23,K.1^29,K.1^14,K.1^-1,K.1^-16,K.1^-31,K.1^21,K.1^6,K.1^-9,K.1^-24,K.1^28,K.1^-13,K.1^-28,K.1^2,K.1^17,K.1^32,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^-27,K.1^-12,K.1^3,K.1^18,K.1^33,K.1^-19,K.1^-4,K.1^11,K.1^26,K.1^-26,K.1^-11,K.1^4,K.1^19,K.1^-33,K.1^-18,K.1^-3,K.1^12,K.1^27,K.1^-25,K.1^-10,K.1^5,K.1^20,K.1^-32,K.1^-17,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^30,K.1^-22,K.1^-7,K.1^8,K.1^23,K.1^-29,K.1^-14,K.1,K.1^16,K.1^31,K.1^-21,K.1^-6,K.1^9,K.1^24,K.1^-28,K.1^-13,K.1^2,K.1^17,K.1^32,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^-27,K.1^-12,K.1^3,K.1^18,K.1^33,K.1^-19,K.1^-4,K.1^11,K.1^26,K.1^-26,K.1^-15,K.1^-30,K.1^22,K.1^7,K.1^-8,K.1^-23,K.1^29,K.1^14,K.1^-1,K.1^-16,K.1^-31,K.1^21,K.1^6,K.1^-9,K.1^-24,K.1^28,K.1^13,K.1^-2,K.1^-17,K.1^-32,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^27,K.1^12,K.1^-3,K.1^-18,K.1^-33,K.1^19,K.1^4,K.1^-11,K.1^15,K.1^2,K.1^-9,K.1^6,K.1^21,K.1^-31,K.1^-16,K.1^-1,K.1^14,K.1^29,K.1^-23,K.1^-8,K.1^7,K.1^22,K.1^-30,K.1^-15,K.1^-13,K.1^15,K.1^30,K.1^-22,K.1^-7,K.1^8,K.1^23,K.1^-29,K.1^-14,K.1,K.1^16,K.1^31,K.1^-21,K.1^-6,K.1^9,K.1^24,K.1^-28,K.1^13,K.1^28,K.1^-2,K.1^-17,K.1^-32,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^27,K.1^12,K.1^-3,K.1^-18,K.1^-33,K.1^19,K.1^4,K.1^-11,K.1^-26,K.1^26,K.1^11,K.1^-4,K.1^-19,K.1^33,K.1^18,K.1^3,K.1^-12,K.1^-27,K.1^25,K.1^10,K.1^-5,K.1^-20,K.1^32,K.1^17,K.1^-24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-29,K.1^-10,K.1^9,K.1^28,K.1^-20,K.1^-1,K.1^18,K.1^-30,K.1^-11,K.1^8,K.1^27,K.1^-21,K.1^-2,K.1^17,K.1^-31,K.1^-12,K.1^7,K.1^26,K.1^-22,K.1^-3,K.1^16,K.1^-32,K.1^-13,K.1^6,K.1^25,K.1^-23,K.1^-4,K.1^15,K.1^-33,K.1^-14,K.1^5,K.1^24,K.1^-24,K.1^-19,K.1^29,K.1^10,K.1^-9,K.1^-28,K.1^20,K.1,K.1^-18,K.1^30,K.1^11,K.1^-8,K.1^-27,K.1^21,K.1^2,K.1^-17,K.1^31,K.1^12,K.1^-7,K.1^-26,K.1^22,K.1^3,K.1^-16,K.1^32,K.1^13,K.1^-6,K.1^-25,K.1^23,K.1^4,K.1^-15,K.1^33,K.1^14,K.1^-5,K.1^19,K.1^7,K.1^2,K.1^21,K.1^-27,K.1^-8,K.1^11,K.1^30,K.1^-18,K.1,K.1^20,K.1^-28,K.1^-9,K.1^10,K.1^29,K.1^-19,K.1^-12,K.1^19,K.1^-29,K.1^-10,K.1^9,K.1^28,K.1^-20,K.1^-1,K.1^18,K.1^-30,K.1^-11,K.1^8,K.1^27,K.1^-21,K.1^-2,K.1^17,K.1^-31,K.1^12,K.1^31,K.1^-7,K.1^-26,K.1^22,K.1^3,K.1^-16,K.1^32,K.1^13,K.1^-6,K.1^-25,K.1^23,K.1^4,K.1^-15,K.1^33,K.1^14,K.1^-5,K.1^-24,K.1^24,K.1^5,K.1^-14,K.1^-33,K.1^15,K.1^-4,K.1^-23,K.1^25,K.1^6,K.1^-13,K.1^-32,K.1^16,K.1^-3,K.1^-22,K.1^26,K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^29,K.1^10,K.1^-9,K.1^-28,K.1^20,K.1,K.1^-18,K.1^30,K.1^11,K.1^-8,K.1^-27,K.1^21,K.1^2,K.1^-17,K.1^31,K.1^12,K.1^-7,K.1^-26,K.1^22,K.1^3,K.1^-16,K.1^32,K.1^13,K.1^-6,K.1^-25,K.1^23,K.1^4,K.1^-15,K.1^33,K.1^14,K.1^-5,K.1^-24,K.1^24,K.1^19,K.1^-29,K.1^-10,K.1^9,K.1^28,K.1^-20,K.1^-1,K.1^18,K.1^-30,K.1^-11,K.1^8,K.1^27,K.1^-21,K.1^-2,K.1^17,K.1^-31,K.1^-12,K.1^7,K.1^26,K.1^-22,K.1^-3,K.1^16,K.1^-32,K.1^-13,K.1^6,K.1^25,K.1^-23,K.1^-4,K.1^15,K.1^-33,K.1^-14,K.1^5,K.1^-19,K.1^-7,K.1^-2,K.1^-21,K.1^27,K.1^8,K.1^-11,K.1^-30,K.1^18,K.1^-1,K.1^-20,K.1^28,K.1^9,K.1^-10,K.1^-29,K.1^19,K.1^12,K.1^-19,K.1^29,K.1^10,K.1^-9,K.1^-28,K.1^20,K.1,K.1^-18,K.1^30,K.1^11,K.1^-8,K.1^-27,K.1^21,K.1^2,K.1^-17,K.1^31,K.1^-12,K.1^-31,K.1^7,K.1^26,K.1^-22,K.1^-3,K.1^16,K.1^-32,K.1^-13,K.1^6,K.1^25,K.1^-23,K.1^-4,K.1^15,K.1^-33,K.1^-14,K.1^5,K.1^24,K.1^-24,K.1^-5,K.1^14,K.1^33,K.1^-15,K.1^4,K.1^23,K.1^-25,K.1^-6,K.1^13,K.1^32,K.1^-16,K.1^3,K.1^22,K.1^-26,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-28,K.1^25,K.1^11,K.1^-3,K.1^-17,K.1^-31,K.1^22,K.1^8,K.1^-6,K.1^-20,K.1^33,K.1^19,K.1^5,K.1^-9,K.1^-23,K.1^30,K.1^16,K.1^2,K.1^-12,K.1^-26,K.1^27,K.1^13,K.1^-1,K.1^-15,K.1^-29,K.1^24,K.1^10,K.1^-4,K.1^-18,K.1^-32,K.1^21,K.1^7,K.1^-7,K.1^14,K.1^28,K.1^-25,K.1^-11,K.1^3,K.1^17,K.1^31,K.1^-22,K.1^-8,K.1^6,K.1^20,K.1^-33,K.1^-19,K.1^-5,K.1^9,K.1^23,K.1^-30,K.1^-16,K.1^-2,K.1^12,K.1^26,K.1^-27,K.1^-13,K.1,K.1^15,K.1^29,K.1^-24,K.1^-10,K.1^4,K.1^18,K.1^32,K.1^-21,K.1^-14,K.1^16,K.1^-5,K.1^-19,K.1^-33,K.1^20,K.1^6,K.1^-8,K.1^-22,K.1^31,K.1^17,K.1^3,K.1^-11,K.1^-25,K.1^28,K.1^14,K.1^30,K.1^-14,K.1^-28,K.1^25,K.1^11,K.1^-3,K.1^-17,K.1^-31,K.1^22,K.1^8,K.1^-6,K.1^-20,K.1^33,K.1^19,K.1^5,K.1^-9,K.1^-23,K.1^-30,K.1^23,K.1^-16,K.1^-2,K.1^12,K.1^26,K.1^-27,K.1^-13,K.1,K.1^15,K.1^29,K.1^-24,K.1^-10,K.1^4,K.1^18,K.1^32,K.1^-21,K.1^-7,K.1^7,K.1^21,K.1^-32,K.1^-18,K.1^-4,K.1^10,K.1^24,K.1^-29,K.1^-15,K.1^-1,K.1^13,K.1^27,K.1^-26,K.1^-12,K.1^2,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^28,K.1^-25,K.1^-11,K.1^3,K.1^17,K.1^31,K.1^-22,K.1^-8,K.1^6,K.1^20,K.1^-33,K.1^-19,K.1^-5,K.1^9,K.1^23,K.1^-30,K.1^-16,K.1^-2,K.1^12,K.1^26,K.1^-27,K.1^-13,K.1,K.1^15,K.1^29,K.1^-24,K.1^-10,K.1^4,K.1^18,K.1^32,K.1^-21,K.1^-7,K.1^7,K.1^-14,K.1^-28,K.1^25,K.1^11,K.1^-3,K.1^-17,K.1^-31,K.1^22,K.1^8,K.1^-6,K.1^-20,K.1^33,K.1^19,K.1^5,K.1^-9,K.1^-23,K.1^30,K.1^16,K.1^2,K.1^-12,K.1^-26,K.1^27,K.1^13,K.1^-1,K.1^-15,K.1^-29,K.1^24,K.1^10,K.1^-4,K.1^-18,K.1^-32,K.1^21,K.1^14,K.1^-16,K.1^5,K.1^19,K.1^33,K.1^-20,K.1^-6,K.1^8,K.1^22,K.1^-31,K.1^-17,K.1^-3,K.1^11,K.1^25,K.1^-28,K.1^-14,K.1^-30,K.1^14,K.1^28,K.1^-25,K.1^-11,K.1^3,K.1^17,K.1^31,K.1^-22,K.1^-8,K.1^6,K.1^20,K.1^-33,K.1^-19,K.1^-5,K.1^9,K.1^23,K.1^30,K.1^-23,K.1^16,K.1^2,K.1^-12,K.1^-26,K.1^27,K.1^13,K.1^-1,K.1^-15,K.1^-29,K.1^24,K.1^10,K.1^-4,K.1^-18,K.1^-32,K.1^21,K.1^7,K.1^-7,K.1^-21,K.1^32,K.1^18,K.1^4,K.1^-10,K.1^-24,K.1^29,K.1^15,K.1,K.1^-13,K.1^-27,K.1^26,K.1^12,K.1^-2,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-27,K.1^-7,K.1^13,K.1^33,K.1^-14,K.1^6,K.1^26,K.1^-21,K.1^-1,K.1^19,K.1^-28,K.1^-8,K.1^12,K.1^32,K.1^-15,K.1^5,K.1^25,K.1^-22,K.1^-2,K.1^18,K.1^-29,K.1^-9,K.1^11,K.1^31,K.1^-16,K.1^4,K.1^24,K.1^-23,K.1^-3,K.1^17,K.1^-30,K.1^-10,K.1^10,K.1^-20,K.1^27,K.1^7,K.1^-13,K.1^-33,K.1^14,K.1^-6,K.1^-26,K.1^21,K.1,K.1^-19,K.1^28,K.1^8,K.1^-12,K.1^-32,K.1^15,K.1^-5,K.1^-25,K.1^22,K.1^2,K.1^-18,K.1^29,K.1^9,K.1^-11,K.1^-31,K.1^16,K.1^-4,K.1^-24,K.1^23,K.1^3,K.1^-17,K.1^30,K.1^20,K.1^25,K.1^-12,K.1^8,K.1^28,K.1^-19,K.1,K.1^21,K.1^-26,K.1^-6,K.1^14,K.1^-33,K.1^-13,K.1^7,K.1^27,K.1^-20,K.1^5,K.1^20,K.1^-27,K.1^-7,K.1^13,K.1^33,K.1^-14,K.1^6,K.1^26,K.1^-21,K.1^-1,K.1^19,K.1^-28,K.1^-8,K.1^12,K.1^32,K.1^-15,K.1^-5,K.1^15,K.1^-25,K.1^22,K.1^2,K.1^-18,K.1^29,K.1^9,K.1^-11,K.1^-31,K.1^16,K.1^-4,K.1^-24,K.1^23,K.1^3,K.1^-17,K.1^30,K.1^10,K.1^-10,K.1^-30,K.1^17,K.1^-3,K.1^-23,K.1^24,K.1^4,K.1^-16,K.1^31,K.1^11,K.1^-9,K.1^-29,K.1^18,K.1^-2,K.1^-22,K.1^-32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^27,K.1^7,K.1^-13,K.1^-33,K.1^14,K.1^-6,K.1^-26,K.1^21,K.1,K.1^-19,K.1^28,K.1^8,K.1^-12,K.1^-32,K.1^15,K.1^-5,K.1^-25,K.1^22,K.1^2,K.1^-18,K.1^29,K.1^9,K.1^-11,K.1^-31,K.1^16,K.1^-4,K.1^-24,K.1^23,K.1^3,K.1^-17,K.1^30,K.1^10,K.1^-10,K.1^20,K.1^-27,K.1^-7,K.1^13,K.1^33,K.1^-14,K.1^6,K.1^26,K.1^-21,K.1^-1,K.1^19,K.1^-28,K.1^-8,K.1^12,K.1^32,K.1^-15,K.1^5,K.1^25,K.1^-22,K.1^-2,K.1^18,K.1^-29,K.1^-9,K.1^11,K.1^31,K.1^-16,K.1^4,K.1^24,K.1^-23,K.1^-3,K.1^17,K.1^-30,K.1^-20,K.1^-25,K.1^12,K.1^-8,K.1^-28,K.1^19,K.1^-1,K.1^-21,K.1^26,K.1^6,K.1^-14,K.1^33,K.1^13,K.1^-7,K.1^-27,K.1^20,K.1^-5,K.1^-20,K.1^27,K.1^7,K.1^-13,K.1^-33,K.1^14,K.1^-6,K.1^-26,K.1^21,K.1,K.1^-19,K.1^28,K.1^8,K.1^-12,K.1^-32,K.1^15,K.1^5,K.1^-15,K.1^25,K.1^-22,K.1^-2,K.1^18,K.1^-29,K.1^-9,K.1^11,K.1^31,K.1^-16,K.1^4,K.1^24,K.1^-23,K.1^-3,K.1^17,K.1^-30,K.1^-10,K.1^10,K.1^30,K.1^-17,K.1^3,K.1^23,K.1^-24,K.1^-4,K.1^16,K.1^-31,K.1^-11,K.1^9,K.1^29,K.1^-18,K.1^2,K.1^22,K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-26,K.1^28,K.1^15,K.1^2,K.1^-11,K.1^-24,K.1^30,K.1^17,K.1^4,K.1^-9,K.1^-22,K.1^32,K.1^19,K.1^6,K.1^-7,K.1^-20,K.1^-33,K.1^21,K.1^8,K.1^-5,K.1^-18,K.1^-31,K.1^23,K.1^10,K.1^-3,K.1^-16,K.1^-29,K.1^25,K.1^12,K.1^-1,K.1^-14,K.1^-27,K.1^27,K.1^13,K.1^26,K.1^-28,K.1^-15,K.1^-2,K.1^11,K.1^24,K.1^-30,K.1^-17,K.1^-4,K.1^9,K.1^22,K.1^-32,K.1^-19,K.1^-6,K.1^7,K.1^20,K.1^33,K.1^-21,K.1^-8,K.1^5,K.1^18,K.1^31,K.1^-23,K.1^-10,K.1^3,K.1^16,K.1^29,K.1^-25,K.1^-12,K.1,K.1^14,K.1^-13,K.1^-33,K.1^-19,K.1^-32,K.1^22,K.1^9,K.1^-4,K.1^-17,K.1^-30,K.1^24,K.1^11,K.1^-2,K.1^-15,K.1^-28,K.1^26,K.1^13,K.1^-20,K.1^-13,K.1^-26,K.1^28,K.1^15,K.1^2,K.1^-11,K.1^-24,K.1^30,K.1^17,K.1^4,K.1^-9,K.1^-22,K.1^32,K.1^19,K.1^6,K.1^-7,K.1^20,K.1^7,K.1^33,K.1^-21,K.1^-8,K.1^5,K.1^18,K.1^31,K.1^-23,K.1^-10,K.1^3,K.1^16,K.1^29,K.1^-25,K.1^-12,K.1,K.1^14,K.1^27,K.1^-27,K.1^-14,K.1^-1,K.1^12,K.1^25,K.1^-29,K.1^-16,K.1^-3,K.1^10,K.1^23,K.1^-31,K.1^-18,K.1^-5,K.1^8,K.1^21,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^26,K.1^-28,K.1^-15,K.1^-2,K.1^11,K.1^24,K.1^-30,K.1^-17,K.1^-4,K.1^9,K.1^22,K.1^-32,K.1^-19,K.1^-6,K.1^7,K.1^20,K.1^33,K.1^-21,K.1^-8,K.1^5,K.1^18,K.1^31,K.1^-23,K.1^-10,K.1^3,K.1^16,K.1^29,K.1^-25,K.1^-12,K.1,K.1^14,K.1^27,K.1^-27,K.1^-13,K.1^-26,K.1^28,K.1^15,K.1^2,K.1^-11,K.1^-24,K.1^30,K.1^17,K.1^4,K.1^-9,K.1^-22,K.1^32,K.1^19,K.1^6,K.1^-7,K.1^-20,K.1^-33,K.1^21,K.1^8,K.1^-5,K.1^-18,K.1^-31,K.1^23,K.1^10,K.1^-3,K.1^-16,K.1^-29,K.1^25,K.1^12,K.1^-1,K.1^-14,K.1^13,K.1^33,K.1^19,K.1^32,K.1^-22,K.1^-9,K.1^4,K.1^17,K.1^30,K.1^-24,K.1^-11,K.1^2,K.1^15,K.1^28,K.1^-26,K.1^-13,K.1^20,K.1^13,K.1^26,K.1^-28,K.1^-15,K.1^-2,K.1^11,K.1^24,K.1^-30,K.1^-17,K.1^-4,K.1^9,K.1^22,K.1^-32,K.1^-19,K.1^-6,K.1^7,K.1^-20,K.1^-7,K.1^-33,K.1^21,K.1^8,K.1^-5,K.1^-18,K.1^-31,K.1^23,K.1^10,K.1^-3,K.1^-16,K.1^-29,K.1^25,K.1^12,K.1^-1,K.1^-14,K.1^-27,K.1^27,K.1^14,K.1,K.1^-12,K.1^-25,K.1^29,K.1^16,K.1^3,K.1^-10,K.1^-23,K.1^31,K.1^18,K.1^5,K.1^-8,K.1^-21,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-25,K.1^-4,K.1^17,K.1^-29,K.1^-8,K.1^13,K.1^-33,K.1^-12,K.1^9,K.1^30,K.1^-16,K.1^5,K.1^26,K.1^-20,K.1,K.1^22,K.1^-24,K.1^-3,K.1^18,K.1^-28,K.1^-7,K.1^14,K.1^-32,K.1^-11,K.1^10,K.1^31,K.1^-15,K.1^6,K.1^27,K.1^-19,K.1^2,K.1^23,K.1^-23,K.1^-21,K.1^25,K.1^4,K.1^-17,K.1^29,K.1^8,K.1^-13,K.1^33,K.1^12,K.1^-9,K.1^-30,K.1^16,K.1^-5,K.1^-26,K.1^20,K.1^-1,K.1^-22,K.1^24,K.1^3,K.1^-18,K.1^28,K.1^7,K.1^-14,K.1^32,K.1^11,K.1^-10,K.1^-31,K.1^15,K.1^-6,K.1^-27,K.1^19,K.1^-2,K.1^21,K.1^-24,K.1^-26,K.1^-5,K.1^16,K.1^-30,K.1^-9,K.1^12,K.1^33,K.1^-13,K.1^8,K.1^29,K.1^-17,K.1^4,K.1^25,K.1^-21,K.1^22,K.1^21,K.1^-25,K.1^-4,K.1^17,K.1^-29,K.1^-8,K.1^13,K.1^-33,K.1^-12,K.1^9,K.1^30,K.1^-16,K.1^5,K.1^26,K.1^-20,K.1,K.1^-22,K.1^-1,K.1^24,K.1^3,K.1^-18,K.1^28,K.1^7,K.1^-14,K.1^32,K.1^11,K.1^-10,K.1^-31,K.1^15,K.1^-6,K.1^-27,K.1^19,K.1^-2,K.1^-23,K.1^23,K.1^2,K.1^-19,K.1^27,K.1^6,K.1^-15,K.1^31,K.1^10,K.1^-11,K.1^-32,K.1^14,K.1^-7,K.1^-28,K.1^18,K.1^-3,K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^25,K.1^4,K.1^-17,K.1^29,K.1^8,K.1^-13,K.1^33,K.1^12,K.1^-9,K.1^-30,K.1^16,K.1^-5,K.1^-26,K.1^20,K.1^-1,K.1^-22,K.1^24,K.1^3,K.1^-18,K.1^28,K.1^7,K.1^-14,K.1^32,K.1^11,K.1^-10,K.1^-31,K.1^15,K.1^-6,K.1^-27,K.1^19,K.1^-2,K.1^-23,K.1^23,K.1^21,K.1^-25,K.1^-4,K.1^17,K.1^-29,K.1^-8,K.1^13,K.1^-33,K.1^-12,K.1^9,K.1^30,K.1^-16,K.1^5,K.1^26,K.1^-20,K.1,K.1^22,K.1^-24,K.1^-3,K.1^18,K.1^-28,K.1^-7,K.1^14,K.1^-32,K.1^-11,K.1^10,K.1^31,K.1^-15,K.1^6,K.1^27,K.1^-19,K.1^2,K.1^-21,K.1^24,K.1^26,K.1^5,K.1^-16,K.1^30,K.1^9,K.1^-12,K.1^-33,K.1^13,K.1^-8,K.1^-29,K.1^17,K.1^-4,K.1^-25,K.1^21,K.1^-22,K.1^-21,K.1^25,K.1^4,K.1^-17,K.1^29,K.1^8,K.1^-13,K.1^33,K.1^12,K.1^-9,K.1^-30,K.1^16,K.1^-5,K.1^-26,K.1^20,K.1^-1,K.1^22,K.1,K.1^-24,K.1^-3,K.1^18,K.1^-28,K.1^-7,K.1^14,K.1^-32,K.1^-11,K.1^10,K.1^31,K.1^-15,K.1^6,K.1^27,K.1^-19,K.1^2,K.1^23,K.1^-23,K.1^-2,K.1^19,K.1^-27,K.1^-6,K.1^15,K.1^-31,K.1^-10,K.1^11,K.1^32,K.1^-14,K.1^7,K.1^28,K.1^-18,K.1^3,K.1^-20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-24,K.1^31,K.1^19,K.1^7,K.1^-5,K.1^-17,K.1^-29,K.1^26,K.1^14,K.1^2,K.1^-10,K.1^-22,K.1^33,K.1^21,K.1^9,K.1^-3,K.1^-15,K.1^-27,K.1^28,K.1^16,K.1^4,K.1^-8,K.1^-20,K.1^-32,K.1^23,K.1^11,K.1^-1,K.1^-13,K.1^-25,K.1^30,K.1^18,K.1^6,K.1^-6,K.1^12,K.1^24,K.1^-31,K.1^-19,K.1^-7,K.1^5,K.1^17,K.1^29,K.1^-26,K.1^-14,K.1^-2,K.1^10,K.1^22,K.1^-33,K.1^-21,K.1^-9,K.1^3,K.1^15,K.1^27,K.1^-28,K.1^-16,K.1^-4,K.1^8,K.1^20,K.1^32,K.1^-23,K.1^-11,K.1,K.1^13,K.1^25,K.1^-30,K.1^-18,K.1^-12,K.1^-15,K.1^-33,K.1^22,K.1^10,K.1^-2,K.1^-14,K.1^-26,K.1^29,K.1^17,K.1^5,K.1^-7,K.1^-19,K.1^-31,K.1^24,K.1^12,K.1^-3,K.1^-12,K.1^-24,K.1^31,K.1^19,K.1^7,K.1^-5,K.1^-17,K.1^-29,K.1^26,K.1^14,K.1^2,K.1^-10,K.1^-22,K.1^33,K.1^21,K.1^9,K.1^3,K.1^-9,K.1^15,K.1^27,K.1^-28,K.1^-16,K.1^-4,K.1^8,K.1^20,K.1^32,K.1^-23,K.1^-11,K.1,K.1^13,K.1^25,K.1^-30,K.1^-18,K.1^-6,K.1^6,K.1^18,K.1^30,K.1^-25,K.1^-13,K.1^-1,K.1^11,K.1^23,K.1^-32,K.1^-20,K.1^-8,K.1^4,K.1^16,K.1^28,K.1^-27,K.1^-21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^24,K.1^-31,K.1^-19,K.1^-7,K.1^5,K.1^17,K.1^29,K.1^-26,K.1^-14,K.1^-2,K.1^10,K.1^22,K.1^-33,K.1^-21,K.1^-9,K.1^3,K.1^15,K.1^27,K.1^-28,K.1^-16,K.1^-4,K.1^8,K.1^20,K.1^32,K.1^-23,K.1^-11,K.1,K.1^13,K.1^25,K.1^-30,K.1^-18,K.1^-6,K.1^6,K.1^-12,K.1^-24,K.1^31,K.1^19,K.1^7,K.1^-5,K.1^-17,K.1^-29,K.1^26,K.1^14,K.1^2,K.1^-10,K.1^-22,K.1^33,K.1^21,K.1^9,K.1^-3,K.1^-15,K.1^-27,K.1^28,K.1^16,K.1^4,K.1^-8,K.1^-20,K.1^-32,K.1^23,K.1^11,K.1^-1,K.1^-13,K.1^-25,K.1^30,K.1^18,K.1^12,K.1^15,K.1^33,K.1^-22,K.1^-10,K.1^2,K.1^14,K.1^26,K.1^-29,K.1^-17,K.1^-5,K.1^7,K.1^19,K.1^31,K.1^-24,K.1^-12,K.1^3,K.1^12,K.1^24,K.1^-31,K.1^-19,K.1^-7,K.1^5,K.1^17,K.1^29,K.1^-26,K.1^-14,K.1^-2,K.1^10,K.1^22,K.1^-33,K.1^-21,K.1^-9,K.1^-3,K.1^9,K.1^-15,K.1^-27,K.1^28,K.1^16,K.1^4,K.1^-8,K.1^-20,K.1^-32,K.1^23,K.1^11,K.1^-1,K.1^-13,K.1^-25,K.1^30,K.1^18,K.1^6,K.1^-6,K.1^-18,K.1^-30,K.1^25,K.1^13,K.1,K.1^-11,K.1^-23,K.1^32,K.1^20,K.1^8,K.1^-4,K.1^-16,K.1^-28,K.1^27,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-23,K.1^-1,K.1^21,K.1^-24,K.1^-2,K.1^20,K.1^-25,K.1^-3,K.1^19,K.1^-26,K.1^-4,K.1^18,K.1^-27,K.1^-5,K.1^17,K.1^-28,K.1^-6,K.1^16,K.1^-29,K.1^-7,K.1^15,K.1^-30,K.1^-8,K.1^14,K.1^-31,K.1^-9,K.1^13,K.1^-32,K.1^-10,K.1^12,K.1^-33,K.1^-11,K.1^11,K.1^-22,K.1^23,K.1,K.1^-21,K.1^24,K.1^2,K.1^-20,K.1^25,K.1^3,K.1^-19,K.1^26,K.1^4,K.1^-18,K.1^27,K.1^5,K.1^-17,K.1^28,K.1^6,K.1^-16,K.1^29,K.1^7,K.1^-15,K.1^30,K.1^8,K.1^-14,K.1^31,K.1^9,K.1^-13,K.1^32,K.1^10,K.1^-12,K.1^33,K.1^22,K.1^-6,K.1^27,K.1^-18,K.1^4,K.1^26,K.1^-19,K.1^3,K.1^25,K.1^-20,K.1^2,K.1^24,K.1^-21,K.1,K.1^23,K.1^-22,K.1^-28,K.1^22,K.1^-23,K.1^-1,K.1^21,K.1^-24,K.1^-2,K.1^20,K.1^-25,K.1^-3,K.1^19,K.1^-26,K.1^-4,K.1^18,K.1^-27,K.1^-5,K.1^17,K.1^28,K.1^-17,K.1^6,K.1^-16,K.1^29,K.1^7,K.1^-15,K.1^30,K.1^8,K.1^-14,K.1^31,K.1^9,K.1^-13,K.1^32,K.1^10,K.1^-12,K.1^33,K.1^11,K.1^-11,K.1^-33,K.1^12,K.1^-10,K.1^-32,K.1^13,K.1^-9,K.1^-31,K.1^14,K.1^-8,K.1^-30,K.1^15,K.1^-7,K.1^-29,K.1^16,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^23,K.1,K.1^-21,K.1^24,K.1^2,K.1^-20,K.1^25,K.1^3,K.1^-19,K.1^26,K.1^4,K.1^-18,K.1^27,K.1^5,K.1^-17,K.1^28,K.1^6,K.1^-16,K.1^29,K.1^7,K.1^-15,K.1^30,K.1^8,K.1^-14,K.1^31,K.1^9,K.1^-13,K.1^32,K.1^10,K.1^-12,K.1^33,K.1^11,K.1^-11,K.1^22,K.1^-23,K.1^-1,K.1^21,K.1^-24,K.1^-2,K.1^20,K.1^-25,K.1^-3,K.1^19,K.1^-26,K.1^-4,K.1^18,K.1^-27,K.1^-5,K.1^17,K.1^-28,K.1^-6,K.1^16,K.1^-29,K.1^-7,K.1^15,K.1^-30,K.1^-8,K.1^14,K.1^-31,K.1^-9,K.1^13,K.1^-32,K.1^-10,K.1^12,K.1^-33,K.1^-22,K.1^6,K.1^-27,K.1^18,K.1^-4,K.1^-26,K.1^19,K.1^-3,K.1^-25,K.1^20,K.1^-2,K.1^-24,K.1^21,K.1^-1,K.1^-23,K.1^22,K.1^28,K.1^-22,K.1^23,K.1,K.1^-21,K.1^24,K.1^2,K.1^-20,K.1^25,K.1^3,K.1^-19,K.1^26,K.1^4,K.1^-18,K.1^27,K.1^5,K.1^-17,K.1^-28,K.1^17,K.1^-6,K.1^16,K.1^-29,K.1^-7,K.1^15,K.1^-30,K.1^-8,K.1^14,K.1^-31,K.1^-9,K.1^13,K.1^-32,K.1^-10,K.1^12,K.1^-33,K.1^-11,K.1^11,K.1^33,K.1^-12,K.1^10,K.1^32,K.1^-13,K.1^9,K.1^31,K.1^-14,K.1^8,K.1^30,K.1^-15,K.1^7,K.1^29,K.1^-16,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-22,K.1^-33,K.1^23,K.1^12,K.1,K.1^-10,K.1^-21,K.1^-32,K.1^24,K.1^13,K.1^2,K.1^-9,K.1^-20,K.1^-31,K.1^25,K.1^14,K.1^3,K.1^-8,K.1^-19,K.1^-30,K.1^26,K.1^15,K.1^4,K.1^-7,K.1^-18,K.1^-29,K.1^27,K.1^16,K.1^5,K.1^-6,K.1^-17,K.1^-28,K.1^28,K.1^11,K.1^22,K.1^33,K.1^-23,K.1^-12,K.1^-1,K.1^10,K.1^21,K.1^32,K.1^-24,K.1^-13,K.1^-2,K.1^9,K.1^20,K.1^31,K.1^-25,K.1^-14,K.1^-3,K.1^8,K.1^19,K.1^30,K.1^-26,K.1^-15,K.1^-4,K.1^7,K.1^18,K.1^29,K.1^-27,K.1^-16,K.1^-5,K.1^6,K.1^17,K.1^-11,K.1^3,K.1^20,K.1^9,K.1^-2,K.1^-13,K.1^-24,K.1^32,K.1^21,K.1^10,K.1^-1,K.1^-12,K.1^-23,K.1^33,K.1^22,K.1^11,K.1^14,K.1^-11,K.1^-22,K.1^-33,K.1^23,K.1^12,K.1,K.1^-10,K.1^-21,K.1^-32,K.1^24,K.1^13,K.1^2,K.1^-9,K.1^-20,K.1^-31,K.1^25,K.1^-14,K.1^-25,K.1^-3,K.1^8,K.1^19,K.1^30,K.1^-26,K.1^-15,K.1^-4,K.1^7,K.1^18,K.1^29,K.1^-27,K.1^-16,K.1^-5,K.1^6,K.1^17,K.1^28,K.1^-28,K.1^-17,K.1^-6,K.1^5,K.1^16,K.1^27,K.1^-29,K.1^-18,K.1^-7,K.1^4,K.1^15,K.1^26,K.1^-30,K.1^-19,K.1^-8,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^22,K.1^33,K.1^-23,K.1^-12,K.1^-1,K.1^10,K.1^21,K.1^32,K.1^-24,K.1^-13,K.1^-2,K.1^9,K.1^20,K.1^31,K.1^-25,K.1^-14,K.1^-3,K.1^8,K.1^19,K.1^30,K.1^-26,K.1^-15,K.1^-4,K.1^7,K.1^18,K.1^29,K.1^-27,K.1^-16,K.1^-5,K.1^6,K.1^17,K.1^28,K.1^-28,K.1^-11,K.1^-22,K.1^-33,K.1^23,K.1^12,K.1,K.1^-10,K.1^-21,K.1^-32,K.1^24,K.1^13,K.1^2,K.1^-9,K.1^-20,K.1^-31,K.1^25,K.1^14,K.1^3,K.1^-8,K.1^-19,K.1^-30,K.1^26,K.1^15,K.1^4,K.1^-7,K.1^-18,K.1^-29,K.1^27,K.1^16,K.1^5,K.1^-6,K.1^-17,K.1^11,K.1^-3,K.1^-20,K.1^-9,K.1^2,K.1^13,K.1^24,K.1^-32,K.1^-21,K.1^-10,K.1,K.1^12,K.1^23,K.1^-33,K.1^-22,K.1^-11,K.1^-14,K.1^11,K.1^22,K.1^33,K.1^-23,K.1^-12,K.1^-1,K.1^10,K.1^21,K.1^32,K.1^-24,K.1^-13,K.1^-2,K.1^9,K.1^20,K.1^31,K.1^-25,K.1^14,K.1^25,K.1^3,K.1^-8,K.1^-19,K.1^-30,K.1^26,K.1^15,K.1^4,K.1^-7,K.1^-18,K.1^-29,K.1^27,K.1^16,K.1^5,K.1^-6,K.1^-17,K.1^-28,K.1^28,K.1^17,K.1^6,K.1^-5,K.1^-16,K.1^-27,K.1^29,K.1^18,K.1^7,K.1^-4,K.1^-15,K.1^-26,K.1^30,K.1^19,K.1^8,K.1^-31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-21,K.1^2,K.1^25,K.1^-19,K.1^4,K.1^27,K.1^-17,K.1^6,K.1^29,K.1^-15,K.1^8,K.1^31,K.1^-13,K.1^10,K.1^33,K.1^-11,K.1^12,K.1^-32,K.1^-9,K.1^14,K.1^-30,K.1^-7,K.1^16,K.1^-28,K.1^-5,K.1^18,K.1^-26,K.1^-3,K.1^20,K.1^-24,K.1^-1,K.1^22,K.1^-22,K.1^-23,K.1^21,K.1^-2,K.1^-25,K.1^19,K.1^-4,K.1^-27,K.1^17,K.1^-6,K.1^-29,K.1^15,K.1^-8,K.1^-31,K.1^13,K.1^-10,K.1^-33,K.1^11,K.1^-12,K.1^32,K.1^9,K.1^-14,K.1^30,K.1^7,K.1^-16,K.1^28,K.1^5,K.1^-18,K.1^26,K.1^3,K.1^-20,K.1^24,K.1,K.1^23,K.1^12,K.1^13,K.1^-31,K.1^-8,K.1^15,K.1^-29,K.1^-6,K.1^17,K.1^-27,K.1^-4,K.1^19,K.1^-25,K.1^-2,K.1^21,K.1^-23,K.1^-11,K.1^23,K.1^-21,K.1^2,K.1^25,K.1^-19,K.1^4,K.1^27,K.1^-17,K.1^6,K.1^29,K.1^-15,K.1^8,K.1^31,K.1^-13,K.1^10,K.1^33,K.1^11,K.1^-33,K.1^-12,K.1^32,K.1^9,K.1^-14,K.1^30,K.1^7,K.1^-16,K.1^28,K.1^5,K.1^-18,K.1^26,K.1^3,K.1^-20,K.1^24,K.1,K.1^-22,K.1^22,K.1^-1,K.1^-24,K.1^20,K.1^-3,K.1^-26,K.1^18,K.1^-5,K.1^-28,K.1^16,K.1^-7,K.1^-30,K.1^14,K.1^-9,K.1^-32,K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^21,K.1^-2,K.1^-25,K.1^19,K.1^-4,K.1^-27,K.1^17,K.1^-6,K.1^-29,K.1^15,K.1^-8,K.1^-31,K.1^13,K.1^-10,K.1^-33,K.1^11,K.1^-12,K.1^32,K.1^9,K.1^-14,K.1^30,K.1^7,K.1^-16,K.1^28,K.1^5,K.1^-18,K.1^26,K.1^3,K.1^-20,K.1^24,K.1,K.1^-22,K.1^22,K.1^23,K.1^-21,K.1^2,K.1^25,K.1^-19,K.1^4,K.1^27,K.1^-17,K.1^6,K.1^29,K.1^-15,K.1^8,K.1^31,K.1^-13,K.1^10,K.1^33,K.1^-11,K.1^12,K.1^-32,K.1^-9,K.1^14,K.1^-30,K.1^-7,K.1^16,K.1^-28,K.1^-5,K.1^18,K.1^-26,K.1^-3,K.1^20,K.1^-24,K.1^-1,K.1^-23,K.1^-12,K.1^-13,K.1^31,K.1^8,K.1^-15,K.1^29,K.1^6,K.1^-17,K.1^27,K.1^4,K.1^-19,K.1^25,K.1^2,K.1^-21,K.1^23,K.1^11,K.1^-23,K.1^21,K.1^-2,K.1^-25,K.1^19,K.1^-4,K.1^-27,K.1^17,K.1^-6,K.1^-29,K.1^15,K.1^-8,K.1^-31,K.1^13,K.1^-10,K.1^-33,K.1^-11,K.1^33,K.1^12,K.1^-32,K.1^-9,K.1^14,K.1^-30,K.1^-7,K.1^16,K.1^-28,K.1^-5,K.1^18,K.1^-26,K.1^-3,K.1^20,K.1^-24,K.1^-1,K.1^22,K.1^-22,K.1,K.1^24,K.1^-20,K.1^3,K.1^26,K.1^-18,K.1^5,K.1^28,K.1^-16,K.1^7,K.1^30,K.1^-14,K.1^9,K.1^32,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-20,K.1^-30,K.1^27,K.1^17,K.1^7,K.1^-3,K.1^-13,K.1^-23,K.1^-33,K.1^24,K.1^14,K.1^4,K.1^-6,K.1^-16,K.1^-26,K.1^31,K.1^21,K.1^11,K.1,K.1^-9,K.1^-19,K.1^-29,K.1^28,K.1^18,K.1^8,K.1^-2,K.1^-12,K.1^-22,K.1^-32,K.1^25,K.1^15,K.1^5,K.1^-5,K.1^10,K.1^20,K.1^30,K.1^-27,K.1^-17,K.1^-7,K.1^3,K.1^13,K.1^23,K.1^33,K.1^-24,K.1^-14,K.1^-4,K.1^6,K.1^16,K.1^26,K.1^-31,K.1^-21,K.1^-11,K.1^-1,K.1^9,K.1^19,K.1^29,K.1^-28,K.1^-18,K.1^-8,K.1^2,K.1^12,K.1^22,K.1^32,K.1^-25,K.1^-15,K.1^-10,K.1^21,K.1^6,K.1^-4,K.1^-14,K.1^-24,K.1^33,K.1^23,K.1^13,K.1^3,K.1^-7,K.1^-17,K.1^-27,K.1^30,K.1^20,K.1^10,K.1^31,K.1^-10,K.1^-20,K.1^-30,K.1^27,K.1^17,K.1^7,K.1^-3,K.1^-13,K.1^-23,K.1^-33,K.1^24,K.1^14,K.1^4,K.1^-6,K.1^-16,K.1^-26,K.1^-31,K.1^26,K.1^-21,K.1^-11,K.1^-1,K.1^9,K.1^19,K.1^29,K.1^-28,K.1^-18,K.1^-8,K.1^2,K.1^12,K.1^22,K.1^32,K.1^-25,K.1^-15,K.1^-5,K.1^5,K.1^15,K.1^25,K.1^-32,K.1^-22,K.1^-12,K.1^-2,K.1^8,K.1^18,K.1^28,K.1^-29,K.1^-19,K.1^-9,K.1,K.1^11,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^20,K.1^30,K.1^-27,K.1^-17,K.1^-7,K.1^3,K.1^13,K.1^23,K.1^33,K.1^-24,K.1^-14,K.1^-4,K.1^6,K.1^16,K.1^26,K.1^-31,K.1^-21,K.1^-11,K.1^-1,K.1^9,K.1^19,K.1^29,K.1^-28,K.1^-18,K.1^-8,K.1^2,K.1^12,K.1^22,K.1^32,K.1^-25,K.1^-15,K.1^-5,K.1^5,K.1^-10,K.1^-20,K.1^-30,K.1^27,K.1^17,K.1^7,K.1^-3,K.1^-13,K.1^-23,K.1^-33,K.1^24,K.1^14,K.1^4,K.1^-6,K.1^-16,K.1^-26,K.1^31,K.1^21,K.1^11,K.1,K.1^-9,K.1^-19,K.1^-29,K.1^28,K.1^18,K.1^8,K.1^-2,K.1^-12,K.1^-22,K.1^-32,K.1^25,K.1^15,K.1^10,K.1^-21,K.1^-6,K.1^4,K.1^14,K.1^24,K.1^-33,K.1^-23,K.1^-13,K.1^-3,K.1^7,K.1^17,K.1^27,K.1^-30,K.1^-20,K.1^-10,K.1^-31,K.1^10,K.1^20,K.1^30,K.1^-27,K.1^-17,K.1^-7,K.1^3,K.1^13,K.1^23,K.1^33,K.1^-24,K.1^-14,K.1^-4,K.1^6,K.1^16,K.1^26,K.1^31,K.1^-26,K.1^21,K.1^11,K.1,K.1^-9,K.1^-19,K.1^-29,K.1^28,K.1^18,K.1^8,K.1^-2,K.1^-12,K.1^-22,K.1^-32,K.1^25,K.1^15,K.1^5,K.1^-5,K.1^-15,K.1^-25,K.1^32,K.1^22,K.1^12,K.1^2,K.1^-8,K.1^-18,K.1^-28,K.1^29,K.1^19,K.1^9,K.1^-1,K.1^-11,K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-19,K.1^5,K.1^29,K.1^-14,K.1^10,K.1^-33,K.1^-9,K.1^15,K.1^-28,K.1^-4,K.1^20,K.1^-23,K.1,K.1^25,K.1^-18,K.1^6,K.1^30,K.1^-13,K.1^11,K.1^-32,K.1^-8,K.1^16,K.1^-27,K.1^-3,K.1^21,K.1^-22,K.1^2,K.1^26,K.1^-17,K.1^7,K.1^31,K.1^-12,K.1^12,K.1^-24,K.1^19,K.1^-5,K.1^-29,K.1^14,K.1^-10,K.1^33,K.1^9,K.1^-15,K.1^28,K.1^4,K.1^-20,K.1^23,K.1^-1,K.1^-25,K.1^18,K.1^-6,K.1^-30,K.1^13,K.1^-11,K.1^32,K.1^8,K.1^-16,K.1^27,K.1^3,K.1^-21,K.1^22,K.1^-2,K.1^-26,K.1^17,K.1^-7,K.1^-31,K.1^24,K.1^30,K.1^-1,K.1^23,K.1^-20,K.1^4,K.1^28,K.1^-15,K.1^9,K.1^33,K.1^-10,K.1^14,K.1^-29,K.1^-5,K.1^19,K.1^-24,K.1^6,K.1^24,K.1^-19,K.1^5,K.1^29,K.1^-14,K.1^10,K.1^-33,K.1^-9,K.1^15,K.1^-28,K.1^-4,K.1^20,K.1^-23,K.1,K.1^25,K.1^-18,K.1^-6,K.1^18,K.1^-30,K.1^13,K.1^-11,K.1^32,K.1^8,K.1^-16,K.1^27,K.1^3,K.1^-21,K.1^22,K.1^-2,K.1^-26,K.1^17,K.1^-7,K.1^-31,K.1^12,K.1^-12,K.1^31,K.1^7,K.1^-17,K.1^26,K.1^2,K.1^-22,K.1^21,K.1^-3,K.1^-27,K.1^16,K.1^-8,K.1^-32,K.1^11,K.1^-13,K.1^-25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^19,K.1^-5,K.1^-29,K.1^14,K.1^-10,K.1^33,K.1^9,K.1^-15,K.1^28,K.1^4,K.1^-20,K.1^23,K.1^-1,K.1^-25,K.1^18,K.1^-6,K.1^-30,K.1^13,K.1^-11,K.1^32,K.1^8,K.1^-16,K.1^27,K.1^3,K.1^-21,K.1^22,K.1^-2,K.1^-26,K.1^17,K.1^-7,K.1^-31,K.1^12,K.1^-12,K.1^24,K.1^-19,K.1^5,K.1^29,K.1^-14,K.1^10,K.1^-33,K.1^-9,K.1^15,K.1^-28,K.1^-4,K.1^20,K.1^-23,K.1,K.1^25,K.1^-18,K.1^6,K.1^30,K.1^-13,K.1^11,K.1^-32,K.1^-8,K.1^16,K.1^-27,K.1^-3,K.1^21,K.1^-22,K.1^2,K.1^26,K.1^-17,K.1^7,K.1^31,K.1^-24,K.1^-30,K.1,K.1^-23,K.1^20,K.1^-4,K.1^-28,K.1^15,K.1^-9,K.1^-33,K.1^10,K.1^-14,K.1^29,K.1^5,K.1^-19,K.1^24,K.1^-6,K.1^-24,K.1^19,K.1^-5,K.1^-29,K.1^14,K.1^-10,K.1^33,K.1^9,K.1^-15,K.1^28,K.1^4,K.1^-20,K.1^23,K.1^-1,K.1^-25,K.1^18,K.1^6,K.1^-18,K.1^30,K.1^-13,K.1^11,K.1^-32,K.1^-8,K.1^16,K.1^-27,K.1^-3,K.1^21,K.1^-22,K.1^2,K.1^26,K.1^-17,K.1^7,K.1^31,K.1^-12,K.1^12,K.1^-31,K.1^-7,K.1^17,K.1^-26,K.1^-2,K.1^22,K.1^-21,K.1^3,K.1^27,K.1^-16,K.1^8,K.1^32,K.1^-11,K.1^13,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-18,K.1^-27,K.1^31,K.1^22,K.1^13,K.1^4,K.1^-5,K.1^-14,K.1^-23,K.1^-32,K.1^26,K.1^17,K.1^8,K.1^-1,K.1^-10,K.1^-19,K.1^-28,K.1^30,K.1^21,K.1^12,K.1^3,K.1^-6,K.1^-15,K.1^-24,K.1^-33,K.1^25,K.1^16,K.1^7,K.1^-2,K.1^-11,K.1^-20,K.1^-29,K.1^29,K.1^9,K.1^18,K.1^27,K.1^-31,K.1^-22,K.1^-13,K.1^-4,K.1^5,K.1^14,K.1^23,K.1^32,K.1^-26,K.1^-17,K.1^-8,K.1,K.1^10,K.1^19,K.1^28,K.1^-30,K.1^-21,K.1^-12,K.1^-3,K.1^6,K.1^15,K.1^24,K.1^33,K.1^-25,K.1^-16,K.1^-7,K.1^2,K.1^11,K.1^20,K.1^-9,K.1^-28,K.1^-8,K.1^-17,K.1^-26,K.1^32,K.1^23,K.1^14,K.1^5,K.1^-4,K.1^-13,K.1^-22,K.1^-31,K.1^27,K.1^18,K.1^9,K.1^-19,K.1^-9,K.1^-18,K.1^-27,K.1^31,K.1^22,K.1^13,K.1^4,K.1^-5,K.1^-14,K.1^-23,K.1^-32,K.1^26,K.1^17,K.1^8,K.1^-1,K.1^-10,K.1^19,K.1^10,K.1^28,K.1^-30,K.1^-21,K.1^-12,K.1^-3,K.1^6,K.1^15,K.1^24,K.1^33,K.1^-25,K.1^-16,K.1^-7,K.1^2,K.1^11,K.1^20,K.1^29,K.1^-29,K.1^-20,K.1^-11,K.1^-2,K.1^7,K.1^16,K.1^25,K.1^-33,K.1^-24,K.1^-15,K.1^-6,K.1^3,K.1^12,K.1^21,K.1^30,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^18,K.1^27,K.1^-31,K.1^-22,K.1^-13,K.1^-4,K.1^5,K.1^14,K.1^23,K.1^32,K.1^-26,K.1^-17,K.1^-8,K.1,K.1^10,K.1^19,K.1^28,K.1^-30,K.1^-21,K.1^-12,K.1^-3,K.1^6,K.1^15,K.1^24,K.1^33,K.1^-25,K.1^-16,K.1^-7,K.1^2,K.1^11,K.1^20,K.1^29,K.1^-29,K.1^-9,K.1^-18,K.1^-27,K.1^31,K.1^22,K.1^13,K.1^4,K.1^-5,K.1^-14,K.1^-23,K.1^-32,K.1^26,K.1^17,K.1^8,K.1^-1,K.1^-10,K.1^-19,K.1^-28,K.1^30,K.1^21,K.1^12,K.1^3,K.1^-6,K.1^-15,K.1^-24,K.1^-33,K.1^25,K.1^16,K.1^7,K.1^-2,K.1^-11,K.1^-20,K.1^9,K.1^28,K.1^8,K.1^17,K.1^26,K.1^-32,K.1^-23,K.1^-14,K.1^-5,K.1^4,K.1^13,K.1^22,K.1^31,K.1^-27,K.1^-18,K.1^-9,K.1^19,K.1^9,K.1^18,K.1^27,K.1^-31,K.1^-22,K.1^-13,K.1^-4,K.1^5,K.1^14,K.1^23,K.1^32,K.1^-26,K.1^-17,K.1^-8,K.1,K.1^10,K.1^-19,K.1^-10,K.1^-28,K.1^30,K.1^21,K.1^12,K.1^3,K.1^-6,K.1^-15,K.1^-24,K.1^-33,K.1^25,K.1^16,K.1^7,K.1^-2,K.1^-11,K.1^-20,K.1^-29,K.1^29,K.1^20,K.1^11,K.1^2,K.1^-7,K.1^-16,K.1^-25,K.1^33,K.1^24,K.1^15,K.1^6,K.1^-3,K.1^-12,K.1^-21,K.1^-30,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-17,K.1^8,K.1^33,K.1^-9,K.1^16,K.1^-26,K.1^-1,K.1^24,K.1^-18,K.1^7,K.1^32,K.1^-10,K.1^15,K.1^-27,K.1^-2,K.1^23,K.1^-19,K.1^6,K.1^31,K.1^-11,K.1^14,K.1^-28,K.1^-3,K.1^22,K.1^-20,K.1^5,K.1^30,K.1^-12,K.1^13,K.1^-29,K.1^-4,K.1^21,K.1^-21,K.1^-25,K.1^17,K.1^-8,K.1^-33,K.1^9,K.1^-16,K.1^26,K.1,K.1^-24,K.1^18,K.1^-7,K.1^-32,K.1^10,K.1^-15,K.1^27,K.1^2,K.1^-23,K.1^19,K.1^-6,K.1^-31,K.1^11,K.1^-14,K.1^28,K.1^3,K.1^-22,K.1^20,K.1^-5,K.1^-30,K.1^12,K.1^-13,K.1^29,K.1^4,K.1^25,K.1^-19,K.1^-15,K.1^10,K.1^-32,K.1^-7,K.1^18,K.1^-24,K.1,K.1^26,K.1^-16,K.1^9,K.1^-33,K.1^-8,K.1^17,K.1^-25,K.1^23,K.1^25,K.1^-17,K.1^8,K.1^33,K.1^-9,K.1^16,K.1^-26,K.1^-1,K.1^24,K.1^-18,K.1^7,K.1^32,K.1^-10,K.1^15,K.1^-27,K.1^-2,K.1^-23,K.1^2,K.1^19,K.1^-6,K.1^-31,K.1^11,K.1^-14,K.1^28,K.1^3,K.1^-22,K.1^20,K.1^-5,K.1^-30,K.1^12,K.1^-13,K.1^29,K.1^4,K.1^-21,K.1^21,K.1^-4,K.1^-29,K.1^13,K.1^-12,K.1^30,K.1^5,K.1^-20,K.1^22,K.1^-3,K.1^-28,K.1^14,K.1^-11,K.1^31,K.1^6,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^17,K.1^-8,K.1^-33,K.1^9,K.1^-16,K.1^26,K.1,K.1^-24,K.1^18,K.1^-7,K.1^-32,K.1^10,K.1^-15,K.1^27,K.1^2,K.1^-23,K.1^19,K.1^-6,K.1^-31,K.1^11,K.1^-14,K.1^28,K.1^3,K.1^-22,K.1^20,K.1^-5,K.1^-30,K.1^12,K.1^-13,K.1^29,K.1^4,K.1^-21,K.1^21,K.1^25,K.1^-17,K.1^8,K.1^33,K.1^-9,K.1^16,K.1^-26,K.1^-1,K.1^24,K.1^-18,K.1^7,K.1^32,K.1^-10,K.1^15,K.1^-27,K.1^-2,K.1^23,K.1^-19,K.1^6,K.1^31,K.1^-11,K.1^14,K.1^-28,K.1^-3,K.1^22,K.1^-20,K.1^5,K.1^30,K.1^-12,K.1^13,K.1^-29,K.1^-4,K.1^-25,K.1^19,K.1^15,K.1^-10,K.1^32,K.1^7,K.1^-18,K.1^24,K.1^-1,K.1^-26,K.1^16,K.1^-9,K.1^33,K.1^8,K.1^-17,K.1^25,K.1^-23,K.1^-25,K.1^17,K.1^-8,K.1^-33,K.1^9,K.1^-16,K.1^26,K.1,K.1^-24,K.1^18,K.1^-7,K.1^-32,K.1^10,K.1^-15,K.1^27,K.1^2,K.1^23,K.1^-2,K.1^-19,K.1^6,K.1^31,K.1^-11,K.1^14,K.1^-28,K.1^-3,K.1^22,K.1^-20,K.1^5,K.1^30,K.1^-12,K.1^13,K.1^-29,K.1^-4,K.1^21,K.1^-21,K.1^4,K.1^29,K.1^-13,K.1^12,K.1^-30,K.1^-5,K.1^20,K.1^-22,K.1^3,K.1^28,K.1^-14,K.1^11,K.1^-31,K.1^-6,K.1^-27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-16,K.1^-24,K.1^-32,K.1^27,K.1^19,K.1^11,K.1^3,K.1^-5,K.1^-13,K.1^-21,K.1^-29,K.1^30,K.1^22,K.1^14,K.1^6,K.1^-2,K.1^-10,K.1^-18,K.1^-26,K.1^33,K.1^25,K.1^17,K.1^9,K.1,K.1^-7,K.1^-15,K.1^-23,K.1^-31,K.1^28,K.1^20,K.1^12,K.1^4,K.1^-4,K.1^8,K.1^16,K.1^24,K.1^32,K.1^-27,K.1^-19,K.1^-11,K.1^-3,K.1^5,K.1^13,K.1^21,K.1^29,K.1^-30,K.1^-22,K.1^-14,K.1^-6,K.1^2,K.1^10,K.1^18,K.1^26,K.1^-33,K.1^-25,K.1^-17,K.1^-9,K.1^-1,K.1^7,K.1^15,K.1^23,K.1^31,K.1^-28,K.1^-20,K.1^-12,K.1^-8,K.1^-10,K.1^-22,K.1^-30,K.1^29,K.1^21,K.1^13,K.1^5,K.1^-3,K.1^-11,K.1^-19,K.1^-27,K.1^32,K.1^24,K.1^16,K.1^8,K.1^-2,K.1^-8,K.1^-16,K.1^-24,K.1^-32,K.1^27,K.1^19,K.1^11,K.1^3,K.1^-5,K.1^-13,K.1^-21,K.1^-29,K.1^30,K.1^22,K.1^14,K.1^6,K.1^2,K.1^-6,K.1^10,K.1^18,K.1^26,K.1^-33,K.1^-25,K.1^-17,K.1^-9,K.1^-1,K.1^7,K.1^15,K.1^23,K.1^31,K.1^-28,K.1^-20,K.1^-12,K.1^-4,K.1^4,K.1^12,K.1^20,K.1^28,K.1^-31,K.1^-23,K.1^-15,K.1^-7,K.1,K.1^9,K.1^17,K.1^25,K.1^33,K.1^-26,K.1^-18,K.1^-14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^16,K.1^24,K.1^32,K.1^-27,K.1^-19,K.1^-11,K.1^-3,K.1^5,K.1^13,K.1^21,K.1^29,K.1^-30,K.1^-22,K.1^-14,K.1^-6,K.1^2,K.1^10,K.1^18,K.1^26,K.1^-33,K.1^-25,K.1^-17,K.1^-9,K.1^-1,K.1^7,K.1^15,K.1^23,K.1^31,K.1^-28,K.1^-20,K.1^-12,K.1^-4,K.1^4,K.1^-8,K.1^-16,K.1^-24,K.1^-32,K.1^27,K.1^19,K.1^11,K.1^3,K.1^-5,K.1^-13,K.1^-21,K.1^-29,K.1^30,K.1^22,K.1^14,K.1^6,K.1^-2,K.1^-10,K.1^-18,K.1^-26,K.1^33,K.1^25,K.1^17,K.1^9,K.1,K.1^-7,K.1^-15,K.1^-23,K.1^-31,K.1^28,K.1^20,K.1^12,K.1^8,K.1^10,K.1^22,K.1^30,K.1^-29,K.1^-21,K.1^-13,K.1^-5,K.1^3,K.1^11,K.1^19,K.1^27,K.1^-32,K.1^-24,K.1^-16,K.1^-8,K.1^2,K.1^8,K.1^16,K.1^24,K.1^32,K.1^-27,K.1^-19,K.1^-11,K.1^-3,K.1^5,K.1^13,K.1^21,K.1^29,K.1^-30,K.1^-22,K.1^-14,K.1^-6,K.1^-2,K.1^6,K.1^-10,K.1^-18,K.1^-26,K.1^33,K.1^25,K.1^17,K.1^9,K.1,K.1^-7,K.1^-15,K.1^-23,K.1^-31,K.1^28,K.1^20,K.1^12,K.1^4,K.1^-4,K.1^-12,K.1^-20,K.1^-28,K.1^31,K.1^23,K.1^15,K.1^7,K.1^-1,K.1^-9,K.1^-17,K.1^-25,K.1^-33,K.1^26,K.1^18,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-15,K.1^11,K.1^-30,K.1^-4,K.1^22,K.1^-19,K.1^7,K.1^33,K.1^-8,K.1^18,K.1^-23,K.1^3,K.1^29,K.1^-12,K.1^14,K.1^-27,K.1^-1,K.1^25,K.1^-16,K.1^10,K.1^-31,K.1^-5,K.1^21,K.1^-20,K.1^6,K.1^32,K.1^-9,K.1^17,K.1^-24,K.1^2,K.1^28,K.1^-13,K.1^13,K.1^-26,K.1^15,K.1^-11,K.1^30,K.1^4,K.1^-22,K.1^19,K.1^-7,K.1^-33,K.1^8,K.1^-18,K.1^23,K.1^-3,K.1^-29,K.1^12,K.1^-14,K.1^27,K.1,K.1^-25,K.1^16,K.1^-10,K.1^31,K.1^5,K.1^-21,K.1^20,K.1^-6,K.1^-32,K.1^9,K.1^-17,K.1^24,K.1^-2,K.1^-28,K.1^26,K.1^-1,K.1^-29,K.1^-3,K.1^23,K.1^-18,K.1^8,K.1^-33,K.1^-7,K.1^19,K.1^-22,K.1^4,K.1^30,K.1^-11,K.1^15,K.1^-26,K.1^-27,K.1^26,K.1^-15,K.1^11,K.1^-30,K.1^-4,K.1^22,K.1^-19,K.1^7,K.1^33,K.1^-8,K.1^18,K.1^-23,K.1^3,K.1^29,K.1^-12,K.1^14,K.1^27,K.1^-14,K.1,K.1^-25,K.1^16,K.1^-10,K.1^31,K.1^5,K.1^-21,K.1^20,K.1^-6,K.1^-32,K.1^9,K.1^-17,K.1^24,K.1^-2,K.1^-28,K.1^13,K.1^-13,K.1^28,K.1^2,K.1^-24,K.1^17,K.1^-9,K.1^32,K.1^6,K.1^-20,K.1^21,K.1^-5,K.1^-31,K.1^10,K.1^-16,K.1^25,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^15,K.1^-11,K.1^30,K.1^4,K.1^-22,K.1^19,K.1^-7,K.1^-33,K.1^8,K.1^-18,K.1^23,K.1^-3,K.1^-29,K.1^12,K.1^-14,K.1^27,K.1,K.1^-25,K.1^16,K.1^-10,K.1^31,K.1^5,K.1^-21,K.1^20,K.1^-6,K.1^-32,K.1^9,K.1^-17,K.1^24,K.1^-2,K.1^-28,K.1^13,K.1^-13,K.1^26,K.1^-15,K.1^11,K.1^-30,K.1^-4,K.1^22,K.1^-19,K.1^7,K.1^33,K.1^-8,K.1^18,K.1^-23,K.1^3,K.1^29,K.1^-12,K.1^14,K.1^-27,K.1^-1,K.1^25,K.1^-16,K.1^10,K.1^-31,K.1^-5,K.1^21,K.1^-20,K.1^6,K.1^32,K.1^-9,K.1^17,K.1^-24,K.1^2,K.1^28,K.1^-26,K.1,K.1^29,K.1^3,K.1^-23,K.1^18,K.1^-8,K.1^33,K.1^7,K.1^-19,K.1^22,K.1^-4,K.1^-30,K.1^11,K.1^-15,K.1^26,K.1^27,K.1^-26,K.1^15,K.1^-11,K.1^30,K.1^4,K.1^-22,K.1^19,K.1^-7,K.1^-33,K.1^8,K.1^-18,K.1^23,K.1^-3,K.1^-29,K.1^12,K.1^-14,K.1^-27,K.1^14,K.1^-1,K.1^25,K.1^-16,K.1^10,K.1^-31,K.1^-5,K.1^21,K.1^-20,K.1^6,K.1^32,K.1^-9,K.1^17,K.1^-24,K.1^2,K.1^28,K.1^-13,K.1^13,K.1^-28,K.1^-2,K.1^24,K.1^-17,K.1^9,K.1^-32,K.1^-6,K.1^20,K.1^-21,K.1^5,K.1^31,K.1^-10,K.1^16,K.1^-25,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-14,K.1^-21,K.1^-28,K.1^32,K.1^25,K.1^18,K.1^11,K.1^4,K.1^-3,K.1^-10,K.1^-17,K.1^-24,K.1^-31,K.1^29,K.1^22,K.1^15,K.1^8,K.1,K.1^-6,K.1^-13,K.1^-20,K.1^-27,K.1^33,K.1^26,K.1^19,K.1^12,K.1^5,K.1^-2,K.1^-9,K.1^-16,K.1^-23,K.1^-30,K.1^30,K.1^7,K.1^14,K.1^21,K.1^28,K.1^-32,K.1^-25,K.1^-18,K.1^-11,K.1^-4,K.1^3,K.1^10,K.1^17,K.1^24,K.1^31,K.1^-29,K.1^-22,K.1^-15,K.1^-8,K.1^-1,K.1^6,K.1^13,K.1^20,K.1^27,K.1^-33,K.1^-26,K.1^-19,K.1^-12,K.1^-5,K.1^2,K.1^9,K.1^16,K.1^23,K.1^-7,K.1^8,K.1^31,K.1^24,K.1^17,K.1^10,K.1^3,K.1^-4,K.1^-11,K.1^-18,K.1^-25,K.1^-32,K.1^28,K.1^21,K.1^14,K.1^7,K.1^15,K.1^-7,K.1^-14,K.1^-21,K.1^-28,K.1^32,K.1^25,K.1^18,K.1^11,K.1^4,K.1^-3,K.1^-10,K.1^-17,K.1^-24,K.1^-31,K.1^29,K.1^22,K.1^-15,K.1^-22,K.1^-8,K.1^-1,K.1^6,K.1^13,K.1^20,K.1^27,K.1^-33,K.1^-26,K.1^-19,K.1^-12,K.1^-5,K.1^2,K.1^9,K.1^16,K.1^23,K.1^30,K.1^-30,K.1^-23,K.1^-16,K.1^-9,K.1^-2,K.1^5,K.1^12,K.1^19,K.1^26,K.1^33,K.1^-27,K.1^-20,K.1^-13,K.1^-6,K.1,K.1^-29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^14,K.1^21,K.1^28,K.1^-32,K.1^-25,K.1^-18,K.1^-11,K.1^-4,K.1^3,K.1^10,K.1^17,K.1^24,K.1^31,K.1^-29,K.1^-22,K.1^-15,K.1^-8,K.1^-1,K.1^6,K.1^13,K.1^20,K.1^27,K.1^-33,K.1^-26,K.1^-19,K.1^-12,K.1^-5,K.1^2,K.1^9,K.1^16,K.1^23,K.1^30,K.1^-30,K.1^-7,K.1^-14,K.1^-21,K.1^-28,K.1^32,K.1^25,K.1^18,K.1^11,K.1^4,K.1^-3,K.1^-10,K.1^-17,K.1^-24,K.1^-31,K.1^29,K.1^22,K.1^15,K.1^8,K.1,K.1^-6,K.1^-13,K.1^-20,K.1^-27,K.1^33,K.1^26,K.1^19,K.1^12,K.1^5,K.1^-2,K.1^-9,K.1^-16,K.1^-23,K.1^7,K.1^-8,K.1^-31,K.1^-24,K.1^-17,K.1^-10,K.1^-3,K.1^4,K.1^11,K.1^18,K.1^25,K.1^32,K.1^-28,K.1^-21,K.1^-14,K.1^-7,K.1^-15,K.1^7,K.1^14,K.1^21,K.1^28,K.1^-32,K.1^-25,K.1^-18,K.1^-11,K.1^-4,K.1^3,K.1^10,K.1^17,K.1^24,K.1^31,K.1^-29,K.1^-22,K.1^15,K.1^22,K.1^8,K.1,K.1^-6,K.1^-13,K.1^-20,K.1^-27,K.1^33,K.1^26,K.1^19,K.1^12,K.1^5,K.1^-2,K.1^-9,K.1^-16,K.1^-23,K.1^-30,K.1^30,K.1^23,K.1^16,K.1^9,K.1^2,K.1^-5,K.1^-12,K.1^-19,K.1^-26,K.1^-33,K.1^27,K.1^20,K.1^13,K.1^6,K.1^-1,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-13,K.1^14,K.1^-26,K.1,K.1^28,K.1^-12,K.1^15,K.1^-25,K.1^2,K.1^29,K.1^-11,K.1^16,K.1^-24,K.1^3,K.1^30,K.1^-10,K.1^17,K.1^-23,K.1^4,K.1^31,K.1^-9,K.1^18,K.1^-22,K.1^5,K.1^32,K.1^-8,K.1^19,K.1^-21,K.1^6,K.1^33,K.1^-7,K.1^20,K.1^-20,K.1^-27,K.1^13,K.1^-14,K.1^26,K.1^-1,K.1^-28,K.1^12,K.1^-15,K.1^25,K.1^-2,K.1^-29,K.1^11,K.1^-16,K.1^24,K.1^-3,K.1^-30,K.1^10,K.1^-17,K.1^23,K.1^-4,K.1^-31,K.1^9,K.1^-18,K.1^22,K.1^-5,K.1^-32,K.1^8,K.1^-19,K.1^21,K.1^-6,K.1^-33,K.1^7,K.1^27,K.1^17,K.1^24,K.1^-16,K.1^11,K.1^-29,K.1^-2,K.1^25,K.1^-15,K.1^12,K.1^-28,K.1^-1,K.1^26,K.1^-14,K.1^13,K.1^-27,K.1^-10,K.1^27,K.1^-13,K.1^14,K.1^-26,K.1,K.1^28,K.1^-12,K.1^15,K.1^-25,K.1^2,K.1^29,K.1^-11,K.1^16,K.1^-24,K.1^3,K.1^30,K.1^10,K.1^-30,K.1^-17,K.1^23,K.1^-4,K.1^-31,K.1^9,K.1^-18,K.1^22,K.1^-5,K.1^-32,K.1^8,K.1^-19,K.1^21,K.1^-6,K.1^-33,K.1^7,K.1^-20,K.1^20,K.1^-7,K.1^33,K.1^6,K.1^-21,K.1^19,K.1^-8,K.1^32,K.1^5,K.1^-22,K.1^18,K.1^-9,K.1^31,K.1^4,K.1^-23,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^13,K.1^-14,K.1^26,K.1^-1,K.1^-28,K.1^12,K.1^-15,K.1^25,K.1^-2,K.1^-29,K.1^11,K.1^-16,K.1^24,K.1^-3,K.1^-30,K.1^10,K.1^-17,K.1^23,K.1^-4,K.1^-31,K.1^9,K.1^-18,K.1^22,K.1^-5,K.1^-32,K.1^8,K.1^-19,K.1^21,K.1^-6,K.1^-33,K.1^7,K.1^-20,K.1^20,K.1^27,K.1^-13,K.1^14,K.1^-26,K.1,K.1^28,K.1^-12,K.1^15,K.1^-25,K.1^2,K.1^29,K.1^-11,K.1^16,K.1^-24,K.1^3,K.1^30,K.1^-10,K.1^17,K.1^-23,K.1^4,K.1^31,K.1^-9,K.1^18,K.1^-22,K.1^5,K.1^32,K.1^-8,K.1^19,K.1^-21,K.1^6,K.1^33,K.1^-7,K.1^-27,K.1^-17,K.1^-24,K.1^16,K.1^-11,K.1^29,K.1^2,K.1^-25,K.1^15,K.1^-12,K.1^28,K.1,K.1^-26,K.1^14,K.1^-13,K.1^27,K.1^10,K.1^-27,K.1^13,K.1^-14,K.1^26,K.1^-1,K.1^-28,K.1^12,K.1^-15,K.1^25,K.1^-2,K.1^-29,K.1^11,K.1^-16,K.1^24,K.1^-3,K.1^-30,K.1^-10,K.1^30,K.1^17,K.1^-23,K.1^4,K.1^31,K.1^-9,K.1^18,K.1^-22,K.1^5,K.1^32,K.1^-8,K.1^19,K.1^-21,K.1^6,K.1^33,K.1^-7,K.1^20,K.1^-20,K.1^7,K.1^-33,K.1^-6,K.1^21,K.1^-19,K.1^8,K.1^-32,K.1^-5,K.1^22,K.1^-18,K.1^9,K.1^-31,K.1^-4,K.1^23,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-12,K.1^-18,K.1^-24,K.1^-30,K.1^31,K.1^25,K.1^19,K.1^13,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-17,K.1^-23,K.1^-29,K.1^32,K.1^26,K.1^20,K.1^14,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^-16,K.1^-22,K.1^-28,K.1^33,K.1^27,K.1^21,K.1^15,K.1^9,K.1^3,K.1^-3,K.1^6,K.1^12,K.1^18,K.1^24,K.1^30,K.1^-31,K.1^-25,K.1^-19,K.1^-13,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^17,K.1^23,K.1^29,K.1^-32,K.1^-26,K.1^-20,K.1^-14,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^16,K.1^22,K.1^28,K.1^-33,K.1^-27,K.1^-21,K.1^-15,K.1^-9,K.1^-6,K.1^26,K.1^17,K.1^11,K.1^5,K.1^-1,K.1^-7,K.1^-13,K.1^-19,K.1^-25,K.1^-31,K.1^30,K.1^24,K.1^18,K.1^12,K.1^6,K.1^32,K.1^-6,K.1^-12,K.1^-18,K.1^-24,K.1^-30,K.1^31,K.1^25,K.1^19,K.1^13,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-17,K.1^-23,K.1^-29,K.1^-32,K.1^29,K.1^-26,K.1^-20,K.1^-14,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^16,K.1^22,K.1^28,K.1^-33,K.1^-27,K.1^-21,K.1^-15,K.1^-9,K.1^-3,K.1^3,K.1^9,K.1^15,K.1^21,K.1^27,K.1^33,K.1^-28,K.1^-22,K.1^-16,K.1^-10,K.1^-4,K.1^2,K.1^8,K.1^14,K.1^20,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^12,K.1^18,K.1^24,K.1^30,K.1^-31,K.1^-25,K.1^-19,K.1^-13,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^17,K.1^23,K.1^29,K.1^-32,K.1^-26,K.1^-20,K.1^-14,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^16,K.1^22,K.1^28,K.1^-33,K.1^-27,K.1^-21,K.1^-15,K.1^-9,K.1^-3,K.1^3,K.1^-6,K.1^-12,K.1^-18,K.1^-24,K.1^-30,K.1^31,K.1^25,K.1^19,K.1^13,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-17,K.1^-23,K.1^-29,K.1^32,K.1^26,K.1^20,K.1^14,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^-16,K.1^-22,K.1^-28,K.1^33,K.1^27,K.1^21,K.1^15,K.1^9,K.1^6,K.1^-26,K.1^-17,K.1^-11,K.1^-5,K.1,K.1^7,K.1^13,K.1^19,K.1^25,K.1^31,K.1^-30,K.1^-24,K.1^-18,K.1^-12,K.1^-6,K.1^-32,K.1^6,K.1^12,K.1^18,K.1^24,K.1^30,K.1^-31,K.1^-25,K.1^-19,K.1^-13,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^17,K.1^23,K.1^29,K.1^32,K.1^-29,K.1^26,K.1^20,K.1^14,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^-16,K.1^-22,K.1^-28,K.1^33,K.1^27,K.1^21,K.1^15,K.1^9,K.1^3,K.1^-3,K.1^-9,K.1^-15,K.1^-21,K.1^-27,K.1^-33,K.1^28,K.1^22,K.1^16,K.1^10,K.1^4,K.1^-2,K.1^-8,K.1^-14,K.1^-20,K.1^-23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-11,K.1^17,K.1^-22,K.1^6,K.1^-33,K.1^-5,K.1^23,K.1^-16,K.1^12,K.1^-27,K.1,K.1^29,K.1^-10,K.1^18,K.1^-21,K.1^7,K.1^-32,K.1^-4,K.1^24,K.1^-15,K.1^13,K.1^-26,K.1^2,K.1^30,K.1^-9,K.1^19,K.1^-20,K.1^8,K.1^-31,K.1^-3,K.1^25,K.1^-14,K.1^14,K.1^-28,K.1^11,K.1^-17,K.1^22,K.1^-6,K.1^33,K.1^5,K.1^-23,K.1^16,K.1^-12,K.1^27,K.1^-1,K.1^-29,K.1^10,K.1^-18,K.1^21,K.1^-7,K.1^32,K.1^4,K.1^-24,K.1^15,K.1^-13,K.1^26,K.1^-2,K.1^-30,K.1^9,K.1^-19,K.1^20,K.1^-8,K.1^31,K.1^3,K.1^-25,K.1^28,K.1^-32,K.1^10,K.1^-29,K.1^-1,K.1^27,K.1^-12,K.1^16,K.1^-23,K.1^5,K.1^33,K.1^-6,K.1^22,K.1^-17,K.1^11,K.1^-28,K.1^7,K.1^28,K.1^-11,K.1^17,K.1^-22,K.1^6,K.1^-33,K.1^-5,K.1^23,K.1^-16,K.1^12,K.1^-27,K.1,K.1^29,K.1^-10,K.1^18,K.1^-21,K.1^-7,K.1^21,K.1^32,K.1^4,K.1^-24,K.1^15,K.1^-13,K.1^26,K.1^-2,K.1^-30,K.1^9,K.1^-19,K.1^20,K.1^-8,K.1^31,K.1^3,K.1^-25,K.1^14,K.1^-14,K.1^25,K.1^-3,K.1^-31,K.1^8,K.1^-20,K.1^19,K.1^-9,K.1^30,K.1^2,K.1^-26,K.1^13,K.1^-15,K.1^24,K.1^-4,K.1^-18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^11,K.1^-17,K.1^22,K.1^-6,K.1^33,K.1^5,K.1^-23,K.1^16,K.1^-12,K.1^27,K.1^-1,K.1^-29,K.1^10,K.1^-18,K.1^21,K.1^-7,K.1^32,K.1^4,K.1^-24,K.1^15,K.1^-13,K.1^26,K.1^-2,K.1^-30,K.1^9,K.1^-19,K.1^20,K.1^-8,K.1^31,K.1^3,K.1^-25,K.1^14,K.1^-14,K.1^28,K.1^-11,K.1^17,K.1^-22,K.1^6,K.1^-33,K.1^-5,K.1^23,K.1^-16,K.1^12,K.1^-27,K.1,K.1^29,K.1^-10,K.1^18,K.1^-21,K.1^7,K.1^-32,K.1^-4,K.1^24,K.1^-15,K.1^13,K.1^-26,K.1^2,K.1^30,K.1^-9,K.1^19,K.1^-20,K.1^8,K.1^-31,K.1^-3,K.1^25,K.1^-28,K.1^32,K.1^-10,K.1^29,K.1,K.1^-27,K.1^12,K.1^-16,K.1^23,K.1^-5,K.1^-33,K.1^6,K.1^-22,K.1^17,K.1^-11,K.1^28,K.1^-7,K.1^-28,K.1^11,K.1^-17,K.1^22,K.1^-6,K.1^33,K.1^5,K.1^-23,K.1^16,K.1^-12,K.1^27,K.1^-1,K.1^-29,K.1^10,K.1^-18,K.1^21,K.1^7,K.1^-21,K.1^-32,K.1^-4,K.1^24,K.1^-15,K.1^13,K.1^-26,K.1^2,K.1^30,K.1^-9,K.1^19,K.1^-20,K.1^8,K.1^-31,K.1^-3,K.1^25,K.1^-14,K.1^14,K.1^-25,K.1^3,K.1^31,K.1^-8,K.1^20,K.1^-19,K.1^9,K.1^-30,K.1^-2,K.1^26,K.1^-13,K.1^15,K.1^-24,K.1^4,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-10,K.1^-15,K.1^-20,K.1^-25,K.1^-30,K.1^32,K.1^27,K.1^22,K.1^17,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-13,K.1^-18,K.1^-23,K.1^-28,K.1^-33,K.1^29,K.1^24,K.1^19,K.1^14,K.1^9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^-16,K.1^-21,K.1^-26,K.1^-31,K.1^31,K.1^5,K.1^10,K.1^15,K.1^20,K.1^25,K.1^30,K.1^-32,K.1^-27,K.1^-22,K.1^-17,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^13,K.1^18,K.1^23,K.1^28,K.1^33,K.1^-29,K.1^-24,K.1^-19,K.1^-14,K.1^-9,K.1^-4,K.1,K.1^6,K.1^11,K.1^16,K.1^21,K.1^26,K.1^-5,K.1^-23,K.1^3,K.1^-2,K.1^-7,K.1^-12,K.1^-17,K.1^-22,K.1^-27,K.1^-32,K.1^30,K.1^25,K.1^20,K.1^15,K.1^10,K.1^5,K.1^-18,K.1^-5,K.1^-10,K.1^-15,K.1^-20,K.1^-25,K.1^-30,K.1^32,K.1^27,K.1^22,K.1^17,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-13,K.1^18,K.1^13,K.1^23,K.1^28,K.1^33,K.1^-29,K.1^-24,K.1^-19,K.1^-14,K.1^-9,K.1^-4,K.1,K.1^6,K.1^11,K.1^16,K.1^21,K.1^26,K.1^31,K.1^-31,K.1^-26,K.1^-21,K.1^-16,K.1^-11,K.1^-6,K.1^-1,K.1^4,K.1^9,K.1^14,K.1^19,K.1^24,K.1^29,K.1^-33,K.1^-28,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^10,K.1^15,K.1^20,K.1^25,K.1^30,K.1^-32,K.1^-27,K.1^-22,K.1^-17,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^13,K.1^18,K.1^23,K.1^28,K.1^33,K.1^-29,K.1^-24,K.1^-19,K.1^-14,K.1^-9,K.1^-4,K.1,K.1^6,K.1^11,K.1^16,K.1^21,K.1^26,K.1^31,K.1^-31,K.1^-5,K.1^-10,K.1^-15,K.1^-20,K.1^-25,K.1^-30,K.1^32,K.1^27,K.1^22,K.1^17,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-13,K.1^-18,K.1^-23,K.1^-28,K.1^-33,K.1^29,K.1^24,K.1^19,K.1^14,K.1^9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^-16,K.1^-21,K.1^-26,K.1^5,K.1^23,K.1^-3,K.1^2,K.1^7,K.1^12,K.1^17,K.1^22,K.1^27,K.1^32,K.1^-30,K.1^-25,K.1^-20,K.1^-15,K.1^-10,K.1^-5,K.1^18,K.1^5,K.1^10,K.1^15,K.1^20,K.1^25,K.1^30,K.1^-32,K.1^-27,K.1^-22,K.1^-17,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^13,K.1^-18,K.1^-13,K.1^-23,K.1^-28,K.1^-33,K.1^29,K.1^24,K.1^19,K.1^14,K.1^9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^-16,K.1^-21,K.1^-26,K.1^-31,K.1^31,K.1^26,K.1^21,K.1^16,K.1^11,K.1^6,K.1,K.1^-4,K.1^-9,K.1^-14,K.1^-19,K.1^-24,K.1^-29,K.1^33,K.1^28,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-9,K.1^20,K.1^-18,K.1^11,K.1^-27,K.1^2,K.1^31,K.1^-7,K.1^22,K.1^-16,K.1^13,K.1^-25,K.1^4,K.1^33,K.1^-5,K.1^24,K.1^-14,K.1^15,K.1^-23,K.1^6,K.1^-32,K.1^-3,K.1^26,K.1^-12,K.1^17,K.1^-21,K.1^8,K.1^-30,K.1^-1,K.1^28,K.1^-10,K.1^19,K.1^-19,K.1^-29,K.1^9,K.1^-20,K.1^18,K.1^-11,K.1^27,K.1^-2,K.1^-31,K.1^7,K.1^-22,K.1^16,K.1^-13,K.1^25,K.1^-4,K.1^-33,K.1^5,K.1^-24,K.1^14,K.1^-15,K.1^23,K.1^-6,K.1^32,K.1^3,K.1^-26,K.1^12,K.1^-17,K.1^21,K.1^-8,K.1^30,K.1,K.1^-28,K.1^10,K.1^29,K.1^-14,K.1^-4,K.1^25,K.1^-13,K.1^16,K.1^-22,K.1^7,K.1^-31,K.1^-2,K.1^27,K.1^-11,K.1^18,K.1^-20,K.1^9,K.1^-29,K.1^24,K.1^29,K.1^-9,K.1^20,K.1^-18,K.1^11,K.1^-27,K.1^2,K.1^31,K.1^-7,K.1^22,K.1^-16,K.1^13,K.1^-25,K.1^4,K.1^33,K.1^-5,K.1^-24,K.1^5,K.1^14,K.1^-15,K.1^23,K.1^-6,K.1^32,K.1^3,K.1^-26,K.1^12,K.1^-17,K.1^21,K.1^-8,K.1^30,K.1,K.1^-28,K.1^10,K.1^-19,K.1^19,K.1^-10,K.1^28,K.1^-1,K.1^-30,K.1^8,K.1^-21,K.1^17,K.1^-12,K.1^26,K.1^-3,K.1^-32,K.1^6,K.1^-23,K.1^15,K.1^-33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^9,K.1^-20,K.1^18,K.1^-11,K.1^27,K.1^-2,K.1^-31,K.1^7,K.1^-22,K.1^16,K.1^-13,K.1^25,K.1^-4,K.1^-33,K.1^5,K.1^-24,K.1^14,K.1^-15,K.1^23,K.1^-6,K.1^32,K.1^3,K.1^-26,K.1^12,K.1^-17,K.1^21,K.1^-8,K.1^30,K.1,K.1^-28,K.1^10,K.1^-19,K.1^19,K.1^29,K.1^-9,K.1^20,K.1^-18,K.1^11,K.1^-27,K.1^2,K.1^31,K.1^-7,K.1^22,K.1^-16,K.1^13,K.1^-25,K.1^4,K.1^33,K.1^-5,K.1^24,K.1^-14,K.1^15,K.1^-23,K.1^6,K.1^-32,K.1^-3,K.1^26,K.1^-12,K.1^17,K.1^-21,K.1^8,K.1^-30,K.1^-1,K.1^28,K.1^-10,K.1^-29,K.1^14,K.1^4,K.1^-25,K.1^13,K.1^-16,K.1^22,K.1^-7,K.1^31,K.1^2,K.1^-27,K.1^11,K.1^-18,K.1^20,K.1^-9,K.1^29,K.1^-24,K.1^-29,K.1^9,K.1^-20,K.1^18,K.1^-11,K.1^27,K.1^-2,K.1^-31,K.1^7,K.1^-22,K.1^16,K.1^-13,K.1^25,K.1^-4,K.1^-33,K.1^5,K.1^24,K.1^-5,K.1^-14,K.1^15,K.1^-23,K.1^6,K.1^-32,K.1^-3,K.1^26,K.1^-12,K.1^17,K.1^-21,K.1^8,K.1^-30,K.1^-1,K.1^28,K.1^-10,K.1^19,K.1^-19,K.1^10,K.1^-28,K.1,K.1^30,K.1^-8,K.1^21,K.1^-17,K.1^12,K.1^-26,K.1^3,K.1^32,K.1^-6,K.1^23,K.1^-15,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-8,K.1^-12,K.1^-16,K.1^-20,K.1^-24,K.1^-28,K.1^-32,K.1^31,K.1^27,K.1^23,K.1^19,K.1^15,K.1^11,K.1^7,K.1^3,K.1^-1,K.1^-5,K.1^-9,K.1^-13,K.1^-17,K.1^-21,K.1^-25,K.1^-29,K.1^-33,K.1^30,K.1^26,K.1^22,K.1^18,K.1^14,K.1^10,K.1^6,K.1^2,K.1^-2,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,K.1^-31,K.1^-27,K.1^-23,K.1^-19,K.1^-15,K.1^-11,K.1^-7,K.1^-3,K.1,K.1^5,K.1^9,K.1^13,K.1^17,K.1^21,K.1^25,K.1^29,K.1^33,K.1^-30,K.1^-26,K.1^-22,K.1^-18,K.1^-14,K.1^-10,K.1^-6,K.1^-4,K.1^-5,K.1^-11,K.1^-15,K.1^-19,K.1^-23,K.1^-27,K.1^-31,K.1^32,K.1^28,K.1^24,K.1^20,K.1^16,K.1^12,K.1^8,K.1^4,K.1^-1,K.1^-4,K.1^-8,K.1^-12,K.1^-16,K.1^-20,K.1^-24,K.1^-28,K.1^-32,K.1^31,K.1^27,K.1^23,K.1^19,K.1^15,K.1^11,K.1^7,K.1^3,K.1,K.1^-3,K.1^5,K.1^9,K.1^13,K.1^17,K.1^21,K.1^25,K.1^29,K.1^33,K.1^-30,K.1^-26,K.1^-22,K.1^-18,K.1^-14,K.1^-10,K.1^-6,K.1^-2,K.1^2,K.1^6,K.1^10,K.1^14,K.1^18,K.1^22,K.1^26,K.1^30,K.1^-33,K.1^-29,K.1^-25,K.1^-21,K.1^-17,K.1^-13,K.1^-9,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,K.1^-31,K.1^-27,K.1^-23,K.1^-19,K.1^-15,K.1^-11,K.1^-7,K.1^-3,K.1,K.1^5,K.1^9,K.1^13,K.1^17,K.1^21,K.1^25,K.1^29,K.1^33,K.1^-30,K.1^-26,K.1^-22,K.1^-18,K.1^-14,K.1^-10,K.1^-6,K.1^-2,K.1^2,K.1^-4,K.1^-8,K.1^-12,K.1^-16,K.1^-20,K.1^-24,K.1^-28,K.1^-32,K.1^31,K.1^27,K.1^23,K.1^19,K.1^15,K.1^11,K.1^7,K.1^3,K.1^-1,K.1^-5,K.1^-9,K.1^-13,K.1^-17,K.1^-21,K.1^-25,K.1^-29,K.1^-33,K.1^30,K.1^26,K.1^22,K.1^18,K.1^14,K.1^10,K.1^6,K.1^4,K.1^5,K.1^11,K.1^15,K.1^19,K.1^23,K.1^27,K.1^31,K.1^-32,K.1^-28,K.1^-24,K.1^-20,K.1^-16,K.1^-12,K.1^-8,K.1^-4,K.1,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,K.1^-31,K.1^-27,K.1^-23,K.1^-19,K.1^-15,K.1^-11,K.1^-7,K.1^-3,K.1^-1,K.1^3,K.1^-5,K.1^-9,K.1^-13,K.1^-17,K.1^-21,K.1^-25,K.1^-29,K.1^-33,K.1^30,K.1^26,K.1^22,K.1^18,K.1^14,K.1^10,K.1^6,K.1^2,K.1^-2,K.1^-6,K.1^-10,K.1^-14,K.1^-18,K.1^-22,K.1^-26,K.1^-30,K.1^33,K.1^29,K.1^25,K.1^21,K.1^17,K.1^13,K.1^9,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-7,K.1^23,K.1^-14,K.1^16,K.1^-21,K.1^9,K.1^-28,K.1^2,K.1^32,K.1^-5,K.1^25,K.1^-12,K.1^18,K.1^-19,K.1^11,K.1^-26,K.1^4,K.1^-33,K.1^-3,K.1^27,K.1^-10,K.1^20,K.1^-17,K.1^13,K.1^-24,K.1^6,K.1^-31,K.1^-1,K.1^29,K.1^-8,K.1^22,K.1^-15,K.1^15,K.1^-30,K.1^7,K.1^-23,K.1^14,K.1^-16,K.1^21,K.1^-9,K.1^28,K.1^-2,K.1^-32,K.1^5,K.1^-25,K.1^12,K.1^-18,K.1^19,K.1^-11,K.1^26,K.1^-4,K.1^33,K.1^3,K.1^-27,K.1^10,K.1^-20,K.1^17,K.1^-13,K.1^24,K.1^-6,K.1^31,K.1,K.1^-29,K.1^8,K.1^-22,K.1^30,K.1^4,K.1^-18,K.1^12,K.1^-25,K.1^5,K.1^-32,K.1^-2,K.1^28,K.1^-9,K.1^21,K.1^-16,K.1^14,K.1^-23,K.1^7,K.1^-30,K.1^-26,K.1^30,K.1^-7,K.1^23,K.1^-14,K.1^16,K.1^-21,K.1^9,K.1^-28,K.1^2,K.1^32,K.1^-5,K.1^25,K.1^-12,K.1^18,K.1^-19,K.1^11,K.1^26,K.1^-11,K.1^-4,K.1^33,K.1^3,K.1^-27,K.1^10,K.1^-20,K.1^17,K.1^-13,K.1^24,K.1^-6,K.1^31,K.1,K.1^-29,K.1^8,K.1^-22,K.1^15,K.1^-15,K.1^22,K.1^-8,K.1^29,K.1^-1,K.1^-31,K.1^6,K.1^-24,K.1^13,K.1^-17,K.1^20,K.1^-10,K.1^27,K.1^-3,K.1^-33,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^7,K.1^-23,K.1^14,K.1^-16,K.1^21,K.1^-9,K.1^28,K.1^-2,K.1^-32,K.1^5,K.1^-25,K.1^12,K.1^-18,K.1^19,K.1^-11,K.1^26,K.1^-4,K.1^33,K.1^3,K.1^-27,K.1^10,K.1^-20,K.1^17,K.1^-13,K.1^24,K.1^-6,K.1^31,K.1,K.1^-29,K.1^8,K.1^-22,K.1^15,K.1^-15,K.1^30,K.1^-7,K.1^23,K.1^-14,K.1^16,K.1^-21,K.1^9,K.1^-28,K.1^2,K.1^32,K.1^-5,K.1^25,K.1^-12,K.1^18,K.1^-19,K.1^11,K.1^-26,K.1^4,K.1^-33,K.1^-3,K.1^27,K.1^-10,K.1^20,K.1^-17,K.1^13,K.1^-24,K.1^6,K.1^-31,K.1^-1,K.1^29,K.1^-8,K.1^22,K.1^-30,K.1^-4,K.1^18,K.1^-12,K.1^25,K.1^-5,K.1^32,K.1^2,K.1^-28,K.1^9,K.1^-21,K.1^16,K.1^-14,K.1^23,K.1^-7,K.1^30,K.1^26,K.1^-30,K.1^7,K.1^-23,K.1^14,K.1^-16,K.1^21,K.1^-9,K.1^28,K.1^-2,K.1^-32,K.1^5,K.1^-25,K.1^12,K.1^-18,K.1^19,K.1^-11,K.1^-26,K.1^11,K.1^4,K.1^-33,K.1^-3,K.1^27,K.1^-10,K.1^20,K.1^-17,K.1^13,K.1^-24,K.1^6,K.1^-31,K.1^-1,K.1^29,K.1^-8,K.1^22,K.1^-15,K.1^15,K.1^-22,K.1^8,K.1^-29,K.1,K.1^31,K.1^-6,K.1^24,K.1^-13,K.1^17,K.1^-20,K.1^10,K.1^-27,K.1^3,K.1^33,K.1^-19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-6,K.1^-9,K.1^-12,K.1^-15,K.1^-18,K.1^-21,K.1^-24,K.1^-27,K.1^-30,K.1^-33,K.1^31,K.1^28,K.1^25,K.1^22,K.1^19,K.1^16,K.1^13,K.1^10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^-14,K.1^-17,K.1^-20,K.1^-23,K.1^-26,K.1^-29,K.1^-32,K.1^32,K.1^3,K.1^6,K.1^9,K.1^12,K.1^15,K.1^18,K.1^21,K.1^24,K.1^27,K.1^30,K.1^33,K.1^-31,K.1^-28,K.1^-25,K.1^-22,K.1^-19,K.1^-16,K.1^-13,K.1^-10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^14,K.1^17,K.1^20,K.1^23,K.1^26,K.1^29,K.1^-3,K.1^13,K.1^-25,K.1^-28,K.1^-31,K.1^33,K.1^30,K.1^27,K.1^24,K.1^21,K.1^18,K.1^15,K.1^12,K.1^9,K.1^6,K.1^3,K.1^16,K.1^-3,K.1^-6,K.1^-9,K.1^-12,K.1^-15,K.1^-18,K.1^-21,K.1^-24,K.1^-27,K.1^-30,K.1^-33,K.1^31,K.1^28,K.1^25,K.1^22,K.1^19,K.1^-16,K.1^-19,K.1^-13,K.1^-10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^14,K.1^17,K.1^20,K.1^23,K.1^26,K.1^29,K.1^32,K.1^-32,K.1^-29,K.1^-26,K.1^-23,K.1^-20,K.1^-17,K.1^-14,K.1^-11,K.1^-8,K.1^-5,K.1^-2,K.1,K.1^4,K.1^7,K.1^10,K.1^-22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^6,K.1^9,K.1^12,K.1^15,K.1^18,K.1^21,K.1^24,K.1^27,K.1^30,K.1^33,K.1^-31,K.1^-28,K.1^-25,K.1^-22,K.1^-19,K.1^-16,K.1^-13,K.1^-10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^14,K.1^17,K.1^20,K.1^23,K.1^26,K.1^29,K.1^32,K.1^-32,K.1^-3,K.1^-6,K.1^-9,K.1^-12,K.1^-15,K.1^-18,K.1^-21,K.1^-24,K.1^-27,K.1^-30,K.1^-33,K.1^31,K.1^28,K.1^25,K.1^22,K.1^19,K.1^16,K.1^13,K.1^10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^-14,K.1^-17,K.1^-20,K.1^-23,K.1^-26,K.1^-29,K.1^3,K.1^-13,K.1^25,K.1^28,K.1^31,K.1^-33,K.1^-30,K.1^-27,K.1^-24,K.1^-21,K.1^-18,K.1^-15,K.1^-12,K.1^-9,K.1^-6,K.1^-3,K.1^-16,K.1^3,K.1^6,K.1^9,K.1^12,K.1^15,K.1^18,K.1^21,K.1^24,K.1^27,K.1^30,K.1^33,K.1^-31,K.1^-28,K.1^-25,K.1^-22,K.1^-19,K.1^16,K.1^19,K.1^13,K.1^10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^-14,K.1^-17,K.1^-20,K.1^-23,K.1^-26,K.1^-29,K.1^-32,K.1^32,K.1^29,K.1^26,K.1^23,K.1^20,K.1^17,K.1^14,K.1^11,K.1^8,K.1^5,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^-10,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-5,K.1^26,K.1^-10,K.1^21,K.1^-15,K.1^16,K.1^-20,K.1^11,K.1^-25,K.1^6,K.1^-30,K.1,K.1^32,K.1^-4,K.1^27,K.1^-9,K.1^22,K.1^-14,K.1^17,K.1^-19,K.1^12,K.1^-24,K.1^7,K.1^-29,K.1^2,K.1^33,K.1^-3,K.1^28,K.1^-8,K.1^23,K.1^-13,K.1^18,K.1^-18,K.1^-31,K.1^5,K.1^-26,K.1^10,K.1^-21,K.1^15,K.1^-16,K.1^20,K.1^-11,K.1^25,K.1^-6,K.1^30,K.1^-1,K.1^-32,K.1^4,K.1^-27,K.1^9,K.1^-22,K.1^14,K.1^-17,K.1^19,K.1^-12,K.1^24,K.1^-7,K.1^29,K.1^-2,K.1^-33,K.1^3,K.1^-28,K.1^8,K.1^-23,K.1^13,K.1^31,K.1^22,K.1^-32,K.1^-1,K.1^30,K.1^-6,K.1^25,K.1^-11,K.1^20,K.1^-16,K.1^15,K.1^-21,K.1^10,K.1^-26,K.1^5,K.1^-31,K.1^-9,K.1^31,K.1^-5,K.1^26,K.1^-10,K.1^21,K.1^-15,K.1^16,K.1^-20,K.1^11,K.1^-25,K.1^6,K.1^-30,K.1,K.1^32,K.1^-4,K.1^27,K.1^9,K.1^-27,K.1^-22,K.1^14,K.1^-17,K.1^19,K.1^-12,K.1^24,K.1^-7,K.1^29,K.1^-2,K.1^-33,K.1^3,K.1^-28,K.1^8,K.1^-23,K.1^13,K.1^-18,K.1^18,K.1^-13,K.1^23,K.1^-8,K.1^28,K.1^-3,K.1^33,K.1^2,K.1^-29,K.1^7,K.1^-24,K.1^12,K.1^-19,K.1^17,K.1^-14,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^5,K.1^-26,K.1^10,K.1^-21,K.1^15,K.1^-16,K.1^20,K.1^-11,K.1^25,K.1^-6,K.1^30,K.1^-1,K.1^-32,K.1^4,K.1^-27,K.1^9,K.1^-22,K.1^14,K.1^-17,K.1^19,K.1^-12,K.1^24,K.1^-7,K.1^29,K.1^-2,K.1^-33,K.1^3,K.1^-28,K.1^8,K.1^-23,K.1^13,K.1^-18,K.1^18,K.1^31,K.1^-5,K.1^26,K.1^-10,K.1^21,K.1^-15,K.1^16,K.1^-20,K.1^11,K.1^-25,K.1^6,K.1^-30,K.1,K.1^32,K.1^-4,K.1^27,K.1^-9,K.1^22,K.1^-14,K.1^17,K.1^-19,K.1^12,K.1^-24,K.1^7,K.1^-29,K.1^2,K.1^33,K.1^-3,K.1^28,K.1^-8,K.1^23,K.1^-13,K.1^-31,K.1^-22,K.1^32,K.1,K.1^-30,K.1^6,K.1^-25,K.1^11,K.1^-20,K.1^16,K.1^-15,K.1^21,K.1^-10,K.1^26,K.1^-5,K.1^31,K.1^9,K.1^-31,K.1^5,K.1^-26,K.1^10,K.1^-21,K.1^15,K.1^-16,K.1^20,K.1^-11,K.1^25,K.1^-6,K.1^30,K.1^-1,K.1^-32,K.1^4,K.1^-27,K.1^-9,K.1^27,K.1^22,K.1^-14,K.1^17,K.1^-19,K.1^12,K.1^-24,K.1^7,K.1^-29,K.1^2,K.1^33,K.1^-3,K.1^28,K.1^-8,K.1^23,K.1^-13,K.1^18,K.1^-18,K.1^13,K.1^-23,K.1^8,K.1^-28,K.1^3,K.1^-33,K.1^-2,K.1^29,K.1^-7,K.1^24,K.1^-12,K.1^19,K.1^-17,K.1^14,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-4,K.1^-6,K.1^-8,K.1^-10,K.1^-12,K.1^-14,K.1^-16,K.1^-18,K.1^-20,K.1^-22,K.1^-24,K.1^-26,K.1^-28,K.1^-30,K.1^-32,K.1^33,K.1^31,K.1^29,K.1^27,K.1^25,K.1^23,K.1^21,K.1^19,K.1^17,K.1^15,K.1^13,K.1^11,K.1^9,K.1^7,K.1^5,K.1^3,K.1,K.1^-1,K.1^2,K.1^4,K.1^6,K.1^8,K.1^10,K.1^12,K.1^14,K.1^16,K.1^18,K.1^20,K.1^22,K.1^24,K.1^26,K.1^28,K.1^30,K.1^32,K.1^-33,K.1^-31,K.1^-29,K.1^-27,K.1^-25,K.1^-23,K.1^-21,K.1^-19,K.1^-17,K.1^-15,K.1^-13,K.1^-11,K.1^-9,K.1^-7,K.1^-5,K.1^-3,K.1^-2,K.1^31,K.1^28,K.1^26,K.1^24,K.1^22,K.1^20,K.1^18,K.1^16,K.1^14,K.1^12,K.1^10,K.1^8,K.1^6,K.1^4,K.1^2,K.1^33,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^-10,K.1^-12,K.1^-14,K.1^-16,K.1^-18,K.1^-20,K.1^-22,K.1^-24,K.1^-26,K.1^-28,K.1^-30,K.1^-32,K.1^-33,K.1^32,K.1^-31,K.1^-29,K.1^-27,K.1^-25,K.1^-23,K.1^-21,K.1^-19,K.1^-17,K.1^-15,K.1^-13,K.1^-11,K.1^-9,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1,K.1^3,K.1^5,K.1^7,K.1^9,K.1^11,K.1^13,K.1^15,K.1^17,K.1^19,K.1^21,K.1^23,K.1^25,K.1^27,K.1^29,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^4,K.1^6,K.1^8,K.1^10,K.1^12,K.1^14,K.1^16,K.1^18,K.1^20,K.1^22,K.1^24,K.1^26,K.1^28,K.1^30,K.1^32,K.1^-33,K.1^-31,K.1^-29,K.1^-27,K.1^-25,K.1^-23,K.1^-21,K.1^-19,K.1^-17,K.1^-15,K.1^-13,K.1^-11,K.1^-9,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^-10,K.1^-12,K.1^-14,K.1^-16,K.1^-18,K.1^-20,K.1^-22,K.1^-24,K.1^-26,K.1^-28,K.1^-30,K.1^-32,K.1^33,K.1^31,K.1^29,K.1^27,K.1^25,K.1^23,K.1^21,K.1^19,K.1^17,K.1^15,K.1^13,K.1^11,K.1^9,K.1^7,K.1^5,K.1^3,K.1^2,K.1^-31,K.1^-28,K.1^-26,K.1^-24,K.1^-22,K.1^-20,K.1^-18,K.1^-16,K.1^-14,K.1^-12,K.1^-10,K.1^-8,K.1^-6,K.1^-4,K.1^-2,K.1^-33,K.1^2,K.1^4,K.1^6,K.1^8,K.1^10,K.1^12,K.1^14,K.1^16,K.1^18,K.1^20,K.1^22,K.1^24,K.1^26,K.1^28,K.1^30,K.1^32,K.1^33,K.1^-32,K.1^31,K.1^29,K.1^27,K.1^25,K.1^23,K.1^21,K.1^19,K.1^17,K.1^15,K.1^13,K.1^11,K.1^9,K.1^7,K.1^5,K.1^3,K.1,K.1^-1,K.1^-3,K.1^-5,K.1^-7,K.1^-9,K.1^-11,K.1^-13,K.1^-15,K.1^-17,K.1^-19,K.1^-21,K.1^-23,K.1^-25,K.1^-27,K.1^-29,K.1^-30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-3,K.1^29,K.1^-6,K.1^26,K.1^-9,K.1^23,K.1^-12,K.1^20,K.1^-15,K.1^17,K.1^-18,K.1^14,K.1^-21,K.1^11,K.1^-24,K.1^8,K.1^-27,K.1^5,K.1^-30,K.1^2,K.1^-33,K.1^-1,K.1^31,K.1^-4,K.1^28,K.1^-7,K.1^25,K.1^-10,K.1^22,K.1^-13,K.1^19,K.1^-16,K.1^16,K.1^-32,K.1^3,K.1^-29,K.1^6,K.1^-26,K.1^9,K.1^-23,K.1^12,K.1^-20,K.1^15,K.1^-17,K.1^18,K.1^-14,K.1^21,K.1^-11,K.1^24,K.1^-8,K.1^27,K.1^-5,K.1^30,K.1^-2,K.1^33,K.1,K.1^-31,K.1^4,K.1^-28,K.1^7,K.1^-25,K.1^10,K.1^-22,K.1^13,K.1^-19,K.1^32,K.1^-27,K.1^21,K.1^-14,K.1^18,K.1^-17,K.1^15,K.1^-20,K.1^12,K.1^-23,K.1^9,K.1^-26,K.1^6,K.1^-29,K.1^3,K.1^-32,K.1^8,K.1^32,K.1^-3,K.1^29,K.1^-6,K.1^26,K.1^-9,K.1^23,K.1^-12,K.1^20,K.1^-15,K.1^17,K.1^-18,K.1^14,K.1^-21,K.1^11,K.1^-24,K.1^-8,K.1^24,K.1^27,K.1^-5,K.1^30,K.1^-2,K.1^33,K.1,K.1^-31,K.1^4,K.1^-28,K.1^7,K.1^-25,K.1^10,K.1^-22,K.1^13,K.1^-19,K.1^16,K.1^-16,K.1^19,K.1^-13,K.1^22,K.1^-10,K.1^25,K.1^-7,K.1^28,K.1^-4,K.1^31,K.1^-1,K.1^-33,K.1^2,K.1^-30,K.1^5,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^3,K.1^-29,K.1^6,K.1^-26,K.1^9,K.1^-23,K.1^12,K.1^-20,K.1^15,K.1^-17,K.1^18,K.1^-14,K.1^21,K.1^-11,K.1^24,K.1^-8,K.1^27,K.1^-5,K.1^30,K.1^-2,K.1^33,K.1,K.1^-31,K.1^4,K.1^-28,K.1^7,K.1^-25,K.1^10,K.1^-22,K.1^13,K.1^-19,K.1^16,K.1^-16,K.1^32,K.1^-3,K.1^29,K.1^-6,K.1^26,K.1^-9,K.1^23,K.1^-12,K.1^20,K.1^-15,K.1^17,K.1^-18,K.1^14,K.1^-21,K.1^11,K.1^-24,K.1^8,K.1^-27,K.1^5,K.1^-30,K.1^2,K.1^-33,K.1^-1,K.1^31,K.1^-4,K.1^28,K.1^-7,K.1^25,K.1^-10,K.1^22,K.1^-13,K.1^19,K.1^-32,K.1^27,K.1^-21,K.1^14,K.1^-18,K.1^17,K.1^-15,K.1^20,K.1^-12,K.1^23,K.1^-9,K.1^26,K.1^-6,K.1^29,K.1^-3,K.1^32,K.1^-8,K.1^-32,K.1^3,K.1^-29,K.1^6,K.1^-26,K.1^9,K.1^-23,K.1^12,K.1^-20,K.1^15,K.1^-17,K.1^18,K.1^-14,K.1^21,K.1^-11,K.1^24,K.1^8,K.1^-24,K.1^-27,K.1^5,K.1^-30,K.1^2,K.1^-33,K.1^-1,K.1^31,K.1^-4,K.1^28,K.1^-7,K.1^25,K.1^-10,K.1^22,K.1^-13,K.1^19,K.1^-16,K.1^16,K.1^-19,K.1^13,K.1^-22,K.1^10,K.1^-25,K.1^7,K.1^-28,K.1^4,K.1^-31,K.1,K.1^33,K.1^-2,K.1^30,K.1^-5,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^-9,K.1^-10,K.1^-11,K.1^-12,K.1^-13,K.1^-14,K.1^-15,K.1^-16,K.1^-17,K.1^-18,K.1^-19,K.1^-20,K.1^-21,K.1^-22,K.1^-23,K.1^-24,K.1^-25,K.1^-26,K.1^-27,K.1^-28,K.1^-29,K.1^-30,K.1^-31,K.1^-32,K.1^-33,K.1^33,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^9,K.1^10,K.1^11,K.1^12,K.1^13,K.1^14,K.1^15,K.1^16,K.1^17,K.1^18,K.1^19,K.1^20,K.1^21,K.1^22,K.1^23,K.1^24,K.1^25,K.1^26,K.1^27,K.1^28,K.1^29,K.1^30,K.1^31,K.1^32,K.1^-1,K.1^-18,K.1^14,K.1^13,K.1^12,K.1^11,K.1^10,K.1^9,K.1^8,K.1^7,K.1^6,K.1^5,K.1^4,K.1^3,K.1^2,K.1,K.1^-17,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^-9,K.1^-10,K.1^-11,K.1^-12,K.1^-13,K.1^-14,K.1^-15,K.1^-16,K.1^17,K.1^16,K.1^18,K.1^19,K.1^20,K.1^21,K.1^22,K.1^23,K.1^24,K.1^25,K.1^26,K.1^27,K.1^28,K.1^29,K.1^30,K.1^31,K.1^32,K.1^33,K.1^-33,K.1^-32,K.1^-31,K.1^-30,K.1^-29,K.1^-28,K.1^-27,K.1^-26,K.1^-25,K.1^-24,K.1^-23,K.1^-22,K.1^-21,K.1^-20,K.1^-19,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^9,K.1^10,K.1^11,K.1^12,K.1^13,K.1^14,K.1^15,K.1^16,K.1^17,K.1^18,K.1^19,K.1^20,K.1^21,K.1^22,K.1^23,K.1^24,K.1^25,K.1^26,K.1^27,K.1^28,K.1^29,K.1^30,K.1^31,K.1^32,K.1^33,K.1^-33,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^-9,K.1^-10,K.1^-11,K.1^-12,K.1^-13,K.1^-14,K.1^-15,K.1^-16,K.1^-17,K.1^-18,K.1^-19,K.1^-20,K.1^-21,K.1^-22,K.1^-23,K.1^-24,K.1^-25,K.1^-26,K.1^-27,K.1^-28,K.1^-29,K.1^-30,K.1^-31,K.1^-32,K.1,K.1^18,K.1^-14,K.1^-13,K.1^-12,K.1^-11,K.1^-10,K.1^-9,K.1^-8,K.1^-7,K.1^-6,K.1^-5,K.1^-4,K.1^-3,K.1^-2,K.1^-1,K.1^17,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^9,K.1^10,K.1^11,K.1^12,K.1^13,K.1^14,K.1^15,K.1^16,K.1^-17,K.1^-16,K.1^-18,K.1^-19,K.1^-20,K.1^-21,K.1^-22,K.1^-23,K.1^-24,K.1^-25,K.1^-26,K.1^-27,K.1^-28,K.1^-29,K.1^-30,K.1^-31,K.1^-32,K.1^-33,K.1^33,K.1^32,K.1^31,K.1^30,K.1^29,K.1^28,K.1^27,K.1^26,K.1^25,K.1^24,K.1^23,K.1^22,K.1^21,K.1^20,K.1^19,K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1^-1,K.1^32,K.1^-2,K.1^31,K.1^-3,K.1^30,K.1^-4,K.1^29,K.1^-5,K.1^28,K.1^-6,K.1^27,K.1^-7,K.1^26,K.1^-8,K.1^25,K.1^-9,K.1^24,K.1^-10,K.1^23,K.1^-11,K.1^22,K.1^-12,K.1^21,K.1^-13,K.1^20,K.1^-14,K.1^19,K.1^-15,K.1^18,K.1^-16,K.1^17,K.1^-17,K.1^-33,K.1,K.1^-32,K.1^2,K.1^-31,K.1^3,K.1^-30,K.1^4,K.1^-29,K.1^5,K.1^-28,K.1^6,K.1^-27,K.1^7,K.1^-26,K.1^8,K.1^-25,K.1^9,K.1^-24,K.1^10,K.1^-23,K.1^11,K.1^-22,K.1^12,K.1^-21,K.1^13,K.1^-20,K.1^14,K.1^-19,K.1^15,K.1^-18,K.1^16,K.1^33,K.1^-9,K.1^7,K.1^-27,K.1^6,K.1^-28,K.1^5,K.1^-29,K.1^4,K.1^-30,K.1^3,K.1^-31,K.1^2,K.1^-32,K.1,K.1^-33,K.1^25,K.1^33,K.1^-1,K.1^32,K.1^-2,K.1^31,K.1^-3,K.1^30,K.1^-4,K.1^29,K.1^-5,K.1^28,K.1^-6,K.1^27,K.1^-7,K.1^26,K.1^-8,K.1^-25,K.1^8,K.1^9,K.1^-24,K.1^10,K.1^-23,K.1^11,K.1^-22,K.1^12,K.1^-21,K.1^13,K.1^-20,K.1^14,K.1^-19,K.1^15,K.1^-18,K.1^16,K.1^-17,K.1^17,K.1^-16,K.1^18,K.1^-15,K.1^19,K.1^-14,K.1^20,K.1^-13,K.1^21,K.1^-12,K.1^22,K.1^-11,K.1^23,K.1^-10,K.1^24,K.1^-26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,1,K.1,K.1^-32,K.1^2,K.1^-31,K.1^3,K.1^-30,K.1^4,K.1^-29,K.1^5,K.1^-28,K.1^6,K.1^-27,K.1^7,K.1^-26,K.1^8,K.1^-25,K.1^9,K.1^-24,K.1^10,K.1^-23,K.1^11,K.1^-22,K.1^12,K.1^-21,K.1^13,K.1^-20,K.1^14,K.1^-19,K.1^15,K.1^-18,K.1^16,K.1^-17,K.1^17,K.1^33,K.1^-1,K.1^32,K.1^-2,K.1^31,K.1^-3,K.1^30,K.1^-4,K.1^29,K.1^-5,K.1^28,K.1^-6,K.1^27,K.1^-7,K.1^26,K.1^-8,K.1^25,K.1^-9,K.1^24,K.1^-10,K.1^23,K.1^-11,K.1^22,K.1^-12,K.1^21,K.1^-13,K.1^20,K.1^-14,K.1^19,K.1^-15,K.1^18,K.1^-16,K.1^-33,K.1^9,K.1^-7,K.1^27,K.1^-6,K.1^28,K.1^-5,K.1^29,K.1^-4,K.1^30,K.1^-3,K.1^31,K.1^-2,K.1^32,K.1^-1,K.1^33,K.1^-25,K.1^-33,K.1,K.1^-32,K.1^2,K.1^-31,K.1^3,K.1^-30,K.1^4,K.1^-29,K.1^5,K.1^-28,K.1^6,K.1^-27,K.1^7,K.1^-26,K.1^8,K.1^25,K.1^-8,K.1^-9,K.1^24,K.1^-10,K.1^23,K.1^-11,K.1^22,K.1^-12,K.1^21,K.1^-13,K.1^20,K.1^-14,K.1^19,K.1^-15,K.1^18,K.1^-16,K.1^17,K.1^-17,K.1^16,K.1^-18,K.1^15,K.1^-19,K.1^14,K.1^-20,K.1^13,K.1^-21,K.1^12,K.1^-22,K.1^11,K.1^-23,K.1^10,K.1^-24,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-33,K.1^-16,K.1,K.1^18,K.1^-32,K.1^-15,K.1^2,K.1^19,K.1^-31,K.1^-14,K.1^3,K.1^20,K.1^-30,K.1^-13,K.1^4,K.1^21,K.1^-29,K.1^-12,K.1^5,K.1^22,K.1^-28,K.1^-11,K.1^6,K.1^23,K.1^-27,K.1^-10,K.1^7,K.1^24,K.1^-26,K.1^-9,K.1^8,K.1^25,K.1^-25,K.1^-17,K.1^33,K.1^16,K.1^-1,K.1^-18,K.1^32,K.1^15,K.1^-2,K.1^-19,K.1^31,K.1^14,K.1^-3,K.1^-20,K.1^30,K.1^13,K.1^-4,K.1^-21,K.1^29,K.1^12,K.1^-5,K.1^-22,K.1^28,K.1^11,K.1^-6,K.1^-23,K.1^27,K.1^10,K.1^-7,K.1^-24,K.1^26,K.1^9,K.1^-8,K.1^17,-1*K.1^-29,-1*K.1^30,-1*K.1^-20,-1*K.1^-3,-1*K.1^14,-1*K.1^31,-1*K.1^-19,-1*K.1^-2,-1*K.1^15,-1*K.1^32,-1*K.1^-18,-1*K.1^-1,-1*K.1^16,-1*K.1^33,-1*K.1^-17,-1*K.1^21,-1*K.1^17,-1*K.1^-33,-1*K.1^-16,-1*K.1,-1*K.1^18,-1*K.1^-32,-1*K.1^-15,-1*K.1^2,-1*K.1^19,-1*K.1^-31,-1*K.1^-14,-1*K.1^3,-1*K.1^20,-1*K.1^-30,-1*K.1^-13,-1*K.1^4,-1*K.1^-21,-1*K.1^-4,-1*K.1^29,-1*K.1^12,-1*K.1^-5,-1*K.1^-22,-1*K.1^28,-1*K.1^11,-1*K.1^-6,-1*K.1^-23,-1*K.1^27,-1*K.1^10,-1*K.1^-7,-1*K.1^-24,-1*K.1^26,-1*K.1^9,-1*K.1^-8,-1*K.1^-25,-1*K.1^25,-1*K.1^8,-1*K.1^-9,-1*K.1^-26,-1*K.1^24,-1*K.1^7,-1*K.1^-10,-1*K.1^-27,-1*K.1^23,-1*K.1^6,-1*K.1^-11,-1*K.1^-28,-1*K.1^22,-1*K.1^5,-1*K.1^-12,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^33,K.1^16,K.1^-1,K.1^-18,K.1^32,K.1^15,K.1^-2,K.1^-19,K.1^31,K.1^14,K.1^-3,K.1^-20,K.1^30,K.1^13,K.1^-4,K.1^-21,K.1^29,K.1^12,K.1^-5,K.1^-22,K.1^28,K.1^11,K.1^-6,K.1^-23,K.1^27,K.1^10,K.1^-7,K.1^-24,K.1^26,K.1^9,K.1^-8,K.1^-25,K.1^25,K.1^17,K.1^-33,K.1^-16,K.1,K.1^18,K.1^-32,K.1^-15,K.1^2,K.1^19,K.1^-31,K.1^-14,K.1^3,K.1^20,K.1^-30,K.1^-13,K.1^4,K.1^21,K.1^-29,K.1^-12,K.1^5,K.1^22,K.1^-28,K.1^-11,K.1^6,K.1^23,K.1^-27,K.1^-10,K.1^7,K.1^24,K.1^-26,K.1^-9,K.1^8,K.1^-17,-1*K.1^29,-1*K.1^-30,-1*K.1^20,-1*K.1^3,-1*K.1^-14,-1*K.1^-31,-1*K.1^19,-1*K.1^2,-1*K.1^-15,-1*K.1^-32,-1*K.1^18,-1*K.1,-1*K.1^-16,-1*K.1^-33,-1*K.1^17,-1*K.1^-21,-1*K.1^-17,-1*K.1^33,-1*K.1^16,-1*K.1^-1,-1*K.1^-18,-1*K.1^32,-1*K.1^15,-1*K.1^-2,-1*K.1^-19,-1*K.1^31,-1*K.1^14,-1*K.1^-3,-1*K.1^-20,-1*K.1^30,-1*K.1^13,-1*K.1^-4,-1*K.1^21,-1*K.1^4,-1*K.1^-29,-1*K.1^-12,-1*K.1^5,-1*K.1^22,-1*K.1^-28,-1*K.1^-11,-1*K.1^6,-1*K.1^23,-1*K.1^-27,-1*K.1^-10,-1*K.1^7,-1*K.1^24,-1*K.1^-26,-1*K.1^-9,-1*K.1^8,-1*K.1^25,-1*K.1^-25,-1*K.1^-8,-1*K.1^9,-1*K.1^26,-1*K.1^-24,-1*K.1^-7,-1*K.1^10,-1*K.1^27,-1*K.1^-23,-1*K.1^-6,-1*K.1^11,-1*K.1^28,-1*K.1^-22,-1*K.1^-5,-1*K.1^12,-1*K.1^-13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-32,K.1^19,K.1^3,K.1^-13,K.1^-29,K.1^22,K.1^6,K.1^-10,K.1^-26,K.1^25,K.1^9,K.1^-7,K.1^-23,K.1^28,K.1^12,K.1^-4,K.1^-20,K.1^31,K.1^15,K.1^-1,K.1^-17,K.1^-33,K.1^18,K.1^2,K.1^-14,K.1^-30,K.1^21,K.1^5,K.1^-11,K.1^-27,K.1^24,K.1^8,K.1^-8,K.1^16,K.1^32,K.1^-19,K.1^-3,K.1^13,K.1^29,K.1^-22,K.1^-6,K.1^10,K.1^26,K.1^-25,K.1^-9,K.1^7,K.1^23,K.1^-28,K.1^-12,K.1^4,K.1^20,K.1^-31,K.1^-15,K.1,K.1^17,K.1^33,K.1^-18,K.1^-2,K.1^14,K.1^30,K.1^-21,K.1^-5,K.1^11,K.1^27,K.1^-24,K.1^-16,-1*K.1^-20,-1*K.1^23,-1*K.1^7,-1*K.1^-9,-1*K.1^-25,-1*K.1^26,-1*K.1^10,-1*K.1^-6,-1*K.1^-22,-1*K.1^29,-1*K.1^13,-1*K.1^-3,-1*K.1^-19,-1*K.1^32,-1*K.1^16,-1*K.1^-4,-1*K.1^-16,-1*K.1^-32,-1*K.1^19,-1*K.1^3,-1*K.1^-13,-1*K.1^-29,-1*K.1^22,-1*K.1^6,-1*K.1^-10,-1*K.1^-26,-1*K.1^25,-1*K.1^9,-1*K.1^-7,-1*K.1^-23,-1*K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^-12,-1*K.1^20,-1*K.1^-31,-1*K.1^-15,-1*K.1,-1*K.1^17,-1*K.1^33,-1*K.1^-18,-1*K.1^-2,-1*K.1^14,-1*K.1^30,-1*K.1^-21,-1*K.1^-5,-1*K.1^11,-1*K.1^27,-1*K.1^-24,-1*K.1^-8,-1*K.1^8,-1*K.1^24,-1*K.1^-27,-1*K.1^-11,-1*K.1^5,-1*K.1^21,-1*K.1^-30,-1*K.1^-14,-1*K.1^2,-1*K.1^18,-1*K.1^-33,-1*K.1^-17,-1*K.1^-1,-1*K.1^15,-1*K.1^31,-1*K.1^-28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^32,K.1^-19,K.1^-3,K.1^13,K.1^29,K.1^-22,K.1^-6,K.1^10,K.1^26,K.1^-25,K.1^-9,K.1^7,K.1^23,K.1^-28,K.1^-12,K.1^4,K.1^20,K.1^-31,K.1^-15,K.1,K.1^17,K.1^33,K.1^-18,K.1^-2,K.1^14,K.1^30,K.1^-21,K.1^-5,K.1^11,K.1^27,K.1^-24,K.1^-8,K.1^8,K.1^-16,K.1^-32,K.1^19,K.1^3,K.1^-13,K.1^-29,K.1^22,K.1^6,K.1^-10,K.1^-26,K.1^25,K.1^9,K.1^-7,K.1^-23,K.1^28,K.1^12,K.1^-4,K.1^-20,K.1^31,K.1^15,K.1^-1,K.1^-17,K.1^-33,K.1^18,K.1^2,K.1^-14,K.1^-30,K.1^21,K.1^5,K.1^-11,K.1^-27,K.1^24,K.1^16,-1*K.1^20,-1*K.1^-23,-1*K.1^-7,-1*K.1^9,-1*K.1^25,-1*K.1^-26,-1*K.1^-10,-1*K.1^6,-1*K.1^22,-1*K.1^-29,-1*K.1^-13,-1*K.1^3,-1*K.1^19,-1*K.1^-32,-1*K.1^-16,-1*K.1^4,-1*K.1^16,-1*K.1^32,-1*K.1^-19,-1*K.1^-3,-1*K.1^13,-1*K.1^29,-1*K.1^-22,-1*K.1^-6,-1*K.1^10,-1*K.1^26,-1*K.1^-25,-1*K.1^-9,-1*K.1^7,-1*K.1^23,-1*K.1^-28,-1*K.1^-12,-1*K.1^-4,-1*K.1^12,-1*K.1^-20,-1*K.1^31,-1*K.1^15,-1*K.1^-1,-1*K.1^-17,-1*K.1^-33,-1*K.1^18,-1*K.1^2,-1*K.1^-14,-1*K.1^-30,-1*K.1^21,-1*K.1^5,-1*K.1^-11,-1*K.1^-27,-1*K.1^24,-1*K.1^8,-1*K.1^-8,-1*K.1^-24,-1*K.1^27,-1*K.1^11,-1*K.1^-5,-1*K.1^-21,-1*K.1^30,-1*K.1^14,-1*K.1^-2,-1*K.1^-18,-1*K.1^33,-1*K.1^17,-1*K.1,-1*K.1^-15,-1*K.1^-31,-1*K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-31,K.1^-13,K.1^5,K.1^23,K.1^-26,K.1^-8,K.1^10,K.1^28,K.1^-21,K.1^-3,K.1^15,K.1^33,K.1^-16,K.1^2,K.1^20,K.1^-29,K.1^-11,K.1^7,K.1^25,K.1^-24,K.1^-6,K.1^12,K.1^30,K.1^-19,K.1^-1,K.1^17,K.1^-32,K.1^-14,K.1^4,K.1^22,K.1^-27,K.1^-9,K.1^9,K.1^-18,K.1^31,K.1^13,K.1^-5,K.1^-23,K.1^26,K.1^8,K.1^-10,K.1^-28,K.1^21,K.1^3,K.1^-15,K.1^-33,K.1^16,K.1^-2,K.1^-20,K.1^29,K.1^11,K.1^-7,K.1^-25,K.1^24,K.1^6,K.1^-12,K.1^-30,K.1^19,K.1,K.1^-17,K.1^32,K.1^14,K.1^-4,K.1^-22,K.1^27,K.1^18,-1*K.1^-11,-1*K.1^16,-1*K.1^-33,-1*K.1^-15,-1*K.1^3,-1*K.1^21,-1*K.1^-28,-1*K.1^-10,-1*K.1^8,-1*K.1^26,-1*K.1^-23,-1*K.1^-5,-1*K.1^13,-1*K.1^31,-1*K.1^-18,-1*K.1^-29,-1*K.1^18,-1*K.1^-31,-1*K.1^-13,-1*K.1^5,-1*K.1^23,-1*K.1^-26,-1*K.1^-8,-1*K.1^10,-1*K.1^28,-1*K.1^-21,-1*K.1^-3,-1*K.1^15,-1*K.1^33,-1*K.1^-16,-1*K.1^2,-1*K.1^20,-1*K.1^29,-1*K.1^-20,-1*K.1^11,-1*K.1^-7,-1*K.1^-25,-1*K.1^24,-1*K.1^6,-1*K.1^-12,-1*K.1^-30,-1*K.1^19,-1*K.1,-1*K.1^-17,-1*K.1^32,-1*K.1^14,-1*K.1^-4,-1*K.1^-22,-1*K.1^27,-1*K.1^9,-1*K.1^-9,-1*K.1^-27,-1*K.1^22,-1*K.1^4,-1*K.1^-14,-1*K.1^-32,-1*K.1^17,-1*K.1^-1,-1*K.1^-19,-1*K.1^30,-1*K.1^12,-1*K.1^-6,-1*K.1^-24,-1*K.1^25,-1*K.1^7,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^31,K.1^13,K.1^-5,K.1^-23,K.1^26,K.1^8,K.1^-10,K.1^-28,K.1^21,K.1^3,K.1^-15,K.1^-33,K.1^16,K.1^-2,K.1^-20,K.1^29,K.1^11,K.1^-7,K.1^-25,K.1^24,K.1^6,K.1^-12,K.1^-30,K.1^19,K.1,K.1^-17,K.1^32,K.1^14,K.1^-4,K.1^-22,K.1^27,K.1^9,K.1^-9,K.1^18,K.1^-31,K.1^-13,K.1^5,K.1^23,K.1^-26,K.1^-8,K.1^10,K.1^28,K.1^-21,K.1^-3,K.1^15,K.1^33,K.1^-16,K.1^2,K.1^20,K.1^-29,K.1^-11,K.1^7,K.1^25,K.1^-24,K.1^-6,K.1^12,K.1^30,K.1^-19,K.1^-1,K.1^17,K.1^-32,K.1^-14,K.1^4,K.1^22,K.1^-27,K.1^-18,-1*K.1^11,-1*K.1^-16,-1*K.1^33,-1*K.1^15,-1*K.1^-3,-1*K.1^-21,-1*K.1^28,-1*K.1^10,-1*K.1^-8,-1*K.1^-26,-1*K.1^23,-1*K.1^5,-1*K.1^-13,-1*K.1^-31,-1*K.1^18,-1*K.1^29,-1*K.1^-18,-1*K.1^31,-1*K.1^13,-1*K.1^-5,-1*K.1^-23,-1*K.1^26,-1*K.1^8,-1*K.1^-10,-1*K.1^-28,-1*K.1^21,-1*K.1^3,-1*K.1^-15,-1*K.1^-33,-1*K.1^16,-1*K.1^-2,-1*K.1^-20,-1*K.1^-29,-1*K.1^20,-1*K.1^-11,-1*K.1^7,-1*K.1^25,-1*K.1^-24,-1*K.1^-6,-1*K.1^12,-1*K.1^30,-1*K.1^-19,-1*K.1^-1,-1*K.1^17,-1*K.1^-32,-1*K.1^-14,-1*K.1^4,-1*K.1^22,-1*K.1^-27,-1*K.1^-9,-1*K.1^9,-1*K.1^27,-1*K.1^-22,-1*K.1^-4,-1*K.1^14,-1*K.1^32,-1*K.1^-17,-1*K.1,-1*K.1^19,-1*K.1^-30,-1*K.1^-12,-1*K.1^6,-1*K.1^24,-1*K.1^-25,-1*K.1^-7,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-30,K.1^22,K.1^7,K.1^-8,K.1^-23,K.1^29,K.1^14,K.1^-1,K.1^-16,K.1^-31,K.1^21,K.1^6,K.1^-9,K.1^-24,K.1^28,K.1^13,K.1^-2,K.1^-17,K.1^-32,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^27,K.1^12,K.1^-3,K.1^-18,K.1^-33,K.1^19,K.1^4,K.1^-11,K.1^-26,K.1^26,K.1^15,K.1^30,K.1^-22,K.1^-7,K.1^8,K.1^23,K.1^-29,K.1^-14,K.1,K.1^16,K.1^31,K.1^-21,K.1^-6,K.1^9,K.1^24,K.1^-28,K.1^-13,K.1^2,K.1^17,K.1^32,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^-27,K.1^-12,K.1^3,K.1^18,K.1^33,K.1^-19,K.1^-4,K.1^11,K.1^-15,-1*K.1^-2,-1*K.1^9,-1*K.1^-6,-1*K.1^-21,-1*K.1^31,-1*K.1^16,-1*K.1,-1*K.1^-14,-1*K.1^-29,-1*K.1^23,-1*K.1^8,-1*K.1^-7,-1*K.1^-22,-1*K.1^30,-1*K.1^15,-1*K.1^13,-1*K.1^-15,-1*K.1^-30,-1*K.1^22,-1*K.1^7,-1*K.1^-8,-1*K.1^-23,-1*K.1^29,-1*K.1^14,-1*K.1^-1,-1*K.1^-16,-1*K.1^-31,-1*K.1^21,-1*K.1^6,-1*K.1^-9,-1*K.1^-24,-1*K.1^28,-1*K.1^-13,-1*K.1^-28,-1*K.1^2,-1*K.1^17,-1*K.1^32,-1*K.1^-20,-1*K.1^-5,-1*K.1^10,-1*K.1^25,-1*K.1^-27,-1*K.1^-12,-1*K.1^3,-1*K.1^18,-1*K.1^33,-1*K.1^-19,-1*K.1^-4,-1*K.1^11,-1*K.1^26,-1*K.1^-26,-1*K.1^-11,-1*K.1^4,-1*K.1^19,-1*K.1^-33,-1*K.1^-18,-1*K.1^-3,-1*K.1^12,-1*K.1^27,-1*K.1^-25,-1*K.1^-10,-1*K.1^5,-1*K.1^20,-1*K.1^-32,-1*K.1^-17,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^30,K.1^-22,K.1^-7,K.1^8,K.1^23,K.1^-29,K.1^-14,K.1,K.1^16,K.1^31,K.1^-21,K.1^-6,K.1^9,K.1^24,K.1^-28,K.1^-13,K.1^2,K.1^17,K.1^32,K.1^-20,K.1^-5,K.1^10,K.1^25,K.1^-27,K.1^-12,K.1^3,K.1^18,K.1^33,K.1^-19,K.1^-4,K.1^11,K.1^26,K.1^-26,K.1^-15,K.1^-30,K.1^22,K.1^7,K.1^-8,K.1^-23,K.1^29,K.1^14,K.1^-1,K.1^-16,K.1^-31,K.1^21,K.1^6,K.1^-9,K.1^-24,K.1^28,K.1^13,K.1^-2,K.1^-17,K.1^-32,K.1^20,K.1^5,K.1^-10,K.1^-25,K.1^27,K.1^12,K.1^-3,K.1^-18,K.1^-33,K.1^19,K.1^4,K.1^-11,K.1^15,-1*K.1^2,-1*K.1^-9,-1*K.1^6,-1*K.1^21,-1*K.1^-31,-1*K.1^-16,-1*K.1^-1,-1*K.1^14,-1*K.1^29,-1*K.1^-23,-1*K.1^-8,-1*K.1^7,-1*K.1^22,-1*K.1^-30,-1*K.1^-15,-1*K.1^-13,-1*K.1^15,-1*K.1^30,-1*K.1^-22,-1*K.1^-7,-1*K.1^8,-1*K.1^23,-1*K.1^-29,-1*K.1^-14,-1*K.1,-1*K.1^16,-1*K.1^31,-1*K.1^-21,-1*K.1^-6,-1*K.1^9,-1*K.1^24,-1*K.1^-28,-1*K.1^13,-1*K.1^28,-1*K.1^-2,-1*K.1^-17,-1*K.1^-32,-1*K.1^20,-1*K.1^5,-1*K.1^-10,-1*K.1^-25,-1*K.1^27,-1*K.1^12,-1*K.1^-3,-1*K.1^-18,-1*K.1^-33,-1*K.1^19,-1*K.1^4,-1*K.1^-11,-1*K.1^-26,-1*K.1^26,-1*K.1^11,-1*K.1^-4,-1*K.1^-19,-1*K.1^33,-1*K.1^18,-1*K.1^3,-1*K.1^-12,-1*K.1^-27,-1*K.1^25,-1*K.1^10,-1*K.1^-5,-1*K.1^-20,-1*K.1^32,-1*K.1^17,-1*K.1^-24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-29,K.1^-10,K.1^9,K.1^28,K.1^-20,K.1^-1,K.1^18,K.1^-30,K.1^-11,K.1^8,K.1^27,K.1^-21,K.1^-2,K.1^17,K.1^-31,K.1^-12,K.1^7,K.1^26,K.1^-22,K.1^-3,K.1^16,K.1^-32,K.1^-13,K.1^6,K.1^25,K.1^-23,K.1^-4,K.1^15,K.1^-33,K.1^-14,K.1^5,K.1^24,K.1^-24,K.1^-19,K.1^29,K.1^10,K.1^-9,K.1^-28,K.1^20,K.1,K.1^-18,K.1^30,K.1^11,K.1^-8,K.1^-27,K.1^21,K.1^2,K.1^-17,K.1^31,K.1^12,K.1^-7,K.1^-26,K.1^22,K.1^3,K.1^-16,K.1^32,K.1^13,K.1^-6,K.1^-25,K.1^23,K.1^4,K.1^-15,K.1^33,K.1^14,K.1^-5,K.1^19,-1*K.1^7,-1*K.1^2,-1*K.1^21,-1*K.1^-27,-1*K.1^-8,-1*K.1^11,-1*K.1^30,-1*K.1^-18,-1*K.1,-1*K.1^20,-1*K.1^-28,-1*K.1^-9,-1*K.1^10,-1*K.1^29,-1*K.1^-19,-1*K.1^-12,-1*K.1^19,-1*K.1^-29,-1*K.1^-10,-1*K.1^9,-1*K.1^28,-1*K.1^-20,-1*K.1^-1,-1*K.1^18,-1*K.1^-30,-1*K.1^-11,-1*K.1^8,-1*K.1^27,-1*K.1^-21,-1*K.1^-2,-1*K.1^17,-1*K.1^-31,-1*K.1^12,-1*K.1^31,-1*K.1^-7,-1*K.1^-26,-1*K.1^22,-1*K.1^3,-1*K.1^-16,-1*K.1^32,-1*K.1^13,-1*K.1^-6,-1*K.1^-25,-1*K.1^23,-1*K.1^4,-1*K.1^-15,-1*K.1^33,-1*K.1^14,-1*K.1^-5,-1*K.1^-24,-1*K.1^24,-1*K.1^5,-1*K.1^-14,-1*K.1^-33,-1*K.1^15,-1*K.1^-4,-1*K.1^-23,-1*K.1^25,-1*K.1^6,-1*K.1^-13,-1*K.1^-32,-1*K.1^16,-1*K.1^-3,-1*K.1^-22,-1*K.1^26,-1*K.1^-17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^29,K.1^10,K.1^-9,K.1^-28,K.1^20,K.1,K.1^-18,K.1^30,K.1^11,K.1^-8,K.1^-27,K.1^21,K.1^2,K.1^-17,K.1^31,K.1^12,K.1^-7,K.1^-26,K.1^22,K.1^3,K.1^-16,K.1^32,K.1^13,K.1^-6,K.1^-25,K.1^23,K.1^4,K.1^-15,K.1^33,K.1^14,K.1^-5,K.1^-24,K.1^24,K.1^19,K.1^-29,K.1^-10,K.1^9,K.1^28,K.1^-20,K.1^-1,K.1^18,K.1^-30,K.1^-11,K.1^8,K.1^27,K.1^-21,K.1^-2,K.1^17,K.1^-31,K.1^-12,K.1^7,K.1^26,K.1^-22,K.1^-3,K.1^16,K.1^-32,K.1^-13,K.1^6,K.1^25,K.1^-23,K.1^-4,K.1^15,K.1^-33,K.1^-14,K.1^5,K.1^-19,-1*K.1^-7,-1*K.1^-2,-1*K.1^-21,-1*K.1^27,-1*K.1^8,-1*K.1^-11,-1*K.1^-30,-1*K.1^18,-1*K.1^-1,-1*K.1^-20,-1*K.1^28,-1*K.1^9,-1*K.1^-10,-1*K.1^-29,-1*K.1^19,-1*K.1^12,-1*K.1^-19,-1*K.1^29,-1*K.1^10,-1*K.1^-9,-1*K.1^-28,-1*K.1^20,-1*K.1,-1*K.1^-18,-1*K.1^30,-1*K.1^11,-1*K.1^-8,-1*K.1^-27,-1*K.1^21,-1*K.1^2,-1*K.1^-17,-1*K.1^31,-1*K.1^-12,-1*K.1^-31,-1*K.1^7,-1*K.1^26,-1*K.1^-22,-1*K.1^-3,-1*K.1^16,-1*K.1^-32,-1*K.1^-13,-1*K.1^6,-1*K.1^25,-1*K.1^-23,-1*K.1^-4,-1*K.1^15,-1*K.1^-33,-1*K.1^-14,-1*K.1^5,-1*K.1^24,-1*K.1^-24,-1*K.1^-5,-1*K.1^14,-1*K.1^33,-1*K.1^-15,-1*K.1^4,-1*K.1^23,-1*K.1^-25,-1*K.1^-6,-1*K.1^13,-1*K.1^32,-1*K.1^-16,-1*K.1^3,-1*K.1^22,-1*K.1^-26,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-28,K.1^25,K.1^11,K.1^-3,K.1^-17,K.1^-31,K.1^22,K.1^8,K.1^-6,K.1^-20,K.1^33,K.1^19,K.1^5,K.1^-9,K.1^-23,K.1^30,K.1^16,K.1^2,K.1^-12,K.1^-26,K.1^27,K.1^13,K.1^-1,K.1^-15,K.1^-29,K.1^24,K.1^10,K.1^-4,K.1^-18,K.1^-32,K.1^21,K.1^7,K.1^-7,K.1^14,K.1^28,K.1^-25,K.1^-11,K.1^3,K.1^17,K.1^31,K.1^-22,K.1^-8,K.1^6,K.1^20,K.1^-33,K.1^-19,K.1^-5,K.1^9,K.1^23,K.1^-30,K.1^-16,K.1^-2,K.1^12,K.1^26,K.1^-27,K.1^-13,K.1,K.1^15,K.1^29,K.1^-24,K.1^-10,K.1^4,K.1^18,K.1^32,K.1^-21,K.1^-14,-1*K.1^16,-1*K.1^-5,-1*K.1^-19,-1*K.1^-33,-1*K.1^20,-1*K.1^6,-1*K.1^-8,-1*K.1^-22,-1*K.1^31,-1*K.1^17,-1*K.1^3,-1*K.1^-11,-1*K.1^-25,-1*K.1^28,-1*K.1^14,-1*K.1^30,-1*K.1^-14,-1*K.1^-28,-1*K.1^25,-1*K.1^11,-1*K.1^-3,-1*K.1^-17,-1*K.1^-31,-1*K.1^22,-1*K.1^8,-1*K.1^-6,-1*K.1^-20,-1*K.1^33,-1*K.1^19,-1*K.1^5,-1*K.1^-9,-1*K.1^-23,-1*K.1^-30,-1*K.1^23,-1*K.1^-16,-1*K.1^-2,-1*K.1^12,-1*K.1^26,-1*K.1^-27,-1*K.1^-13,-1*K.1,-1*K.1^15,-1*K.1^29,-1*K.1^-24,-1*K.1^-10,-1*K.1^4,-1*K.1^18,-1*K.1^32,-1*K.1^-21,-1*K.1^-7,-1*K.1^7,-1*K.1^21,-1*K.1^-32,-1*K.1^-18,-1*K.1^-4,-1*K.1^10,-1*K.1^24,-1*K.1^-29,-1*K.1^-15,-1*K.1^-1,-1*K.1^13,-1*K.1^27,-1*K.1^-26,-1*K.1^-12,-1*K.1^2,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^28,K.1^-25,K.1^-11,K.1^3,K.1^17,K.1^31,K.1^-22,K.1^-8,K.1^6,K.1^20,K.1^-33,K.1^-19,K.1^-5,K.1^9,K.1^23,K.1^-30,K.1^-16,K.1^-2,K.1^12,K.1^26,K.1^-27,K.1^-13,K.1,K.1^15,K.1^29,K.1^-24,K.1^-10,K.1^4,K.1^18,K.1^32,K.1^-21,K.1^-7,K.1^7,K.1^-14,K.1^-28,K.1^25,K.1^11,K.1^-3,K.1^-17,K.1^-31,K.1^22,K.1^8,K.1^-6,K.1^-20,K.1^33,K.1^19,K.1^5,K.1^-9,K.1^-23,K.1^30,K.1^16,K.1^2,K.1^-12,K.1^-26,K.1^27,K.1^13,K.1^-1,K.1^-15,K.1^-29,K.1^24,K.1^10,K.1^-4,K.1^-18,K.1^-32,K.1^21,K.1^14,-1*K.1^-16,-1*K.1^5,-1*K.1^19,-1*K.1^33,-1*K.1^-20,-1*K.1^-6,-1*K.1^8,-1*K.1^22,-1*K.1^-31,-1*K.1^-17,-1*K.1^-3,-1*K.1^11,-1*K.1^25,-1*K.1^-28,-1*K.1^-14,-1*K.1^-30,-1*K.1^14,-1*K.1^28,-1*K.1^-25,-1*K.1^-11,-1*K.1^3,-1*K.1^17,-1*K.1^31,-1*K.1^-22,-1*K.1^-8,-1*K.1^6,-1*K.1^20,-1*K.1^-33,-1*K.1^-19,-1*K.1^-5,-1*K.1^9,-1*K.1^23,-1*K.1^30,-1*K.1^-23,-1*K.1^16,-1*K.1^2,-1*K.1^-12,-1*K.1^-26,-1*K.1^27,-1*K.1^13,-1*K.1^-1,-1*K.1^-15,-1*K.1^-29,-1*K.1^24,-1*K.1^10,-1*K.1^-4,-1*K.1^-18,-1*K.1^-32,-1*K.1^21,-1*K.1^7,-1*K.1^-7,-1*K.1^-21,-1*K.1^32,-1*K.1^18,-1*K.1^4,-1*K.1^-10,-1*K.1^-24,-1*K.1^29,-1*K.1^15,-1*K.1,-1*K.1^-13,-1*K.1^-27,-1*K.1^26,-1*K.1^12,-1*K.1^-2,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-27,K.1^-7,K.1^13,K.1^33,K.1^-14,K.1^6,K.1^26,K.1^-21,K.1^-1,K.1^19,K.1^-28,K.1^-8,K.1^12,K.1^32,K.1^-15,K.1^5,K.1^25,K.1^-22,K.1^-2,K.1^18,K.1^-29,K.1^-9,K.1^11,K.1^31,K.1^-16,K.1^4,K.1^24,K.1^-23,K.1^-3,K.1^17,K.1^-30,K.1^-10,K.1^10,K.1^-20,K.1^27,K.1^7,K.1^-13,K.1^-33,K.1^14,K.1^-6,K.1^-26,K.1^21,K.1,K.1^-19,K.1^28,K.1^8,K.1^-12,K.1^-32,K.1^15,K.1^-5,K.1^-25,K.1^22,K.1^2,K.1^-18,K.1^29,K.1^9,K.1^-11,K.1^-31,K.1^16,K.1^-4,K.1^-24,K.1^23,K.1^3,K.1^-17,K.1^30,K.1^20,-1*K.1^25,-1*K.1^-12,-1*K.1^8,-1*K.1^28,-1*K.1^-19,-1*K.1,-1*K.1^21,-1*K.1^-26,-1*K.1^-6,-1*K.1^14,-1*K.1^-33,-1*K.1^-13,-1*K.1^7,-1*K.1^27,-1*K.1^-20,-1*K.1^5,-1*K.1^20,-1*K.1^-27,-1*K.1^-7,-1*K.1^13,-1*K.1^33,-1*K.1^-14,-1*K.1^6,-1*K.1^26,-1*K.1^-21,-1*K.1^-1,-1*K.1^19,-1*K.1^-28,-1*K.1^-8,-1*K.1^12,-1*K.1^32,-1*K.1^-15,-1*K.1^-5,-1*K.1^15,-1*K.1^-25,-1*K.1^22,-1*K.1^2,-1*K.1^-18,-1*K.1^29,-1*K.1^9,-1*K.1^-11,-1*K.1^-31,-1*K.1^16,-1*K.1^-4,-1*K.1^-24,-1*K.1^23,-1*K.1^3,-1*K.1^-17,-1*K.1^30,-1*K.1^10,-1*K.1^-10,-1*K.1^-30,-1*K.1^17,-1*K.1^-3,-1*K.1^-23,-1*K.1^24,-1*K.1^4,-1*K.1^-16,-1*K.1^31,-1*K.1^11,-1*K.1^-9,-1*K.1^-29,-1*K.1^18,-1*K.1^-2,-1*K.1^-22,-1*K.1^-32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^27,K.1^7,K.1^-13,K.1^-33,K.1^14,K.1^-6,K.1^-26,K.1^21,K.1,K.1^-19,K.1^28,K.1^8,K.1^-12,K.1^-32,K.1^15,K.1^-5,K.1^-25,K.1^22,K.1^2,K.1^-18,K.1^29,K.1^9,K.1^-11,K.1^-31,K.1^16,K.1^-4,K.1^-24,K.1^23,K.1^3,K.1^-17,K.1^30,K.1^10,K.1^-10,K.1^20,K.1^-27,K.1^-7,K.1^13,K.1^33,K.1^-14,K.1^6,K.1^26,K.1^-21,K.1^-1,K.1^19,K.1^-28,K.1^-8,K.1^12,K.1^32,K.1^-15,K.1^5,K.1^25,K.1^-22,K.1^-2,K.1^18,K.1^-29,K.1^-9,K.1^11,K.1^31,K.1^-16,K.1^4,K.1^24,K.1^-23,K.1^-3,K.1^17,K.1^-30,K.1^-20,-1*K.1^-25,-1*K.1^12,-1*K.1^-8,-1*K.1^-28,-1*K.1^19,-1*K.1^-1,-1*K.1^-21,-1*K.1^26,-1*K.1^6,-1*K.1^-14,-1*K.1^33,-1*K.1^13,-1*K.1^-7,-1*K.1^-27,-1*K.1^20,-1*K.1^-5,-1*K.1^-20,-1*K.1^27,-1*K.1^7,-1*K.1^-13,-1*K.1^-33,-1*K.1^14,-1*K.1^-6,-1*K.1^-26,-1*K.1^21,-1*K.1,-1*K.1^-19,-1*K.1^28,-1*K.1^8,-1*K.1^-12,-1*K.1^-32,-1*K.1^15,-1*K.1^5,-1*K.1^-15,-1*K.1^25,-1*K.1^-22,-1*K.1^-2,-1*K.1^18,-1*K.1^-29,-1*K.1^-9,-1*K.1^11,-1*K.1^31,-1*K.1^-16,-1*K.1^4,-1*K.1^24,-1*K.1^-23,-1*K.1^-3,-1*K.1^17,-1*K.1^-30,-1*K.1^-10,-1*K.1^10,-1*K.1^30,-1*K.1^-17,-1*K.1^3,-1*K.1^23,-1*K.1^-24,-1*K.1^-4,-1*K.1^16,-1*K.1^-31,-1*K.1^-11,-1*K.1^9,-1*K.1^29,-1*K.1^-18,-1*K.1^2,-1*K.1^22,-1*K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-26,K.1^28,K.1^15,K.1^2,K.1^-11,K.1^-24,K.1^30,K.1^17,K.1^4,K.1^-9,K.1^-22,K.1^32,K.1^19,K.1^6,K.1^-7,K.1^-20,K.1^-33,K.1^21,K.1^8,K.1^-5,K.1^-18,K.1^-31,K.1^23,K.1^10,K.1^-3,K.1^-16,K.1^-29,K.1^25,K.1^12,K.1^-1,K.1^-14,K.1^-27,K.1^27,K.1^13,K.1^26,K.1^-28,K.1^-15,K.1^-2,K.1^11,K.1^24,K.1^-30,K.1^-17,K.1^-4,K.1^9,K.1^22,K.1^-32,K.1^-19,K.1^-6,K.1^7,K.1^20,K.1^33,K.1^-21,K.1^-8,K.1^5,K.1^18,K.1^31,K.1^-23,K.1^-10,K.1^3,K.1^16,K.1^29,K.1^-25,K.1^-12,K.1,K.1^14,K.1^-13,-1*K.1^-33,-1*K.1^-19,-1*K.1^-32,-1*K.1^22,-1*K.1^9,-1*K.1^-4,-1*K.1^-17,-1*K.1^-30,-1*K.1^24,-1*K.1^11,-1*K.1^-2,-1*K.1^-15,-1*K.1^-28,-1*K.1^26,-1*K.1^13,-1*K.1^-20,-1*K.1^-13,-1*K.1^-26,-1*K.1^28,-1*K.1^15,-1*K.1^2,-1*K.1^-11,-1*K.1^-24,-1*K.1^30,-1*K.1^17,-1*K.1^4,-1*K.1^-9,-1*K.1^-22,-1*K.1^32,-1*K.1^19,-1*K.1^6,-1*K.1^-7,-1*K.1^20,-1*K.1^7,-1*K.1^33,-1*K.1^-21,-1*K.1^-8,-1*K.1^5,-1*K.1^18,-1*K.1^31,-1*K.1^-23,-1*K.1^-10,-1*K.1^3,-1*K.1^16,-1*K.1^29,-1*K.1^-25,-1*K.1^-12,-1*K.1,-1*K.1^14,-1*K.1^27,-1*K.1^-27,-1*K.1^-14,-1*K.1^-1,-1*K.1^12,-1*K.1^25,-1*K.1^-29,-1*K.1^-16,-1*K.1^-3,-1*K.1^10,-1*K.1^23,-1*K.1^-31,-1*K.1^-18,-1*K.1^-5,-1*K.1^8,-1*K.1^21,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^26,K.1^-28,K.1^-15,K.1^-2,K.1^11,K.1^24,K.1^-30,K.1^-17,K.1^-4,K.1^9,K.1^22,K.1^-32,K.1^-19,K.1^-6,K.1^7,K.1^20,K.1^33,K.1^-21,K.1^-8,K.1^5,K.1^18,K.1^31,K.1^-23,K.1^-10,K.1^3,K.1^16,K.1^29,K.1^-25,K.1^-12,K.1,K.1^14,K.1^27,K.1^-27,K.1^-13,K.1^-26,K.1^28,K.1^15,K.1^2,K.1^-11,K.1^-24,K.1^30,K.1^17,K.1^4,K.1^-9,K.1^-22,K.1^32,K.1^19,K.1^6,K.1^-7,K.1^-20,K.1^-33,K.1^21,K.1^8,K.1^-5,K.1^-18,K.1^-31,K.1^23,K.1^10,K.1^-3,K.1^-16,K.1^-29,K.1^25,K.1^12,K.1^-1,K.1^-14,K.1^13,-1*K.1^33,-1*K.1^19,-1*K.1^32,-1*K.1^-22,-1*K.1^-9,-1*K.1^4,-1*K.1^17,-1*K.1^30,-1*K.1^-24,-1*K.1^-11,-1*K.1^2,-1*K.1^15,-1*K.1^28,-1*K.1^-26,-1*K.1^-13,-1*K.1^20,-1*K.1^13,-1*K.1^26,-1*K.1^-28,-1*K.1^-15,-1*K.1^-2,-1*K.1^11,-1*K.1^24,-1*K.1^-30,-1*K.1^-17,-1*K.1^-4,-1*K.1^9,-1*K.1^22,-1*K.1^-32,-1*K.1^-19,-1*K.1^-6,-1*K.1^7,-1*K.1^-20,-1*K.1^-7,-1*K.1^-33,-1*K.1^21,-1*K.1^8,-1*K.1^-5,-1*K.1^-18,-1*K.1^-31,-1*K.1^23,-1*K.1^10,-1*K.1^-3,-1*K.1^-16,-1*K.1^-29,-1*K.1^25,-1*K.1^12,-1*K.1^-1,-1*K.1^-14,-1*K.1^-27,-1*K.1^27,-1*K.1^14,-1*K.1,-1*K.1^-12,-1*K.1^-25,-1*K.1^29,-1*K.1^16,-1*K.1^3,-1*K.1^-10,-1*K.1^-23,-1*K.1^31,-1*K.1^18,-1*K.1^5,-1*K.1^-8,-1*K.1^-21,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-25,K.1^-4,K.1^17,K.1^-29,K.1^-8,K.1^13,K.1^-33,K.1^-12,K.1^9,K.1^30,K.1^-16,K.1^5,K.1^26,K.1^-20,K.1,K.1^22,K.1^-24,K.1^-3,K.1^18,K.1^-28,K.1^-7,K.1^14,K.1^-32,K.1^-11,K.1^10,K.1^31,K.1^-15,K.1^6,K.1^27,K.1^-19,K.1^2,K.1^23,K.1^-23,K.1^-21,K.1^25,K.1^4,K.1^-17,K.1^29,K.1^8,K.1^-13,K.1^33,K.1^12,K.1^-9,K.1^-30,K.1^16,K.1^-5,K.1^-26,K.1^20,K.1^-1,K.1^-22,K.1^24,K.1^3,K.1^-18,K.1^28,K.1^7,K.1^-14,K.1^32,K.1^11,K.1^-10,K.1^-31,K.1^15,K.1^-6,K.1^-27,K.1^19,K.1^-2,K.1^21,-1*K.1^-24,-1*K.1^-26,-1*K.1^-5,-1*K.1^16,-1*K.1^-30,-1*K.1^-9,-1*K.1^12,-1*K.1^33,-1*K.1^-13,-1*K.1^8,-1*K.1^29,-1*K.1^-17,-1*K.1^4,-1*K.1^25,-1*K.1^-21,-1*K.1^22,-1*K.1^21,-1*K.1^-25,-1*K.1^-4,-1*K.1^17,-1*K.1^-29,-1*K.1^-8,-1*K.1^13,-1*K.1^-33,-1*K.1^-12,-1*K.1^9,-1*K.1^30,-1*K.1^-16,-1*K.1^5,-1*K.1^26,-1*K.1^-20,-1*K.1,-1*K.1^-22,-1*K.1^-1,-1*K.1^24,-1*K.1^3,-1*K.1^-18,-1*K.1^28,-1*K.1^7,-1*K.1^-14,-1*K.1^32,-1*K.1^11,-1*K.1^-10,-1*K.1^-31,-1*K.1^15,-1*K.1^-6,-1*K.1^-27,-1*K.1^19,-1*K.1^-2,-1*K.1^-23,-1*K.1^23,-1*K.1^2,-1*K.1^-19,-1*K.1^27,-1*K.1^6,-1*K.1^-15,-1*K.1^31,-1*K.1^10,-1*K.1^-11,-1*K.1^-32,-1*K.1^14,-1*K.1^-7,-1*K.1^-28,-1*K.1^18,-1*K.1^-3,-1*K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^25,K.1^4,K.1^-17,K.1^29,K.1^8,K.1^-13,K.1^33,K.1^12,K.1^-9,K.1^-30,K.1^16,K.1^-5,K.1^-26,K.1^20,K.1^-1,K.1^-22,K.1^24,K.1^3,K.1^-18,K.1^28,K.1^7,K.1^-14,K.1^32,K.1^11,K.1^-10,K.1^-31,K.1^15,K.1^-6,K.1^-27,K.1^19,K.1^-2,K.1^-23,K.1^23,K.1^21,K.1^-25,K.1^-4,K.1^17,K.1^-29,K.1^-8,K.1^13,K.1^-33,K.1^-12,K.1^9,K.1^30,K.1^-16,K.1^5,K.1^26,K.1^-20,K.1,K.1^22,K.1^-24,K.1^-3,K.1^18,K.1^-28,K.1^-7,K.1^14,K.1^-32,K.1^-11,K.1^10,K.1^31,K.1^-15,K.1^6,K.1^27,K.1^-19,K.1^2,K.1^-21,-1*K.1^24,-1*K.1^26,-1*K.1^5,-1*K.1^-16,-1*K.1^30,-1*K.1^9,-1*K.1^-12,-1*K.1^-33,-1*K.1^13,-1*K.1^-8,-1*K.1^-29,-1*K.1^17,-1*K.1^-4,-1*K.1^-25,-1*K.1^21,-1*K.1^-22,-1*K.1^-21,-1*K.1^25,-1*K.1^4,-1*K.1^-17,-1*K.1^29,-1*K.1^8,-1*K.1^-13,-1*K.1^33,-1*K.1^12,-1*K.1^-9,-1*K.1^-30,-1*K.1^16,-1*K.1^-5,-1*K.1^-26,-1*K.1^20,-1*K.1^-1,-1*K.1^22,-1*K.1,-1*K.1^-24,-1*K.1^-3,-1*K.1^18,-1*K.1^-28,-1*K.1^-7,-1*K.1^14,-1*K.1^-32,-1*K.1^-11,-1*K.1^10,-1*K.1^31,-1*K.1^-15,-1*K.1^6,-1*K.1^27,-1*K.1^-19,-1*K.1^2,-1*K.1^23,-1*K.1^-23,-1*K.1^-2,-1*K.1^19,-1*K.1^-27,-1*K.1^-6,-1*K.1^15,-1*K.1^-31,-1*K.1^-10,-1*K.1^11,-1*K.1^32,-1*K.1^-14,-1*K.1^7,-1*K.1^28,-1*K.1^-18,-1*K.1^3,-1*K.1^-20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-24,K.1^31,K.1^19,K.1^7,K.1^-5,K.1^-17,K.1^-29,K.1^26,K.1^14,K.1^2,K.1^-10,K.1^-22,K.1^33,K.1^21,K.1^9,K.1^-3,K.1^-15,K.1^-27,K.1^28,K.1^16,K.1^4,K.1^-8,K.1^-20,K.1^-32,K.1^23,K.1^11,K.1^-1,K.1^-13,K.1^-25,K.1^30,K.1^18,K.1^6,K.1^-6,K.1^12,K.1^24,K.1^-31,K.1^-19,K.1^-7,K.1^5,K.1^17,K.1^29,K.1^-26,K.1^-14,K.1^-2,K.1^10,K.1^22,K.1^-33,K.1^-21,K.1^-9,K.1^3,K.1^15,K.1^27,K.1^-28,K.1^-16,K.1^-4,K.1^8,K.1^20,K.1^32,K.1^-23,K.1^-11,K.1,K.1^13,K.1^25,K.1^-30,K.1^-18,K.1^-12,-1*K.1^-15,-1*K.1^-33,-1*K.1^22,-1*K.1^10,-1*K.1^-2,-1*K.1^-14,-1*K.1^-26,-1*K.1^29,-1*K.1^17,-1*K.1^5,-1*K.1^-7,-1*K.1^-19,-1*K.1^-31,-1*K.1^24,-1*K.1^12,-1*K.1^-3,-1*K.1^-12,-1*K.1^-24,-1*K.1^31,-1*K.1^19,-1*K.1^7,-1*K.1^-5,-1*K.1^-17,-1*K.1^-29,-1*K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^-10,-1*K.1^-22,-1*K.1^33,-1*K.1^21,-1*K.1^9,-1*K.1^3,-1*K.1^-9,-1*K.1^15,-1*K.1^27,-1*K.1^-28,-1*K.1^-16,-1*K.1^-4,-1*K.1^8,-1*K.1^20,-1*K.1^32,-1*K.1^-23,-1*K.1^-11,-1*K.1,-1*K.1^13,-1*K.1^25,-1*K.1^-30,-1*K.1^-18,-1*K.1^-6,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^-25,-1*K.1^-13,-1*K.1^-1,-1*K.1^11,-1*K.1^23,-1*K.1^-32,-1*K.1^-20,-1*K.1^-8,-1*K.1^4,-1*K.1^16,-1*K.1^28,-1*K.1^-27,-1*K.1^-21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^24,K.1^-31,K.1^-19,K.1^-7,K.1^5,K.1^17,K.1^29,K.1^-26,K.1^-14,K.1^-2,K.1^10,K.1^22,K.1^-33,K.1^-21,K.1^-9,K.1^3,K.1^15,K.1^27,K.1^-28,K.1^-16,K.1^-4,K.1^8,K.1^20,K.1^32,K.1^-23,K.1^-11,K.1,K.1^13,K.1^25,K.1^-30,K.1^-18,K.1^-6,K.1^6,K.1^-12,K.1^-24,K.1^31,K.1^19,K.1^7,K.1^-5,K.1^-17,K.1^-29,K.1^26,K.1^14,K.1^2,K.1^-10,K.1^-22,K.1^33,K.1^21,K.1^9,K.1^-3,K.1^-15,K.1^-27,K.1^28,K.1^16,K.1^4,K.1^-8,K.1^-20,K.1^-32,K.1^23,K.1^11,K.1^-1,K.1^-13,K.1^-25,K.1^30,K.1^18,K.1^12,-1*K.1^15,-1*K.1^33,-1*K.1^-22,-1*K.1^-10,-1*K.1^2,-1*K.1^14,-1*K.1^26,-1*K.1^-29,-1*K.1^-17,-1*K.1^-5,-1*K.1^7,-1*K.1^19,-1*K.1^31,-1*K.1^-24,-1*K.1^-12,-1*K.1^3,-1*K.1^12,-1*K.1^24,-1*K.1^-31,-1*K.1^-19,-1*K.1^-7,-1*K.1^5,-1*K.1^17,-1*K.1^29,-1*K.1^-26,-1*K.1^-14,-1*K.1^-2,-1*K.1^10,-1*K.1^22,-1*K.1^-33,-1*K.1^-21,-1*K.1^-9,-1*K.1^-3,-1*K.1^9,-1*K.1^-15,-1*K.1^-27,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^-8,-1*K.1^-20,-1*K.1^-32,-1*K.1^23,-1*K.1^11,-1*K.1^-1,-1*K.1^-13,-1*K.1^-25,-1*K.1^30,-1*K.1^18,-1*K.1^6,-1*K.1^-6,-1*K.1^-18,-1*K.1^-30,-1*K.1^25,-1*K.1^13,-1*K.1,-1*K.1^-11,-1*K.1^-23,-1*K.1^32,-1*K.1^20,-1*K.1^8,-1*K.1^-4,-1*K.1^-16,-1*K.1^-28,-1*K.1^27,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-23,K.1^-1,K.1^21,K.1^-24,K.1^-2,K.1^20,K.1^-25,K.1^-3,K.1^19,K.1^-26,K.1^-4,K.1^18,K.1^-27,K.1^-5,K.1^17,K.1^-28,K.1^-6,K.1^16,K.1^-29,K.1^-7,K.1^15,K.1^-30,K.1^-8,K.1^14,K.1^-31,K.1^-9,K.1^13,K.1^-32,K.1^-10,K.1^12,K.1^-33,K.1^-11,K.1^11,K.1^-22,K.1^23,K.1,K.1^-21,K.1^24,K.1^2,K.1^-20,K.1^25,K.1^3,K.1^-19,K.1^26,K.1^4,K.1^-18,K.1^27,K.1^5,K.1^-17,K.1^28,K.1^6,K.1^-16,K.1^29,K.1^7,K.1^-15,K.1^30,K.1^8,K.1^-14,K.1^31,K.1^9,K.1^-13,K.1^32,K.1^10,K.1^-12,K.1^33,K.1^22,-1*K.1^-6,-1*K.1^27,-1*K.1^-18,-1*K.1^4,-1*K.1^26,-1*K.1^-19,-1*K.1^3,-1*K.1^25,-1*K.1^-20,-1*K.1^2,-1*K.1^24,-1*K.1^-21,-1*K.1,-1*K.1^23,-1*K.1^-22,-1*K.1^-28,-1*K.1^22,-1*K.1^-23,-1*K.1^-1,-1*K.1^21,-1*K.1^-24,-1*K.1^-2,-1*K.1^20,-1*K.1^-25,-1*K.1^-3,-1*K.1^19,-1*K.1^-26,-1*K.1^-4,-1*K.1^18,-1*K.1^-27,-1*K.1^-5,-1*K.1^17,-1*K.1^28,-1*K.1^-17,-1*K.1^6,-1*K.1^-16,-1*K.1^29,-1*K.1^7,-1*K.1^-15,-1*K.1^30,-1*K.1^8,-1*K.1^-14,-1*K.1^31,-1*K.1^9,-1*K.1^-13,-1*K.1^32,-1*K.1^10,-1*K.1^-12,-1*K.1^33,-1*K.1^11,-1*K.1^-11,-1*K.1^-33,-1*K.1^12,-1*K.1^-10,-1*K.1^-32,-1*K.1^13,-1*K.1^-9,-1*K.1^-31,-1*K.1^14,-1*K.1^-8,-1*K.1^-30,-1*K.1^15,-1*K.1^-7,-1*K.1^-29,-1*K.1^16,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^23,K.1,K.1^-21,K.1^24,K.1^2,K.1^-20,K.1^25,K.1^3,K.1^-19,K.1^26,K.1^4,K.1^-18,K.1^27,K.1^5,K.1^-17,K.1^28,K.1^6,K.1^-16,K.1^29,K.1^7,K.1^-15,K.1^30,K.1^8,K.1^-14,K.1^31,K.1^9,K.1^-13,K.1^32,K.1^10,K.1^-12,K.1^33,K.1^11,K.1^-11,K.1^22,K.1^-23,K.1^-1,K.1^21,K.1^-24,K.1^-2,K.1^20,K.1^-25,K.1^-3,K.1^19,K.1^-26,K.1^-4,K.1^18,K.1^-27,K.1^-5,K.1^17,K.1^-28,K.1^-6,K.1^16,K.1^-29,K.1^-7,K.1^15,K.1^-30,K.1^-8,K.1^14,K.1^-31,K.1^-9,K.1^13,K.1^-32,K.1^-10,K.1^12,K.1^-33,K.1^-22,-1*K.1^6,-1*K.1^-27,-1*K.1^18,-1*K.1^-4,-1*K.1^-26,-1*K.1^19,-1*K.1^-3,-1*K.1^-25,-1*K.1^20,-1*K.1^-2,-1*K.1^-24,-1*K.1^21,-1*K.1^-1,-1*K.1^-23,-1*K.1^22,-1*K.1^28,-1*K.1^-22,-1*K.1^23,-1*K.1,-1*K.1^-21,-1*K.1^24,-1*K.1^2,-1*K.1^-20,-1*K.1^25,-1*K.1^3,-1*K.1^-19,-1*K.1^26,-1*K.1^4,-1*K.1^-18,-1*K.1^27,-1*K.1^5,-1*K.1^-17,-1*K.1^-28,-1*K.1^17,-1*K.1^-6,-1*K.1^16,-1*K.1^-29,-1*K.1^-7,-1*K.1^15,-1*K.1^-30,-1*K.1^-8,-1*K.1^14,-1*K.1^-31,-1*K.1^-9,-1*K.1^13,-1*K.1^-32,-1*K.1^-10,-1*K.1^12,-1*K.1^-33,-1*K.1^-11,-1*K.1^11,-1*K.1^33,-1*K.1^-12,-1*K.1^10,-1*K.1^32,-1*K.1^-13,-1*K.1^9,-1*K.1^31,-1*K.1^-14,-1*K.1^8,-1*K.1^30,-1*K.1^-15,-1*K.1^7,-1*K.1^29,-1*K.1^-16,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-22,K.1^-33,K.1^23,K.1^12,K.1,K.1^-10,K.1^-21,K.1^-32,K.1^24,K.1^13,K.1^2,K.1^-9,K.1^-20,K.1^-31,K.1^25,K.1^14,K.1^3,K.1^-8,K.1^-19,K.1^-30,K.1^26,K.1^15,K.1^4,K.1^-7,K.1^-18,K.1^-29,K.1^27,K.1^16,K.1^5,K.1^-6,K.1^-17,K.1^-28,K.1^28,K.1^11,K.1^22,K.1^33,K.1^-23,K.1^-12,K.1^-1,K.1^10,K.1^21,K.1^32,K.1^-24,K.1^-13,K.1^-2,K.1^9,K.1^20,K.1^31,K.1^-25,K.1^-14,K.1^-3,K.1^8,K.1^19,K.1^30,K.1^-26,K.1^-15,K.1^-4,K.1^7,K.1^18,K.1^29,K.1^-27,K.1^-16,K.1^-5,K.1^6,K.1^17,K.1^-11,-1*K.1^3,-1*K.1^20,-1*K.1^9,-1*K.1^-2,-1*K.1^-13,-1*K.1^-24,-1*K.1^32,-1*K.1^21,-1*K.1^10,-1*K.1^-1,-1*K.1^-12,-1*K.1^-23,-1*K.1^33,-1*K.1^22,-1*K.1^11,-1*K.1^14,-1*K.1^-11,-1*K.1^-22,-1*K.1^-33,-1*K.1^23,-1*K.1^12,-1*K.1,-1*K.1^-10,-1*K.1^-21,-1*K.1^-32,-1*K.1^24,-1*K.1^13,-1*K.1^2,-1*K.1^-9,-1*K.1^-20,-1*K.1^-31,-1*K.1^25,-1*K.1^-14,-1*K.1^-25,-1*K.1^-3,-1*K.1^8,-1*K.1^19,-1*K.1^30,-1*K.1^-26,-1*K.1^-15,-1*K.1^-4,-1*K.1^7,-1*K.1^18,-1*K.1^29,-1*K.1^-27,-1*K.1^-16,-1*K.1^-5,-1*K.1^6,-1*K.1^17,-1*K.1^28,-1*K.1^-28,-1*K.1^-17,-1*K.1^-6,-1*K.1^5,-1*K.1^16,-1*K.1^27,-1*K.1^-29,-1*K.1^-18,-1*K.1^-7,-1*K.1^4,-1*K.1^15,-1*K.1^26,-1*K.1^-30,-1*K.1^-19,-1*K.1^-8,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^22,K.1^33,K.1^-23,K.1^-12,K.1^-1,K.1^10,K.1^21,K.1^32,K.1^-24,K.1^-13,K.1^-2,K.1^9,K.1^20,K.1^31,K.1^-25,K.1^-14,K.1^-3,K.1^8,K.1^19,K.1^30,K.1^-26,K.1^-15,K.1^-4,K.1^7,K.1^18,K.1^29,K.1^-27,K.1^-16,K.1^-5,K.1^6,K.1^17,K.1^28,K.1^-28,K.1^-11,K.1^-22,K.1^-33,K.1^23,K.1^12,K.1,K.1^-10,K.1^-21,K.1^-32,K.1^24,K.1^13,K.1^2,K.1^-9,K.1^-20,K.1^-31,K.1^25,K.1^14,K.1^3,K.1^-8,K.1^-19,K.1^-30,K.1^26,K.1^15,K.1^4,K.1^-7,K.1^-18,K.1^-29,K.1^27,K.1^16,K.1^5,K.1^-6,K.1^-17,K.1^11,-1*K.1^-3,-1*K.1^-20,-1*K.1^-9,-1*K.1^2,-1*K.1^13,-1*K.1^24,-1*K.1^-32,-1*K.1^-21,-1*K.1^-10,-1*K.1,-1*K.1^12,-1*K.1^23,-1*K.1^-33,-1*K.1^-22,-1*K.1^-11,-1*K.1^-14,-1*K.1^11,-1*K.1^22,-1*K.1^33,-1*K.1^-23,-1*K.1^-12,-1*K.1^-1,-1*K.1^10,-1*K.1^21,-1*K.1^32,-1*K.1^-24,-1*K.1^-13,-1*K.1^-2,-1*K.1^9,-1*K.1^20,-1*K.1^31,-1*K.1^-25,-1*K.1^14,-1*K.1^25,-1*K.1^3,-1*K.1^-8,-1*K.1^-19,-1*K.1^-30,-1*K.1^26,-1*K.1^15,-1*K.1^4,-1*K.1^-7,-1*K.1^-18,-1*K.1^-29,-1*K.1^27,-1*K.1^16,-1*K.1^5,-1*K.1^-6,-1*K.1^-17,-1*K.1^-28,-1*K.1^28,-1*K.1^17,-1*K.1^6,-1*K.1^-5,-1*K.1^-16,-1*K.1^-27,-1*K.1^29,-1*K.1^18,-1*K.1^7,-1*K.1^-4,-1*K.1^-15,-1*K.1^-26,-1*K.1^30,-1*K.1^19,-1*K.1^8,-1*K.1^-31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-21,K.1^2,K.1^25,K.1^-19,K.1^4,K.1^27,K.1^-17,K.1^6,K.1^29,K.1^-15,K.1^8,K.1^31,K.1^-13,K.1^10,K.1^33,K.1^-11,K.1^12,K.1^-32,K.1^-9,K.1^14,K.1^-30,K.1^-7,K.1^16,K.1^-28,K.1^-5,K.1^18,K.1^-26,K.1^-3,K.1^20,K.1^-24,K.1^-1,K.1^22,K.1^-22,K.1^-23,K.1^21,K.1^-2,K.1^-25,K.1^19,K.1^-4,K.1^-27,K.1^17,K.1^-6,K.1^-29,K.1^15,K.1^-8,K.1^-31,K.1^13,K.1^-10,K.1^-33,K.1^11,K.1^-12,K.1^32,K.1^9,K.1^-14,K.1^30,K.1^7,K.1^-16,K.1^28,K.1^5,K.1^-18,K.1^26,K.1^3,K.1^-20,K.1^24,K.1,K.1^23,-1*K.1^12,-1*K.1^13,-1*K.1^-31,-1*K.1^-8,-1*K.1^15,-1*K.1^-29,-1*K.1^-6,-1*K.1^17,-1*K.1^-27,-1*K.1^-4,-1*K.1^19,-1*K.1^-25,-1*K.1^-2,-1*K.1^21,-1*K.1^-23,-1*K.1^-11,-1*K.1^23,-1*K.1^-21,-1*K.1^2,-1*K.1^25,-1*K.1^-19,-1*K.1^4,-1*K.1^27,-1*K.1^-17,-1*K.1^6,-1*K.1^29,-1*K.1^-15,-1*K.1^8,-1*K.1^31,-1*K.1^-13,-1*K.1^10,-1*K.1^33,-1*K.1^11,-1*K.1^-33,-1*K.1^-12,-1*K.1^32,-1*K.1^9,-1*K.1^-14,-1*K.1^30,-1*K.1^7,-1*K.1^-16,-1*K.1^28,-1*K.1^5,-1*K.1^-18,-1*K.1^26,-1*K.1^3,-1*K.1^-20,-1*K.1^24,-1*K.1,-1*K.1^-22,-1*K.1^22,-1*K.1^-1,-1*K.1^-24,-1*K.1^20,-1*K.1^-3,-1*K.1^-26,-1*K.1^18,-1*K.1^-5,-1*K.1^-28,-1*K.1^16,-1*K.1^-7,-1*K.1^-30,-1*K.1^14,-1*K.1^-9,-1*K.1^-32,-1*K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^21,K.1^-2,K.1^-25,K.1^19,K.1^-4,K.1^-27,K.1^17,K.1^-6,K.1^-29,K.1^15,K.1^-8,K.1^-31,K.1^13,K.1^-10,K.1^-33,K.1^11,K.1^-12,K.1^32,K.1^9,K.1^-14,K.1^30,K.1^7,K.1^-16,K.1^28,K.1^5,K.1^-18,K.1^26,K.1^3,K.1^-20,K.1^24,K.1,K.1^-22,K.1^22,K.1^23,K.1^-21,K.1^2,K.1^25,K.1^-19,K.1^4,K.1^27,K.1^-17,K.1^6,K.1^29,K.1^-15,K.1^8,K.1^31,K.1^-13,K.1^10,K.1^33,K.1^-11,K.1^12,K.1^-32,K.1^-9,K.1^14,K.1^-30,K.1^-7,K.1^16,K.1^-28,K.1^-5,K.1^18,K.1^-26,K.1^-3,K.1^20,K.1^-24,K.1^-1,K.1^-23,-1*K.1^-12,-1*K.1^-13,-1*K.1^31,-1*K.1^8,-1*K.1^-15,-1*K.1^29,-1*K.1^6,-1*K.1^-17,-1*K.1^27,-1*K.1^4,-1*K.1^-19,-1*K.1^25,-1*K.1^2,-1*K.1^-21,-1*K.1^23,-1*K.1^11,-1*K.1^-23,-1*K.1^21,-1*K.1^-2,-1*K.1^-25,-1*K.1^19,-1*K.1^-4,-1*K.1^-27,-1*K.1^17,-1*K.1^-6,-1*K.1^-29,-1*K.1^15,-1*K.1^-8,-1*K.1^-31,-1*K.1^13,-1*K.1^-10,-1*K.1^-33,-1*K.1^-11,-1*K.1^33,-1*K.1^12,-1*K.1^-32,-1*K.1^-9,-1*K.1^14,-1*K.1^-30,-1*K.1^-7,-1*K.1^16,-1*K.1^-28,-1*K.1^-5,-1*K.1^18,-1*K.1^-26,-1*K.1^-3,-1*K.1^20,-1*K.1^-24,-1*K.1^-1,-1*K.1^22,-1*K.1^-22,-1*K.1,-1*K.1^24,-1*K.1^-20,-1*K.1^3,-1*K.1^26,-1*K.1^-18,-1*K.1^5,-1*K.1^28,-1*K.1^-16,-1*K.1^7,-1*K.1^30,-1*K.1^-14,-1*K.1^9,-1*K.1^32,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-20,K.1^-30,K.1^27,K.1^17,K.1^7,K.1^-3,K.1^-13,K.1^-23,K.1^-33,K.1^24,K.1^14,K.1^4,K.1^-6,K.1^-16,K.1^-26,K.1^31,K.1^21,K.1^11,K.1,K.1^-9,K.1^-19,K.1^-29,K.1^28,K.1^18,K.1^8,K.1^-2,K.1^-12,K.1^-22,K.1^-32,K.1^25,K.1^15,K.1^5,K.1^-5,K.1^10,K.1^20,K.1^30,K.1^-27,K.1^-17,K.1^-7,K.1^3,K.1^13,K.1^23,K.1^33,K.1^-24,K.1^-14,K.1^-4,K.1^6,K.1^16,K.1^26,K.1^-31,K.1^-21,K.1^-11,K.1^-1,K.1^9,K.1^19,K.1^29,K.1^-28,K.1^-18,K.1^-8,K.1^2,K.1^12,K.1^22,K.1^32,K.1^-25,K.1^-15,K.1^-10,-1*K.1^21,-1*K.1^6,-1*K.1^-4,-1*K.1^-14,-1*K.1^-24,-1*K.1^33,-1*K.1^23,-1*K.1^13,-1*K.1^3,-1*K.1^-7,-1*K.1^-17,-1*K.1^-27,-1*K.1^30,-1*K.1^20,-1*K.1^10,-1*K.1^31,-1*K.1^-10,-1*K.1^-20,-1*K.1^-30,-1*K.1^27,-1*K.1^17,-1*K.1^7,-1*K.1^-3,-1*K.1^-13,-1*K.1^-23,-1*K.1^-33,-1*K.1^24,-1*K.1^14,-1*K.1^4,-1*K.1^-6,-1*K.1^-16,-1*K.1^-26,-1*K.1^-31,-1*K.1^26,-1*K.1^-21,-1*K.1^-11,-1*K.1^-1,-1*K.1^9,-1*K.1^19,-1*K.1^29,-1*K.1^-28,-1*K.1^-18,-1*K.1^-8,-1*K.1^2,-1*K.1^12,-1*K.1^22,-1*K.1^32,-1*K.1^-25,-1*K.1^-15,-1*K.1^-5,-1*K.1^5,-1*K.1^15,-1*K.1^25,-1*K.1^-32,-1*K.1^-22,-1*K.1^-12,-1*K.1^-2,-1*K.1^8,-1*K.1^18,-1*K.1^28,-1*K.1^-29,-1*K.1^-19,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^20,K.1^30,K.1^-27,K.1^-17,K.1^-7,K.1^3,K.1^13,K.1^23,K.1^33,K.1^-24,K.1^-14,K.1^-4,K.1^6,K.1^16,K.1^26,K.1^-31,K.1^-21,K.1^-11,K.1^-1,K.1^9,K.1^19,K.1^29,K.1^-28,K.1^-18,K.1^-8,K.1^2,K.1^12,K.1^22,K.1^32,K.1^-25,K.1^-15,K.1^-5,K.1^5,K.1^-10,K.1^-20,K.1^-30,K.1^27,K.1^17,K.1^7,K.1^-3,K.1^-13,K.1^-23,K.1^-33,K.1^24,K.1^14,K.1^4,K.1^-6,K.1^-16,K.1^-26,K.1^31,K.1^21,K.1^11,K.1,K.1^-9,K.1^-19,K.1^-29,K.1^28,K.1^18,K.1^8,K.1^-2,K.1^-12,K.1^-22,K.1^-32,K.1^25,K.1^15,K.1^10,-1*K.1^-21,-1*K.1^-6,-1*K.1^4,-1*K.1^14,-1*K.1^24,-1*K.1^-33,-1*K.1^-23,-1*K.1^-13,-1*K.1^-3,-1*K.1^7,-1*K.1^17,-1*K.1^27,-1*K.1^-30,-1*K.1^-20,-1*K.1^-10,-1*K.1^-31,-1*K.1^10,-1*K.1^20,-1*K.1^30,-1*K.1^-27,-1*K.1^-17,-1*K.1^-7,-1*K.1^3,-1*K.1^13,-1*K.1^23,-1*K.1^33,-1*K.1^-24,-1*K.1^-14,-1*K.1^-4,-1*K.1^6,-1*K.1^16,-1*K.1^26,-1*K.1^31,-1*K.1^-26,-1*K.1^21,-1*K.1^11,-1*K.1,-1*K.1^-9,-1*K.1^-19,-1*K.1^-29,-1*K.1^28,-1*K.1^18,-1*K.1^8,-1*K.1^-2,-1*K.1^-12,-1*K.1^-22,-1*K.1^-32,-1*K.1^25,-1*K.1^15,-1*K.1^5,-1*K.1^-5,-1*K.1^-15,-1*K.1^-25,-1*K.1^32,-1*K.1^22,-1*K.1^12,-1*K.1^2,-1*K.1^-8,-1*K.1^-18,-1*K.1^-28,-1*K.1^29,-1*K.1^19,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^-16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-19,K.1^5,K.1^29,K.1^-14,K.1^10,K.1^-33,K.1^-9,K.1^15,K.1^-28,K.1^-4,K.1^20,K.1^-23,K.1,K.1^25,K.1^-18,K.1^6,K.1^30,K.1^-13,K.1^11,K.1^-32,K.1^-8,K.1^16,K.1^-27,K.1^-3,K.1^21,K.1^-22,K.1^2,K.1^26,K.1^-17,K.1^7,K.1^31,K.1^-12,K.1^12,K.1^-24,K.1^19,K.1^-5,K.1^-29,K.1^14,K.1^-10,K.1^33,K.1^9,K.1^-15,K.1^28,K.1^4,K.1^-20,K.1^23,K.1^-1,K.1^-25,K.1^18,K.1^-6,K.1^-30,K.1^13,K.1^-11,K.1^32,K.1^8,K.1^-16,K.1^27,K.1^3,K.1^-21,K.1^22,K.1^-2,K.1^-26,K.1^17,K.1^-7,K.1^-31,K.1^24,-1*K.1^30,-1*K.1^-1,-1*K.1^23,-1*K.1^-20,-1*K.1^4,-1*K.1^28,-1*K.1^-15,-1*K.1^9,-1*K.1^33,-1*K.1^-10,-1*K.1^14,-1*K.1^-29,-1*K.1^-5,-1*K.1^19,-1*K.1^-24,-1*K.1^6,-1*K.1^24,-1*K.1^-19,-1*K.1^5,-1*K.1^29,-1*K.1^-14,-1*K.1^10,-1*K.1^-33,-1*K.1^-9,-1*K.1^15,-1*K.1^-28,-1*K.1^-4,-1*K.1^20,-1*K.1^-23,-1*K.1,-1*K.1^25,-1*K.1^-18,-1*K.1^-6,-1*K.1^18,-1*K.1^-30,-1*K.1^13,-1*K.1^-11,-1*K.1^32,-1*K.1^8,-1*K.1^-16,-1*K.1^27,-1*K.1^3,-1*K.1^-21,-1*K.1^22,-1*K.1^-2,-1*K.1^-26,-1*K.1^17,-1*K.1^-7,-1*K.1^-31,-1*K.1^12,-1*K.1^-12,-1*K.1^31,-1*K.1^7,-1*K.1^-17,-1*K.1^26,-1*K.1^2,-1*K.1^-22,-1*K.1^21,-1*K.1^-3,-1*K.1^-27,-1*K.1^16,-1*K.1^-8,-1*K.1^-32,-1*K.1^11,-1*K.1^-13,-1*K.1^-25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^19,K.1^-5,K.1^-29,K.1^14,K.1^-10,K.1^33,K.1^9,K.1^-15,K.1^28,K.1^4,K.1^-20,K.1^23,K.1^-1,K.1^-25,K.1^18,K.1^-6,K.1^-30,K.1^13,K.1^-11,K.1^32,K.1^8,K.1^-16,K.1^27,K.1^3,K.1^-21,K.1^22,K.1^-2,K.1^-26,K.1^17,K.1^-7,K.1^-31,K.1^12,K.1^-12,K.1^24,K.1^-19,K.1^5,K.1^29,K.1^-14,K.1^10,K.1^-33,K.1^-9,K.1^15,K.1^-28,K.1^-4,K.1^20,K.1^-23,K.1,K.1^25,K.1^-18,K.1^6,K.1^30,K.1^-13,K.1^11,K.1^-32,K.1^-8,K.1^16,K.1^-27,K.1^-3,K.1^21,K.1^-22,K.1^2,K.1^26,K.1^-17,K.1^7,K.1^31,K.1^-24,-1*K.1^-30,-1*K.1,-1*K.1^-23,-1*K.1^20,-1*K.1^-4,-1*K.1^-28,-1*K.1^15,-1*K.1^-9,-1*K.1^-33,-1*K.1^10,-1*K.1^-14,-1*K.1^29,-1*K.1^5,-1*K.1^-19,-1*K.1^24,-1*K.1^-6,-1*K.1^-24,-1*K.1^19,-1*K.1^-5,-1*K.1^-29,-1*K.1^14,-1*K.1^-10,-1*K.1^33,-1*K.1^9,-1*K.1^-15,-1*K.1^28,-1*K.1^4,-1*K.1^-20,-1*K.1^23,-1*K.1^-1,-1*K.1^-25,-1*K.1^18,-1*K.1^6,-1*K.1^-18,-1*K.1^30,-1*K.1^-13,-1*K.1^11,-1*K.1^-32,-1*K.1^-8,-1*K.1^16,-1*K.1^-27,-1*K.1^-3,-1*K.1^21,-1*K.1^-22,-1*K.1^2,-1*K.1^26,-1*K.1^-17,-1*K.1^7,-1*K.1^31,-1*K.1^-12,-1*K.1^12,-1*K.1^-31,-1*K.1^-7,-1*K.1^17,-1*K.1^-26,-1*K.1^-2,-1*K.1^22,-1*K.1^-21,-1*K.1^3,-1*K.1^27,-1*K.1^-16,-1*K.1^8,-1*K.1^32,-1*K.1^-11,-1*K.1^13,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-18,K.1^-27,K.1^31,K.1^22,K.1^13,K.1^4,K.1^-5,K.1^-14,K.1^-23,K.1^-32,K.1^26,K.1^17,K.1^8,K.1^-1,K.1^-10,K.1^-19,K.1^-28,K.1^30,K.1^21,K.1^12,K.1^3,K.1^-6,K.1^-15,K.1^-24,K.1^-33,K.1^25,K.1^16,K.1^7,K.1^-2,K.1^-11,K.1^-20,K.1^-29,K.1^29,K.1^9,K.1^18,K.1^27,K.1^-31,K.1^-22,K.1^-13,K.1^-4,K.1^5,K.1^14,K.1^23,K.1^32,K.1^-26,K.1^-17,K.1^-8,K.1,K.1^10,K.1^19,K.1^28,K.1^-30,K.1^-21,K.1^-12,K.1^-3,K.1^6,K.1^15,K.1^24,K.1^33,K.1^-25,K.1^-16,K.1^-7,K.1^2,K.1^11,K.1^20,K.1^-9,-1*K.1^-28,-1*K.1^-8,-1*K.1^-17,-1*K.1^-26,-1*K.1^32,-1*K.1^23,-1*K.1^14,-1*K.1^5,-1*K.1^-4,-1*K.1^-13,-1*K.1^-22,-1*K.1^-31,-1*K.1^27,-1*K.1^18,-1*K.1^9,-1*K.1^-19,-1*K.1^-9,-1*K.1^-18,-1*K.1^-27,-1*K.1^31,-1*K.1^22,-1*K.1^13,-1*K.1^4,-1*K.1^-5,-1*K.1^-14,-1*K.1^-23,-1*K.1^-32,-1*K.1^26,-1*K.1^17,-1*K.1^8,-1*K.1^-1,-1*K.1^-10,-1*K.1^19,-1*K.1^10,-1*K.1^28,-1*K.1^-30,-1*K.1^-21,-1*K.1^-12,-1*K.1^-3,-1*K.1^6,-1*K.1^15,-1*K.1^24,-1*K.1^33,-1*K.1^-25,-1*K.1^-16,-1*K.1^-7,-1*K.1^2,-1*K.1^11,-1*K.1^20,-1*K.1^29,-1*K.1^-29,-1*K.1^-20,-1*K.1^-11,-1*K.1^-2,-1*K.1^7,-1*K.1^16,-1*K.1^25,-1*K.1^-33,-1*K.1^-24,-1*K.1^-15,-1*K.1^-6,-1*K.1^3,-1*K.1^12,-1*K.1^21,-1*K.1^30,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^18,K.1^27,K.1^-31,K.1^-22,K.1^-13,K.1^-4,K.1^5,K.1^14,K.1^23,K.1^32,K.1^-26,K.1^-17,K.1^-8,K.1,K.1^10,K.1^19,K.1^28,K.1^-30,K.1^-21,K.1^-12,K.1^-3,K.1^6,K.1^15,K.1^24,K.1^33,K.1^-25,K.1^-16,K.1^-7,K.1^2,K.1^11,K.1^20,K.1^29,K.1^-29,K.1^-9,K.1^-18,K.1^-27,K.1^31,K.1^22,K.1^13,K.1^4,K.1^-5,K.1^-14,K.1^-23,K.1^-32,K.1^26,K.1^17,K.1^8,K.1^-1,K.1^-10,K.1^-19,K.1^-28,K.1^30,K.1^21,K.1^12,K.1^3,K.1^-6,K.1^-15,K.1^-24,K.1^-33,K.1^25,K.1^16,K.1^7,K.1^-2,K.1^-11,K.1^-20,K.1^9,-1*K.1^28,-1*K.1^8,-1*K.1^17,-1*K.1^26,-1*K.1^-32,-1*K.1^-23,-1*K.1^-14,-1*K.1^-5,-1*K.1^4,-1*K.1^13,-1*K.1^22,-1*K.1^31,-1*K.1^-27,-1*K.1^-18,-1*K.1^-9,-1*K.1^19,-1*K.1^9,-1*K.1^18,-1*K.1^27,-1*K.1^-31,-1*K.1^-22,-1*K.1^-13,-1*K.1^-4,-1*K.1^5,-1*K.1^14,-1*K.1^23,-1*K.1^32,-1*K.1^-26,-1*K.1^-17,-1*K.1^-8,-1*K.1,-1*K.1^10,-1*K.1^-19,-1*K.1^-10,-1*K.1^-28,-1*K.1^30,-1*K.1^21,-1*K.1^12,-1*K.1^3,-1*K.1^-6,-1*K.1^-15,-1*K.1^-24,-1*K.1^-33,-1*K.1^25,-1*K.1^16,-1*K.1^7,-1*K.1^-2,-1*K.1^-11,-1*K.1^-20,-1*K.1^-29,-1*K.1^29,-1*K.1^20,-1*K.1^11,-1*K.1^2,-1*K.1^-7,-1*K.1^-16,-1*K.1^-25,-1*K.1^33,-1*K.1^24,-1*K.1^15,-1*K.1^6,-1*K.1^-3,-1*K.1^-12,-1*K.1^-21,-1*K.1^-30,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-17,K.1^8,K.1^33,K.1^-9,K.1^16,K.1^-26,K.1^-1,K.1^24,K.1^-18,K.1^7,K.1^32,K.1^-10,K.1^15,K.1^-27,K.1^-2,K.1^23,K.1^-19,K.1^6,K.1^31,K.1^-11,K.1^14,K.1^-28,K.1^-3,K.1^22,K.1^-20,K.1^5,K.1^30,K.1^-12,K.1^13,K.1^-29,K.1^-4,K.1^21,K.1^-21,K.1^-25,K.1^17,K.1^-8,K.1^-33,K.1^9,K.1^-16,K.1^26,K.1,K.1^-24,K.1^18,K.1^-7,K.1^-32,K.1^10,K.1^-15,K.1^27,K.1^2,K.1^-23,K.1^19,K.1^-6,K.1^-31,K.1^11,K.1^-14,K.1^28,K.1^3,K.1^-22,K.1^20,K.1^-5,K.1^-30,K.1^12,K.1^-13,K.1^29,K.1^4,K.1^25,-1*K.1^-19,-1*K.1^-15,-1*K.1^10,-1*K.1^-32,-1*K.1^-7,-1*K.1^18,-1*K.1^-24,-1*K.1,-1*K.1^26,-1*K.1^-16,-1*K.1^9,-1*K.1^-33,-1*K.1^-8,-1*K.1^17,-1*K.1^-25,-1*K.1^23,-1*K.1^25,-1*K.1^-17,-1*K.1^8,-1*K.1^33,-1*K.1^-9,-1*K.1^16,-1*K.1^-26,-1*K.1^-1,-1*K.1^24,-1*K.1^-18,-1*K.1^7,-1*K.1^32,-1*K.1^-10,-1*K.1^15,-1*K.1^-27,-1*K.1^-2,-1*K.1^-23,-1*K.1^2,-1*K.1^19,-1*K.1^-6,-1*K.1^-31,-1*K.1^11,-1*K.1^-14,-1*K.1^28,-1*K.1^3,-1*K.1^-22,-1*K.1^20,-1*K.1^-5,-1*K.1^-30,-1*K.1^12,-1*K.1^-13,-1*K.1^29,-1*K.1^4,-1*K.1^-21,-1*K.1^21,-1*K.1^-4,-1*K.1^-29,-1*K.1^13,-1*K.1^-12,-1*K.1^30,-1*K.1^5,-1*K.1^-20,-1*K.1^22,-1*K.1^-3,-1*K.1^-28,-1*K.1^14,-1*K.1^-11,-1*K.1^31,-1*K.1^6,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^17,K.1^-8,K.1^-33,K.1^9,K.1^-16,K.1^26,K.1,K.1^-24,K.1^18,K.1^-7,K.1^-32,K.1^10,K.1^-15,K.1^27,K.1^2,K.1^-23,K.1^19,K.1^-6,K.1^-31,K.1^11,K.1^-14,K.1^28,K.1^3,K.1^-22,K.1^20,K.1^-5,K.1^-30,K.1^12,K.1^-13,K.1^29,K.1^4,K.1^-21,K.1^21,K.1^25,K.1^-17,K.1^8,K.1^33,K.1^-9,K.1^16,K.1^-26,K.1^-1,K.1^24,K.1^-18,K.1^7,K.1^32,K.1^-10,K.1^15,K.1^-27,K.1^-2,K.1^23,K.1^-19,K.1^6,K.1^31,K.1^-11,K.1^14,K.1^-28,K.1^-3,K.1^22,K.1^-20,K.1^5,K.1^30,K.1^-12,K.1^13,K.1^-29,K.1^-4,K.1^-25,-1*K.1^19,-1*K.1^15,-1*K.1^-10,-1*K.1^32,-1*K.1^7,-1*K.1^-18,-1*K.1^24,-1*K.1^-1,-1*K.1^-26,-1*K.1^16,-1*K.1^-9,-1*K.1^33,-1*K.1^8,-1*K.1^-17,-1*K.1^25,-1*K.1^-23,-1*K.1^-25,-1*K.1^17,-1*K.1^-8,-1*K.1^-33,-1*K.1^9,-1*K.1^-16,-1*K.1^26,-1*K.1,-1*K.1^-24,-1*K.1^18,-1*K.1^-7,-1*K.1^-32,-1*K.1^10,-1*K.1^-15,-1*K.1^27,-1*K.1^2,-1*K.1^23,-1*K.1^-2,-1*K.1^-19,-1*K.1^6,-1*K.1^31,-1*K.1^-11,-1*K.1^14,-1*K.1^-28,-1*K.1^-3,-1*K.1^22,-1*K.1^-20,-1*K.1^5,-1*K.1^30,-1*K.1^-12,-1*K.1^13,-1*K.1^-29,-1*K.1^-4,-1*K.1^21,-1*K.1^-21,-1*K.1^4,-1*K.1^29,-1*K.1^-13,-1*K.1^12,-1*K.1^-30,-1*K.1^-5,-1*K.1^20,-1*K.1^-22,-1*K.1^3,-1*K.1^28,-1*K.1^-14,-1*K.1^11,-1*K.1^-31,-1*K.1^-6,-1*K.1^-27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-16,K.1^-24,K.1^-32,K.1^27,K.1^19,K.1^11,K.1^3,K.1^-5,K.1^-13,K.1^-21,K.1^-29,K.1^30,K.1^22,K.1^14,K.1^6,K.1^-2,K.1^-10,K.1^-18,K.1^-26,K.1^33,K.1^25,K.1^17,K.1^9,K.1,K.1^-7,K.1^-15,K.1^-23,K.1^-31,K.1^28,K.1^20,K.1^12,K.1^4,K.1^-4,K.1^8,K.1^16,K.1^24,K.1^32,K.1^-27,K.1^-19,K.1^-11,K.1^-3,K.1^5,K.1^13,K.1^21,K.1^29,K.1^-30,K.1^-22,K.1^-14,K.1^-6,K.1^2,K.1^10,K.1^18,K.1^26,K.1^-33,K.1^-25,K.1^-17,K.1^-9,K.1^-1,K.1^7,K.1^15,K.1^23,K.1^31,K.1^-28,K.1^-20,K.1^-12,K.1^-8,-1*K.1^-10,-1*K.1^-22,-1*K.1^-30,-1*K.1^29,-1*K.1^21,-1*K.1^13,-1*K.1^5,-1*K.1^-3,-1*K.1^-11,-1*K.1^-19,-1*K.1^-27,-1*K.1^32,-1*K.1^24,-1*K.1^16,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-16,-1*K.1^-24,-1*K.1^-32,-1*K.1^27,-1*K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^-5,-1*K.1^-13,-1*K.1^-21,-1*K.1^-29,-1*K.1^30,-1*K.1^22,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^-6,-1*K.1^10,-1*K.1^18,-1*K.1^26,-1*K.1^-33,-1*K.1^-25,-1*K.1^-17,-1*K.1^-9,-1*K.1^-1,-1*K.1^7,-1*K.1^15,-1*K.1^23,-1*K.1^31,-1*K.1^-28,-1*K.1^-20,-1*K.1^-12,-1*K.1^-4,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^28,-1*K.1^-31,-1*K.1^-23,-1*K.1^-15,-1*K.1^-7,-1*K.1,-1*K.1^9,-1*K.1^17,-1*K.1^25,-1*K.1^33,-1*K.1^-26,-1*K.1^-18,-1*K.1^-14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^16,K.1^24,K.1^32,K.1^-27,K.1^-19,K.1^-11,K.1^-3,K.1^5,K.1^13,K.1^21,K.1^29,K.1^-30,K.1^-22,K.1^-14,K.1^-6,K.1^2,K.1^10,K.1^18,K.1^26,K.1^-33,K.1^-25,K.1^-17,K.1^-9,K.1^-1,K.1^7,K.1^15,K.1^23,K.1^31,K.1^-28,K.1^-20,K.1^-12,K.1^-4,K.1^4,K.1^-8,K.1^-16,K.1^-24,K.1^-32,K.1^27,K.1^19,K.1^11,K.1^3,K.1^-5,K.1^-13,K.1^-21,K.1^-29,K.1^30,K.1^22,K.1^14,K.1^6,K.1^-2,K.1^-10,K.1^-18,K.1^-26,K.1^33,K.1^25,K.1^17,K.1^9,K.1,K.1^-7,K.1^-15,K.1^-23,K.1^-31,K.1^28,K.1^20,K.1^12,K.1^8,-1*K.1^10,-1*K.1^22,-1*K.1^30,-1*K.1^-29,-1*K.1^-21,-1*K.1^-13,-1*K.1^-5,-1*K.1^3,-1*K.1^11,-1*K.1^19,-1*K.1^27,-1*K.1^-32,-1*K.1^-24,-1*K.1^-16,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^-27,-1*K.1^-19,-1*K.1^-11,-1*K.1^-3,-1*K.1^5,-1*K.1^13,-1*K.1^21,-1*K.1^29,-1*K.1^-30,-1*K.1^-22,-1*K.1^-14,-1*K.1^-6,-1*K.1^-2,-1*K.1^6,-1*K.1^-10,-1*K.1^-18,-1*K.1^-26,-1*K.1^33,-1*K.1^25,-1*K.1^17,-1*K.1^9,-1*K.1,-1*K.1^-7,-1*K.1^-15,-1*K.1^-23,-1*K.1^-31,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,-1*K.1^-4,-1*K.1^-12,-1*K.1^-20,-1*K.1^-28,-1*K.1^31,-1*K.1^23,-1*K.1^15,-1*K.1^7,-1*K.1^-1,-1*K.1^-9,-1*K.1^-17,-1*K.1^-25,-1*K.1^-33,-1*K.1^26,-1*K.1^18,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-15,K.1^11,K.1^-30,K.1^-4,K.1^22,K.1^-19,K.1^7,K.1^33,K.1^-8,K.1^18,K.1^-23,K.1^3,K.1^29,K.1^-12,K.1^14,K.1^-27,K.1^-1,K.1^25,K.1^-16,K.1^10,K.1^-31,K.1^-5,K.1^21,K.1^-20,K.1^6,K.1^32,K.1^-9,K.1^17,K.1^-24,K.1^2,K.1^28,K.1^-13,K.1^13,K.1^-26,K.1^15,K.1^-11,K.1^30,K.1^4,K.1^-22,K.1^19,K.1^-7,K.1^-33,K.1^8,K.1^-18,K.1^23,K.1^-3,K.1^-29,K.1^12,K.1^-14,K.1^27,K.1,K.1^-25,K.1^16,K.1^-10,K.1^31,K.1^5,K.1^-21,K.1^20,K.1^-6,K.1^-32,K.1^9,K.1^-17,K.1^24,K.1^-2,K.1^-28,K.1^26,-1*K.1^-1,-1*K.1^-29,-1*K.1^-3,-1*K.1^23,-1*K.1^-18,-1*K.1^8,-1*K.1^-33,-1*K.1^-7,-1*K.1^19,-1*K.1^-22,-1*K.1^4,-1*K.1^30,-1*K.1^-11,-1*K.1^15,-1*K.1^-26,-1*K.1^-27,-1*K.1^26,-1*K.1^-15,-1*K.1^11,-1*K.1^-30,-1*K.1^-4,-1*K.1^22,-1*K.1^-19,-1*K.1^7,-1*K.1^33,-1*K.1^-8,-1*K.1^18,-1*K.1^-23,-1*K.1^3,-1*K.1^29,-1*K.1^-12,-1*K.1^14,-1*K.1^27,-1*K.1^-14,-1*K.1,-1*K.1^-25,-1*K.1^16,-1*K.1^-10,-1*K.1^31,-1*K.1^5,-1*K.1^-21,-1*K.1^20,-1*K.1^-6,-1*K.1^-32,-1*K.1^9,-1*K.1^-17,-1*K.1^24,-1*K.1^-2,-1*K.1^-28,-1*K.1^13,-1*K.1^-13,-1*K.1^28,-1*K.1^2,-1*K.1^-24,-1*K.1^17,-1*K.1^-9,-1*K.1^32,-1*K.1^6,-1*K.1^-20,-1*K.1^21,-1*K.1^-5,-1*K.1^-31,-1*K.1^10,-1*K.1^-16,-1*K.1^25,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^15,K.1^-11,K.1^30,K.1^4,K.1^-22,K.1^19,K.1^-7,K.1^-33,K.1^8,K.1^-18,K.1^23,K.1^-3,K.1^-29,K.1^12,K.1^-14,K.1^27,K.1,K.1^-25,K.1^16,K.1^-10,K.1^31,K.1^5,K.1^-21,K.1^20,K.1^-6,K.1^-32,K.1^9,K.1^-17,K.1^24,K.1^-2,K.1^-28,K.1^13,K.1^-13,K.1^26,K.1^-15,K.1^11,K.1^-30,K.1^-4,K.1^22,K.1^-19,K.1^7,K.1^33,K.1^-8,K.1^18,K.1^-23,K.1^3,K.1^29,K.1^-12,K.1^14,K.1^-27,K.1^-1,K.1^25,K.1^-16,K.1^10,K.1^-31,K.1^-5,K.1^21,K.1^-20,K.1^6,K.1^32,K.1^-9,K.1^17,K.1^-24,K.1^2,K.1^28,K.1^-26,-1*K.1,-1*K.1^29,-1*K.1^3,-1*K.1^-23,-1*K.1^18,-1*K.1^-8,-1*K.1^33,-1*K.1^7,-1*K.1^-19,-1*K.1^22,-1*K.1^-4,-1*K.1^-30,-1*K.1^11,-1*K.1^-15,-1*K.1^26,-1*K.1^27,-1*K.1^-26,-1*K.1^15,-1*K.1^-11,-1*K.1^30,-1*K.1^4,-1*K.1^-22,-1*K.1^19,-1*K.1^-7,-1*K.1^-33,-1*K.1^8,-1*K.1^-18,-1*K.1^23,-1*K.1^-3,-1*K.1^-29,-1*K.1^12,-1*K.1^-14,-1*K.1^-27,-1*K.1^14,-1*K.1^-1,-1*K.1^25,-1*K.1^-16,-1*K.1^10,-1*K.1^-31,-1*K.1^-5,-1*K.1^21,-1*K.1^-20,-1*K.1^6,-1*K.1^32,-1*K.1^-9,-1*K.1^17,-1*K.1^-24,-1*K.1^2,-1*K.1^28,-1*K.1^-13,-1*K.1^13,-1*K.1^-28,-1*K.1^-2,-1*K.1^24,-1*K.1^-17,-1*K.1^9,-1*K.1^-32,-1*K.1^-6,-1*K.1^20,-1*K.1^-21,-1*K.1^5,-1*K.1^31,-1*K.1^-10,-1*K.1^16,-1*K.1^-25,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-14,K.1^-21,K.1^-28,K.1^32,K.1^25,K.1^18,K.1^11,K.1^4,K.1^-3,K.1^-10,K.1^-17,K.1^-24,K.1^-31,K.1^29,K.1^22,K.1^15,K.1^8,K.1,K.1^-6,K.1^-13,K.1^-20,K.1^-27,K.1^33,K.1^26,K.1^19,K.1^12,K.1^5,K.1^-2,K.1^-9,K.1^-16,K.1^-23,K.1^-30,K.1^30,K.1^7,K.1^14,K.1^21,K.1^28,K.1^-32,K.1^-25,K.1^-18,K.1^-11,K.1^-4,K.1^3,K.1^10,K.1^17,K.1^24,K.1^31,K.1^-29,K.1^-22,K.1^-15,K.1^-8,K.1^-1,K.1^6,K.1^13,K.1^20,K.1^27,K.1^-33,K.1^-26,K.1^-19,K.1^-12,K.1^-5,K.1^2,K.1^9,K.1^16,K.1^23,K.1^-7,-1*K.1^8,-1*K.1^31,-1*K.1^24,-1*K.1^17,-1*K.1^10,-1*K.1^3,-1*K.1^-4,-1*K.1^-11,-1*K.1^-18,-1*K.1^-25,-1*K.1^-32,-1*K.1^28,-1*K.1^21,-1*K.1^14,-1*K.1^7,-1*K.1^15,-1*K.1^-7,-1*K.1^-14,-1*K.1^-21,-1*K.1^-28,-1*K.1^32,-1*K.1^25,-1*K.1^18,-1*K.1^11,-1*K.1^4,-1*K.1^-3,-1*K.1^-10,-1*K.1^-17,-1*K.1^-24,-1*K.1^-31,-1*K.1^29,-1*K.1^22,-1*K.1^-15,-1*K.1^-22,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^13,-1*K.1^20,-1*K.1^27,-1*K.1^-33,-1*K.1^-26,-1*K.1^-19,-1*K.1^-12,-1*K.1^-5,-1*K.1^2,-1*K.1^9,-1*K.1^16,-1*K.1^23,-1*K.1^30,-1*K.1^-30,-1*K.1^-23,-1*K.1^-16,-1*K.1^-9,-1*K.1^-2,-1*K.1^5,-1*K.1^12,-1*K.1^19,-1*K.1^26,-1*K.1^33,-1*K.1^-27,-1*K.1^-20,-1*K.1^-13,-1*K.1^-6,-1*K.1,-1*K.1^-29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^14,K.1^21,K.1^28,K.1^-32,K.1^-25,K.1^-18,K.1^-11,K.1^-4,K.1^3,K.1^10,K.1^17,K.1^24,K.1^31,K.1^-29,K.1^-22,K.1^-15,K.1^-8,K.1^-1,K.1^6,K.1^13,K.1^20,K.1^27,K.1^-33,K.1^-26,K.1^-19,K.1^-12,K.1^-5,K.1^2,K.1^9,K.1^16,K.1^23,K.1^30,K.1^-30,K.1^-7,K.1^-14,K.1^-21,K.1^-28,K.1^32,K.1^25,K.1^18,K.1^11,K.1^4,K.1^-3,K.1^-10,K.1^-17,K.1^-24,K.1^-31,K.1^29,K.1^22,K.1^15,K.1^8,K.1,K.1^-6,K.1^-13,K.1^-20,K.1^-27,K.1^33,K.1^26,K.1^19,K.1^12,K.1^5,K.1^-2,K.1^-9,K.1^-16,K.1^-23,K.1^7,-1*K.1^-8,-1*K.1^-31,-1*K.1^-24,-1*K.1^-17,-1*K.1^-10,-1*K.1^-3,-1*K.1^4,-1*K.1^11,-1*K.1^18,-1*K.1^25,-1*K.1^32,-1*K.1^-28,-1*K.1^-21,-1*K.1^-14,-1*K.1^-7,-1*K.1^-15,-1*K.1^7,-1*K.1^14,-1*K.1^21,-1*K.1^28,-1*K.1^-32,-1*K.1^-25,-1*K.1^-18,-1*K.1^-11,-1*K.1^-4,-1*K.1^3,-1*K.1^10,-1*K.1^17,-1*K.1^24,-1*K.1^31,-1*K.1^-29,-1*K.1^-22,-1*K.1^15,-1*K.1^22,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^-13,-1*K.1^-20,-1*K.1^-27,-1*K.1^33,-1*K.1^26,-1*K.1^19,-1*K.1^12,-1*K.1^5,-1*K.1^-2,-1*K.1^-9,-1*K.1^-16,-1*K.1^-23,-1*K.1^-30,-1*K.1^30,-1*K.1^23,-1*K.1^16,-1*K.1^9,-1*K.1^2,-1*K.1^-5,-1*K.1^-12,-1*K.1^-19,-1*K.1^-26,-1*K.1^-33,-1*K.1^27,-1*K.1^20,-1*K.1^13,-1*K.1^6,-1*K.1^-1,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-13,K.1^14,K.1^-26,K.1,K.1^28,K.1^-12,K.1^15,K.1^-25,K.1^2,K.1^29,K.1^-11,K.1^16,K.1^-24,K.1^3,K.1^30,K.1^-10,K.1^17,K.1^-23,K.1^4,K.1^31,K.1^-9,K.1^18,K.1^-22,K.1^5,K.1^32,K.1^-8,K.1^19,K.1^-21,K.1^6,K.1^33,K.1^-7,K.1^20,K.1^-20,K.1^-27,K.1^13,K.1^-14,K.1^26,K.1^-1,K.1^-28,K.1^12,K.1^-15,K.1^25,K.1^-2,K.1^-29,K.1^11,K.1^-16,K.1^24,K.1^-3,K.1^-30,K.1^10,K.1^-17,K.1^23,K.1^-4,K.1^-31,K.1^9,K.1^-18,K.1^22,K.1^-5,K.1^-32,K.1^8,K.1^-19,K.1^21,K.1^-6,K.1^-33,K.1^7,K.1^27,-1*K.1^17,-1*K.1^24,-1*K.1^-16,-1*K.1^11,-1*K.1^-29,-1*K.1^-2,-1*K.1^25,-1*K.1^-15,-1*K.1^12,-1*K.1^-28,-1*K.1^-1,-1*K.1^26,-1*K.1^-14,-1*K.1^13,-1*K.1^-27,-1*K.1^-10,-1*K.1^27,-1*K.1^-13,-1*K.1^14,-1*K.1^-26,-1*K.1,-1*K.1^28,-1*K.1^-12,-1*K.1^15,-1*K.1^-25,-1*K.1^2,-1*K.1^29,-1*K.1^-11,-1*K.1^16,-1*K.1^-24,-1*K.1^3,-1*K.1^30,-1*K.1^10,-1*K.1^-30,-1*K.1^-17,-1*K.1^23,-1*K.1^-4,-1*K.1^-31,-1*K.1^9,-1*K.1^-18,-1*K.1^22,-1*K.1^-5,-1*K.1^-32,-1*K.1^8,-1*K.1^-19,-1*K.1^21,-1*K.1^-6,-1*K.1^-33,-1*K.1^7,-1*K.1^-20,-1*K.1^20,-1*K.1^-7,-1*K.1^33,-1*K.1^6,-1*K.1^-21,-1*K.1^19,-1*K.1^-8,-1*K.1^32,-1*K.1^5,-1*K.1^-22,-1*K.1^18,-1*K.1^-9,-1*K.1^31,-1*K.1^4,-1*K.1^-23,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^13,K.1^-14,K.1^26,K.1^-1,K.1^-28,K.1^12,K.1^-15,K.1^25,K.1^-2,K.1^-29,K.1^11,K.1^-16,K.1^24,K.1^-3,K.1^-30,K.1^10,K.1^-17,K.1^23,K.1^-4,K.1^-31,K.1^9,K.1^-18,K.1^22,K.1^-5,K.1^-32,K.1^8,K.1^-19,K.1^21,K.1^-6,K.1^-33,K.1^7,K.1^-20,K.1^20,K.1^27,K.1^-13,K.1^14,K.1^-26,K.1,K.1^28,K.1^-12,K.1^15,K.1^-25,K.1^2,K.1^29,K.1^-11,K.1^16,K.1^-24,K.1^3,K.1^30,K.1^-10,K.1^17,K.1^-23,K.1^4,K.1^31,K.1^-9,K.1^18,K.1^-22,K.1^5,K.1^32,K.1^-8,K.1^19,K.1^-21,K.1^6,K.1^33,K.1^-7,K.1^-27,-1*K.1^-17,-1*K.1^-24,-1*K.1^16,-1*K.1^-11,-1*K.1^29,-1*K.1^2,-1*K.1^-25,-1*K.1^15,-1*K.1^-12,-1*K.1^28,-1*K.1,-1*K.1^-26,-1*K.1^14,-1*K.1^-13,-1*K.1^27,-1*K.1^10,-1*K.1^-27,-1*K.1^13,-1*K.1^-14,-1*K.1^26,-1*K.1^-1,-1*K.1^-28,-1*K.1^12,-1*K.1^-15,-1*K.1^25,-1*K.1^-2,-1*K.1^-29,-1*K.1^11,-1*K.1^-16,-1*K.1^24,-1*K.1^-3,-1*K.1^-30,-1*K.1^-10,-1*K.1^30,-1*K.1^17,-1*K.1^-23,-1*K.1^4,-1*K.1^31,-1*K.1^-9,-1*K.1^18,-1*K.1^-22,-1*K.1^5,-1*K.1^32,-1*K.1^-8,-1*K.1^19,-1*K.1^-21,-1*K.1^6,-1*K.1^33,-1*K.1^-7,-1*K.1^20,-1*K.1^-20,-1*K.1^7,-1*K.1^-33,-1*K.1^-6,-1*K.1^21,-1*K.1^-19,-1*K.1^8,-1*K.1^-32,-1*K.1^-5,-1*K.1^22,-1*K.1^-18,-1*K.1^9,-1*K.1^-31,-1*K.1^-4,-1*K.1^23,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-12,K.1^-18,K.1^-24,K.1^-30,K.1^31,K.1^25,K.1^19,K.1^13,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-17,K.1^-23,K.1^-29,K.1^32,K.1^26,K.1^20,K.1^14,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^-16,K.1^-22,K.1^-28,K.1^33,K.1^27,K.1^21,K.1^15,K.1^9,K.1^3,K.1^-3,K.1^6,K.1^12,K.1^18,K.1^24,K.1^30,K.1^-31,K.1^-25,K.1^-19,K.1^-13,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^17,K.1^23,K.1^29,K.1^-32,K.1^-26,K.1^-20,K.1^-14,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^16,K.1^22,K.1^28,K.1^-33,K.1^-27,K.1^-21,K.1^-15,K.1^-9,K.1^-6,-1*K.1^26,-1*K.1^17,-1*K.1^11,-1*K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^-13,-1*K.1^-19,-1*K.1^-25,-1*K.1^-31,-1*K.1^30,-1*K.1^24,-1*K.1^18,-1*K.1^12,-1*K.1^6,-1*K.1^32,-1*K.1^-6,-1*K.1^-12,-1*K.1^-18,-1*K.1^-24,-1*K.1^-30,-1*K.1^31,-1*K.1^25,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1,-1*K.1^-5,-1*K.1^-11,-1*K.1^-17,-1*K.1^-23,-1*K.1^-29,-1*K.1^-32,-1*K.1^29,-1*K.1^-26,-1*K.1^-20,-1*K.1^-14,-1*K.1^-8,-1*K.1^-2,-1*K.1^4,-1*K.1^10,-1*K.1^16,-1*K.1^22,-1*K.1^28,-1*K.1^-33,-1*K.1^-27,-1*K.1^-21,-1*K.1^-15,-1*K.1^-9,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^21,-1*K.1^27,-1*K.1^33,-1*K.1^-28,-1*K.1^-22,-1*K.1^-16,-1*K.1^-10,-1*K.1^-4,-1*K.1^2,-1*K.1^8,-1*K.1^14,-1*K.1^20,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^12,K.1^18,K.1^24,K.1^30,K.1^-31,K.1^-25,K.1^-19,K.1^-13,K.1^-7,K.1^-1,K.1^5,K.1^11,K.1^17,K.1^23,K.1^29,K.1^-32,K.1^-26,K.1^-20,K.1^-14,K.1^-8,K.1^-2,K.1^4,K.1^10,K.1^16,K.1^22,K.1^28,K.1^-33,K.1^-27,K.1^-21,K.1^-15,K.1^-9,K.1^-3,K.1^3,K.1^-6,K.1^-12,K.1^-18,K.1^-24,K.1^-30,K.1^31,K.1^25,K.1^19,K.1^13,K.1^7,K.1,K.1^-5,K.1^-11,K.1^-17,K.1^-23,K.1^-29,K.1^32,K.1^26,K.1^20,K.1^14,K.1^8,K.1^2,K.1^-4,K.1^-10,K.1^-16,K.1^-22,K.1^-28,K.1^33,K.1^27,K.1^21,K.1^15,K.1^9,K.1^6,-1*K.1^-26,-1*K.1^-17,-1*K.1^-11,-1*K.1^-5,-1*K.1,-1*K.1^7,-1*K.1^13,-1*K.1^19,-1*K.1^25,-1*K.1^31,-1*K.1^-30,-1*K.1^-24,-1*K.1^-18,-1*K.1^-12,-1*K.1^-6,-1*K.1^-32,-1*K.1^6,-1*K.1^12,-1*K.1^18,-1*K.1^24,-1*K.1^30,-1*K.1^-31,-1*K.1^-25,-1*K.1^-19,-1*K.1^-13,-1*K.1^-7,-1*K.1^-1,-1*K.1^5,-1*K.1^11,-1*K.1^17,-1*K.1^23,-1*K.1^29,-1*K.1^32,-1*K.1^-29,-1*K.1^26,-1*K.1^20,-1*K.1^14,-1*K.1^8,-1*K.1^2,-1*K.1^-4,-1*K.1^-10,-1*K.1^-16,-1*K.1^-22,-1*K.1^-28,-1*K.1^33,-1*K.1^27,-1*K.1^21,-1*K.1^15,-1*K.1^9,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^-15,-1*K.1^-21,-1*K.1^-27,-1*K.1^-33,-1*K.1^28,-1*K.1^22,-1*K.1^16,-1*K.1^10,-1*K.1^4,-1*K.1^-2,-1*K.1^-8,-1*K.1^-14,-1*K.1^-20,-1*K.1^-23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-11,K.1^17,K.1^-22,K.1^6,K.1^-33,K.1^-5,K.1^23,K.1^-16,K.1^12,K.1^-27,K.1,K.1^29,K.1^-10,K.1^18,K.1^-21,K.1^7,K.1^-32,K.1^-4,K.1^24,K.1^-15,K.1^13,K.1^-26,K.1^2,K.1^30,K.1^-9,K.1^19,K.1^-20,K.1^8,K.1^-31,K.1^-3,K.1^25,K.1^-14,K.1^14,K.1^-28,K.1^11,K.1^-17,K.1^22,K.1^-6,K.1^33,K.1^5,K.1^-23,K.1^16,K.1^-12,K.1^27,K.1^-1,K.1^-29,K.1^10,K.1^-18,K.1^21,K.1^-7,K.1^32,K.1^4,K.1^-24,K.1^15,K.1^-13,K.1^26,K.1^-2,K.1^-30,K.1^9,K.1^-19,K.1^20,K.1^-8,K.1^31,K.1^3,K.1^-25,K.1^28,-1*K.1^-32,-1*K.1^10,-1*K.1^-29,-1*K.1^-1,-1*K.1^27,-1*K.1^-12,-1*K.1^16,-1*K.1^-23,-1*K.1^5,-1*K.1^33,-1*K.1^-6,-1*K.1^22,-1*K.1^-17,-1*K.1^11,-1*K.1^-28,-1*K.1^7,-1*K.1^28,-1*K.1^-11,-1*K.1^17,-1*K.1^-22,-1*K.1^6,-1*K.1^-33,-1*K.1^-5,-1*K.1^23,-1*K.1^-16,-1*K.1^12,-1*K.1^-27,-1*K.1,-1*K.1^29,-1*K.1^-10,-1*K.1^18,-1*K.1^-21,-1*K.1^-7,-1*K.1^21,-1*K.1^32,-1*K.1^4,-1*K.1^-24,-1*K.1^15,-1*K.1^-13,-1*K.1^26,-1*K.1^-2,-1*K.1^-30,-1*K.1^9,-1*K.1^-19,-1*K.1^20,-1*K.1^-8,-1*K.1^31,-1*K.1^3,-1*K.1^-25,-1*K.1^14,-1*K.1^-14,-1*K.1^25,-1*K.1^-3,-1*K.1^-31,-1*K.1^8,-1*K.1^-20,-1*K.1^19,-1*K.1^-9,-1*K.1^30,-1*K.1^2,-1*K.1^-26,-1*K.1^13,-1*K.1^-15,-1*K.1^24,-1*K.1^-4,-1*K.1^-18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^11,K.1^-17,K.1^22,K.1^-6,K.1^33,K.1^5,K.1^-23,K.1^16,K.1^-12,K.1^27,K.1^-1,K.1^-29,K.1^10,K.1^-18,K.1^21,K.1^-7,K.1^32,K.1^4,K.1^-24,K.1^15,K.1^-13,K.1^26,K.1^-2,K.1^-30,K.1^9,K.1^-19,K.1^20,K.1^-8,K.1^31,K.1^3,K.1^-25,K.1^14,K.1^-14,K.1^28,K.1^-11,K.1^17,K.1^-22,K.1^6,K.1^-33,K.1^-5,K.1^23,K.1^-16,K.1^12,K.1^-27,K.1,K.1^29,K.1^-10,K.1^18,K.1^-21,K.1^7,K.1^-32,K.1^-4,K.1^24,K.1^-15,K.1^13,K.1^-26,K.1^2,K.1^30,K.1^-9,K.1^19,K.1^-20,K.1^8,K.1^-31,K.1^-3,K.1^25,K.1^-28,-1*K.1^32,-1*K.1^-10,-1*K.1^29,-1*K.1,-1*K.1^-27,-1*K.1^12,-1*K.1^-16,-1*K.1^23,-1*K.1^-5,-1*K.1^-33,-1*K.1^6,-1*K.1^-22,-1*K.1^17,-1*K.1^-11,-1*K.1^28,-1*K.1^-7,-1*K.1^-28,-1*K.1^11,-1*K.1^-17,-1*K.1^22,-1*K.1^-6,-1*K.1^33,-1*K.1^5,-1*K.1^-23,-1*K.1^16,-1*K.1^-12,-1*K.1^27,-1*K.1^-1,-1*K.1^-29,-1*K.1^10,-1*K.1^-18,-1*K.1^21,-1*K.1^7,-1*K.1^-21,-1*K.1^-32,-1*K.1^-4,-1*K.1^24,-1*K.1^-15,-1*K.1^13,-1*K.1^-26,-1*K.1^2,-1*K.1^30,-1*K.1^-9,-1*K.1^19,-1*K.1^-20,-1*K.1^8,-1*K.1^-31,-1*K.1^-3,-1*K.1^25,-1*K.1^-14,-1*K.1^14,-1*K.1^-25,-1*K.1^3,-1*K.1^31,-1*K.1^-8,-1*K.1^20,-1*K.1^-19,-1*K.1^9,-1*K.1^-30,-1*K.1^-2,-1*K.1^26,-1*K.1^-13,-1*K.1^15,-1*K.1^-24,-1*K.1^4,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-10,K.1^-15,K.1^-20,K.1^-25,K.1^-30,K.1^32,K.1^27,K.1^22,K.1^17,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-13,K.1^-18,K.1^-23,K.1^-28,K.1^-33,K.1^29,K.1^24,K.1^19,K.1^14,K.1^9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^-16,K.1^-21,K.1^-26,K.1^-31,K.1^31,K.1^5,K.1^10,K.1^15,K.1^20,K.1^25,K.1^30,K.1^-32,K.1^-27,K.1^-22,K.1^-17,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^13,K.1^18,K.1^23,K.1^28,K.1^33,K.1^-29,K.1^-24,K.1^-19,K.1^-14,K.1^-9,K.1^-4,K.1,K.1^6,K.1^11,K.1^16,K.1^21,K.1^26,K.1^-5,-1*K.1^-23,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-12,-1*K.1^-17,-1*K.1^-22,-1*K.1^-27,-1*K.1^-32,-1*K.1^30,-1*K.1^25,-1*K.1^20,-1*K.1^15,-1*K.1^10,-1*K.1^5,-1*K.1^-18,-1*K.1^-5,-1*K.1^-10,-1*K.1^-15,-1*K.1^-20,-1*K.1^-25,-1*K.1^-30,-1*K.1^32,-1*K.1^27,-1*K.1^22,-1*K.1^17,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^-13,-1*K.1^18,-1*K.1^13,-1*K.1^23,-1*K.1^28,-1*K.1^33,-1*K.1^-29,-1*K.1^-24,-1*K.1^-19,-1*K.1^-14,-1*K.1^-9,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^11,-1*K.1^16,-1*K.1^21,-1*K.1^26,-1*K.1^31,-1*K.1^-31,-1*K.1^-26,-1*K.1^-21,-1*K.1^-16,-1*K.1^-11,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^9,-1*K.1^14,-1*K.1^19,-1*K.1^24,-1*K.1^29,-1*K.1^-33,-1*K.1^-28,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^10,K.1^15,K.1^20,K.1^25,K.1^30,K.1^-32,K.1^-27,K.1^-22,K.1^-17,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^13,K.1^18,K.1^23,K.1^28,K.1^33,K.1^-29,K.1^-24,K.1^-19,K.1^-14,K.1^-9,K.1^-4,K.1,K.1^6,K.1^11,K.1^16,K.1^21,K.1^26,K.1^31,K.1^-31,K.1^-5,K.1^-10,K.1^-15,K.1^-20,K.1^-25,K.1^-30,K.1^32,K.1^27,K.1^22,K.1^17,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-13,K.1^-18,K.1^-23,K.1^-28,K.1^-33,K.1^29,K.1^24,K.1^19,K.1^14,K.1^9,K.1^4,K.1^-1,K.1^-6,K.1^-11,K.1^-16,K.1^-21,K.1^-26,K.1^5,-1*K.1^23,-1*K.1^-3,-1*K.1^2,-1*K.1^7,-1*K.1^12,-1*K.1^17,-1*K.1^22,-1*K.1^27,-1*K.1^32,-1*K.1^-30,-1*K.1^-25,-1*K.1^-20,-1*K.1^-15,-1*K.1^-10,-1*K.1^-5,-1*K.1^18,-1*K.1^5,-1*K.1^10,-1*K.1^15,-1*K.1^20,-1*K.1^25,-1*K.1^30,-1*K.1^-32,-1*K.1^-27,-1*K.1^-22,-1*K.1^-17,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^13,-1*K.1^-18,-1*K.1^-13,-1*K.1^-23,-1*K.1^-28,-1*K.1^-33,-1*K.1^29,-1*K.1^24,-1*K.1^19,-1*K.1^14,-1*K.1^9,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-11,-1*K.1^-16,-1*K.1^-21,-1*K.1^-26,-1*K.1^-31,-1*K.1^31,-1*K.1^26,-1*K.1^21,-1*K.1^16,-1*K.1^11,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-9,-1*K.1^-14,-1*K.1^-19,-1*K.1^-24,-1*K.1^-29,-1*K.1^33,-1*K.1^28,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-9,K.1^20,K.1^-18,K.1^11,K.1^-27,K.1^2,K.1^31,K.1^-7,K.1^22,K.1^-16,K.1^13,K.1^-25,K.1^4,K.1^33,K.1^-5,K.1^24,K.1^-14,K.1^15,K.1^-23,K.1^6,K.1^-32,K.1^-3,K.1^26,K.1^-12,K.1^17,K.1^-21,K.1^8,K.1^-30,K.1^-1,K.1^28,K.1^-10,K.1^19,K.1^-19,K.1^-29,K.1^9,K.1^-20,K.1^18,K.1^-11,K.1^27,K.1^-2,K.1^-31,K.1^7,K.1^-22,K.1^16,K.1^-13,K.1^25,K.1^-4,K.1^-33,K.1^5,K.1^-24,K.1^14,K.1^-15,K.1^23,K.1^-6,K.1^32,K.1^3,K.1^-26,K.1^12,K.1^-17,K.1^21,K.1^-8,K.1^30,K.1,K.1^-28,K.1^10,K.1^29,-1*K.1^-14,-1*K.1^-4,-1*K.1^25,-1*K.1^-13,-1*K.1^16,-1*K.1^-22,-1*K.1^7,-1*K.1^-31,-1*K.1^-2,-1*K.1^27,-1*K.1^-11,-1*K.1^18,-1*K.1^-20,-1*K.1^9,-1*K.1^-29,-1*K.1^24,-1*K.1^29,-1*K.1^-9,-1*K.1^20,-1*K.1^-18,-1*K.1^11,-1*K.1^-27,-1*K.1^2,-1*K.1^31,-1*K.1^-7,-1*K.1^22,-1*K.1^-16,-1*K.1^13,-1*K.1^-25,-1*K.1^4,-1*K.1^33,-1*K.1^-5,-1*K.1^-24,-1*K.1^5,-1*K.1^14,-1*K.1^-15,-1*K.1^23,-1*K.1^-6,-1*K.1^32,-1*K.1^3,-1*K.1^-26,-1*K.1^12,-1*K.1^-17,-1*K.1^21,-1*K.1^-8,-1*K.1^30,-1*K.1,-1*K.1^-28,-1*K.1^10,-1*K.1^-19,-1*K.1^19,-1*K.1^-10,-1*K.1^28,-1*K.1^-1,-1*K.1^-30,-1*K.1^8,-1*K.1^-21,-1*K.1^17,-1*K.1^-12,-1*K.1^26,-1*K.1^-3,-1*K.1^-32,-1*K.1^6,-1*K.1^-23,-1*K.1^15,-1*K.1^-33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^9,K.1^-20,K.1^18,K.1^-11,K.1^27,K.1^-2,K.1^-31,K.1^7,K.1^-22,K.1^16,K.1^-13,K.1^25,K.1^-4,K.1^-33,K.1^5,K.1^-24,K.1^14,K.1^-15,K.1^23,K.1^-6,K.1^32,K.1^3,K.1^-26,K.1^12,K.1^-17,K.1^21,K.1^-8,K.1^30,K.1,K.1^-28,K.1^10,K.1^-19,K.1^19,K.1^29,K.1^-9,K.1^20,K.1^-18,K.1^11,K.1^-27,K.1^2,K.1^31,K.1^-7,K.1^22,K.1^-16,K.1^13,K.1^-25,K.1^4,K.1^33,K.1^-5,K.1^24,K.1^-14,K.1^15,K.1^-23,K.1^6,K.1^-32,K.1^-3,K.1^26,K.1^-12,K.1^17,K.1^-21,K.1^8,K.1^-30,K.1^-1,K.1^28,K.1^-10,K.1^-29,-1*K.1^14,-1*K.1^4,-1*K.1^-25,-1*K.1^13,-1*K.1^-16,-1*K.1^22,-1*K.1^-7,-1*K.1^31,-1*K.1^2,-1*K.1^-27,-1*K.1^11,-1*K.1^-18,-1*K.1^20,-1*K.1^-9,-1*K.1^29,-1*K.1^-24,-1*K.1^-29,-1*K.1^9,-1*K.1^-20,-1*K.1^18,-1*K.1^-11,-1*K.1^27,-1*K.1^-2,-1*K.1^-31,-1*K.1^7,-1*K.1^-22,-1*K.1^16,-1*K.1^-13,-1*K.1^25,-1*K.1^-4,-1*K.1^-33,-1*K.1^5,-1*K.1^24,-1*K.1^-5,-1*K.1^-14,-1*K.1^15,-1*K.1^-23,-1*K.1^6,-1*K.1^-32,-1*K.1^-3,-1*K.1^26,-1*K.1^-12,-1*K.1^17,-1*K.1^-21,-1*K.1^8,-1*K.1^-30,-1*K.1^-1,-1*K.1^28,-1*K.1^-10,-1*K.1^19,-1*K.1^-19,-1*K.1^10,-1*K.1^-28,-1*K.1,-1*K.1^30,-1*K.1^-8,-1*K.1^21,-1*K.1^-17,-1*K.1^12,-1*K.1^-26,-1*K.1^3,-1*K.1^32,-1*K.1^-6,-1*K.1^23,-1*K.1^-15,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-8,K.1^-12,K.1^-16,K.1^-20,K.1^-24,K.1^-28,K.1^-32,K.1^31,K.1^27,K.1^23,K.1^19,K.1^15,K.1^11,K.1^7,K.1^3,K.1^-1,K.1^-5,K.1^-9,K.1^-13,K.1^-17,K.1^-21,K.1^-25,K.1^-29,K.1^-33,K.1^30,K.1^26,K.1^22,K.1^18,K.1^14,K.1^10,K.1^6,K.1^2,K.1^-2,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,K.1^-31,K.1^-27,K.1^-23,K.1^-19,K.1^-15,K.1^-11,K.1^-7,K.1^-3,K.1,K.1^5,K.1^9,K.1^13,K.1^17,K.1^21,K.1^25,K.1^29,K.1^33,K.1^-30,K.1^-26,K.1^-22,K.1^-18,K.1^-14,K.1^-10,K.1^-6,K.1^-4,-1*K.1^-5,-1*K.1^-11,-1*K.1^-15,-1*K.1^-19,-1*K.1^-23,-1*K.1^-27,-1*K.1^-31,-1*K.1^32,-1*K.1^28,-1*K.1^24,-1*K.1^20,-1*K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-8,-1*K.1^-12,-1*K.1^-16,-1*K.1^-20,-1*K.1^-24,-1*K.1^-28,-1*K.1^-32,-1*K.1^31,-1*K.1^27,-1*K.1^23,-1*K.1^19,-1*K.1^15,-1*K.1^11,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1^9,-1*K.1^13,-1*K.1^17,-1*K.1^21,-1*K.1^25,-1*K.1^29,-1*K.1^33,-1*K.1^-30,-1*K.1^-26,-1*K.1^-22,-1*K.1^-18,-1*K.1^-14,-1*K.1^-10,-1*K.1^-6,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^14,-1*K.1^18,-1*K.1^22,-1*K.1^26,-1*K.1^30,-1*K.1^-33,-1*K.1^-29,-1*K.1^-25,-1*K.1^-21,-1*K.1^-17,-1*K.1^-13,-1*K.1^-9,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,K.1^-31,K.1^-27,K.1^-23,K.1^-19,K.1^-15,K.1^-11,K.1^-7,K.1^-3,K.1,K.1^5,K.1^9,K.1^13,K.1^17,K.1^21,K.1^25,K.1^29,K.1^33,K.1^-30,K.1^-26,K.1^-22,K.1^-18,K.1^-14,K.1^-10,K.1^-6,K.1^-2,K.1^2,K.1^-4,K.1^-8,K.1^-12,K.1^-16,K.1^-20,K.1^-24,K.1^-28,K.1^-32,K.1^31,K.1^27,K.1^23,K.1^19,K.1^15,K.1^11,K.1^7,K.1^3,K.1^-1,K.1^-5,K.1^-9,K.1^-13,K.1^-17,K.1^-21,K.1^-25,K.1^-29,K.1^-33,K.1^30,K.1^26,K.1^22,K.1^18,K.1^14,K.1^10,K.1^6,K.1^4,-1*K.1^5,-1*K.1^11,-1*K.1^15,-1*K.1^19,-1*K.1^23,-1*K.1^27,-1*K.1^31,-1*K.1^-32,-1*K.1^-28,-1*K.1^-24,-1*K.1^-20,-1*K.1^-16,-1*K.1^-12,-1*K.1^-8,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^20,-1*K.1^24,-1*K.1^28,-1*K.1^32,-1*K.1^-31,-1*K.1^-27,-1*K.1^-23,-1*K.1^-19,-1*K.1^-15,-1*K.1^-11,-1*K.1^-7,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-9,-1*K.1^-13,-1*K.1^-17,-1*K.1^-21,-1*K.1^-25,-1*K.1^-29,-1*K.1^-33,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-10,-1*K.1^-14,-1*K.1^-18,-1*K.1^-22,-1*K.1^-26,-1*K.1^-30,-1*K.1^33,-1*K.1^29,-1*K.1^25,-1*K.1^21,-1*K.1^17,-1*K.1^13,-1*K.1^9,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-7,K.1^23,K.1^-14,K.1^16,K.1^-21,K.1^9,K.1^-28,K.1^2,K.1^32,K.1^-5,K.1^25,K.1^-12,K.1^18,K.1^-19,K.1^11,K.1^-26,K.1^4,K.1^-33,K.1^-3,K.1^27,K.1^-10,K.1^20,K.1^-17,K.1^13,K.1^-24,K.1^6,K.1^-31,K.1^-1,K.1^29,K.1^-8,K.1^22,K.1^-15,K.1^15,K.1^-30,K.1^7,K.1^-23,K.1^14,K.1^-16,K.1^21,K.1^-9,K.1^28,K.1^-2,K.1^-32,K.1^5,K.1^-25,K.1^12,K.1^-18,K.1^19,K.1^-11,K.1^26,K.1^-4,K.1^33,K.1^3,K.1^-27,K.1^10,K.1^-20,K.1^17,K.1^-13,K.1^24,K.1^-6,K.1^31,K.1,K.1^-29,K.1^8,K.1^-22,K.1^30,-1*K.1^4,-1*K.1^-18,-1*K.1^12,-1*K.1^-25,-1*K.1^5,-1*K.1^-32,-1*K.1^-2,-1*K.1^28,-1*K.1^-9,-1*K.1^21,-1*K.1^-16,-1*K.1^14,-1*K.1^-23,-1*K.1^7,-1*K.1^-30,-1*K.1^-26,-1*K.1^30,-1*K.1^-7,-1*K.1^23,-1*K.1^-14,-1*K.1^16,-1*K.1^-21,-1*K.1^9,-1*K.1^-28,-1*K.1^2,-1*K.1^32,-1*K.1^-5,-1*K.1^25,-1*K.1^-12,-1*K.1^18,-1*K.1^-19,-1*K.1^11,-1*K.1^26,-1*K.1^-11,-1*K.1^-4,-1*K.1^33,-1*K.1^3,-1*K.1^-27,-1*K.1^10,-1*K.1^-20,-1*K.1^17,-1*K.1^-13,-1*K.1^24,-1*K.1^-6,-1*K.1^31,-1*K.1,-1*K.1^-29,-1*K.1^8,-1*K.1^-22,-1*K.1^15,-1*K.1^-15,-1*K.1^22,-1*K.1^-8,-1*K.1^29,-1*K.1^-1,-1*K.1^-31,-1*K.1^6,-1*K.1^-24,-1*K.1^13,-1*K.1^-17,-1*K.1^20,-1*K.1^-10,-1*K.1^27,-1*K.1^-3,-1*K.1^-33,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^7,K.1^-23,K.1^14,K.1^-16,K.1^21,K.1^-9,K.1^28,K.1^-2,K.1^-32,K.1^5,K.1^-25,K.1^12,K.1^-18,K.1^19,K.1^-11,K.1^26,K.1^-4,K.1^33,K.1^3,K.1^-27,K.1^10,K.1^-20,K.1^17,K.1^-13,K.1^24,K.1^-6,K.1^31,K.1,K.1^-29,K.1^8,K.1^-22,K.1^15,K.1^-15,K.1^30,K.1^-7,K.1^23,K.1^-14,K.1^16,K.1^-21,K.1^9,K.1^-28,K.1^2,K.1^32,K.1^-5,K.1^25,K.1^-12,K.1^18,K.1^-19,K.1^11,K.1^-26,K.1^4,K.1^-33,K.1^-3,K.1^27,K.1^-10,K.1^20,K.1^-17,K.1^13,K.1^-24,K.1^6,K.1^-31,K.1^-1,K.1^29,K.1^-8,K.1^22,K.1^-30,-1*K.1^-4,-1*K.1^18,-1*K.1^-12,-1*K.1^25,-1*K.1^-5,-1*K.1^32,-1*K.1^2,-1*K.1^-28,-1*K.1^9,-1*K.1^-21,-1*K.1^16,-1*K.1^-14,-1*K.1^23,-1*K.1^-7,-1*K.1^30,-1*K.1^26,-1*K.1^-30,-1*K.1^7,-1*K.1^-23,-1*K.1^14,-1*K.1^-16,-1*K.1^21,-1*K.1^-9,-1*K.1^28,-1*K.1^-2,-1*K.1^-32,-1*K.1^5,-1*K.1^-25,-1*K.1^12,-1*K.1^-18,-1*K.1^19,-1*K.1^-11,-1*K.1^-26,-1*K.1^11,-1*K.1^4,-1*K.1^-33,-1*K.1^-3,-1*K.1^27,-1*K.1^-10,-1*K.1^20,-1*K.1^-17,-1*K.1^13,-1*K.1^-24,-1*K.1^6,-1*K.1^-31,-1*K.1^-1,-1*K.1^29,-1*K.1^-8,-1*K.1^22,-1*K.1^-15,-1*K.1^15,-1*K.1^-22,-1*K.1^8,-1*K.1^-29,-1*K.1,-1*K.1^31,-1*K.1^-6,-1*K.1^24,-1*K.1^-13,-1*K.1^17,-1*K.1^-20,-1*K.1^10,-1*K.1^-27,-1*K.1^3,-1*K.1^33,-1*K.1^-19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-6,K.1^-9,K.1^-12,K.1^-15,K.1^-18,K.1^-21,K.1^-24,K.1^-27,K.1^-30,K.1^-33,K.1^31,K.1^28,K.1^25,K.1^22,K.1^19,K.1^16,K.1^13,K.1^10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^-14,K.1^-17,K.1^-20,K.1^-23,K.1^-26,K.1^-29,K.1^-32,K.1^32,K.1^3,K.1^6,K.1^9,K.1^12,K.1^15,K.1^18,K.1^21,K.1^24,K.1^27,K.1^30,K.1^33,K.1^-31,K.1^-28,K.1^-25,K.1^-22,K.1^-19,K.1^-16,K.1^-13,K.1^-10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^14,K.1^17,K.1^20,K.1^23,K.1^26,K.1^29,K.1^-3,-1*K.1^13,-1*K.1^-25,-1*K.1^-28,-1*K.1^-31,-1*K.1^33,-1*K.1^30,-1*K.1^27,-1*K.1^24,-1*K.1^21,-1*K.1^18,-1*K.1^15,-1*K.1^12,-1*K.1^9,-1*K.1^6,-1*K.1^3,-1*K.1^16,-1*K.1^-3,-1*K.1^-6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-15,-1*K.1^-18,-1*K.1^-21,-1*K.1^-24,-1*K.1^-27,-1*K.1^-30,-1*K.1^-33,-1*K.1^31,-1*K.1^28,-1*K.1^25,-1*K.1^22,-1*K.1^19,-1*K.1^-16,-1*K.1^-19,-1*K.1^-13,-1*K.1^-10,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^8,-1*K.1^11,-1*K.1^14,-1*K.1^17,-1*K.1^20,-1*K.1^23,-1*K.1^26,-1*K.1^29,-1*K.1^32,-1*K.1^-32,-1*K.1^-29,-1*K.1^-26,-1*K.1^-23,-1*K.1^-20,-1*K.1^-17,-1*K.1^-14,-1*K.1^-11,-1*K.1^-8,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1^4,-1*K.1^7,-1*K.1^10,-1*K.1^-22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^6,K.1^9,K.1^12,K.1^15,K.1^18,K.1^21,K.1^24,K.1^27,K.1^30,K.1^33,K.1^-31,K.1^-28,K.1^-25,K.1^-22,K.1^-19,K.1^-16,K.1^-13,K.1^-10,K.1^-7,K.1^-4,K.1^-1,K.1^2,K.1^5,K.1^8,K.1^11,K.1^14,K.1^17,K.1^20,K.1^23,K.1^26,K.1^29,K.1^32,K.1^-32,K.1^-3,K.1^-6,K.1^-9,K.1^-12,K.1^-15,K.1^-18,K.1^-21,K.1^-24,K.1^-27,K.1^-30,K.1^-33,K.1^31,K.1^28,K.1^25,K.1^22,K.1^19,K.1^16,K.1^13,K.1^10,K.1^7,K.1^4,K.1,K.1^-2,K.1^-5,K.1^-8,K.1^-11,K.1^-14,K.1^-17,K.1^-20,K.1^-23,K.1^-26,K.1^-29,K.1^3,-1*K.1^-13,-1*K.1^25,-1*K.1^28,-1*K.1^31,-1*K.1^-33,-1*K.1^-30,-1*K.1^-27,-1*K.1^-24,-1*K.1^-21,-1*K.1^-18,-1*K.1^-15,-1*K.1^-12,-1*K.1^-9,-1*K.1^-6,-1*K.1^-3,-1*K.1^-16,-1*K.1^3,-1*K.1^6,-1*K.1^9,-1*K.1^12,-1*K.1^15,-1*K.1^18,-1*K.1^21,-1*K.1^24,-1*K.1^27,-1*K.1^30,-1*K.1^33,-1*K.1^-31,-1*K.1^-28,-1*K.1^-25,-1*K.1^-22,-1*K.1^-19,-1*K.1^16,-1*K.1^19,-1*K.1^13,-1*K.1^10,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1^-8,-1*K.1^-11,-1*K.1^-14,-1*K.1^-17,-1*K.1^-20,-1*K.1^-23,-1*K.1^-26,-1*K.1^-29,-1*K.1^-32,-1*K.1^32,-1*K.1^29,-1*K.1^26,-1*K.1^23,-1*K.1^20,-1*K.1^17,-1*K.1^14,-1*K.1^11,-1*K.1^8,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-10,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-5,K.1^26,K.1^-10,K.1^21,K.1^-15,K.1^16,K.1^-20,K.1^11,K.1^-25,K.1^6,K.1^-30,K.1,K.1^32,K.1^-4,K.1^27,K.1^-9,K.1^22,K.1^-14,K.1^17,K.1^-19,K.1^12,K.1^-24,K.1^7,K.1^-29,K.1^2,K.1^33,K.1^-3,K.1^28,K.1^-8,K.1^23,K.1^-13,K.1^18,K.1^-18,K.1^-31,K.1^5,K.1^-26,K.1^10,K.1^-21,K.1^15,K.1^-16,K.1^20,K.1^-11,K.1^25,K.1^-6,K.1^30,K.1^-1,K.1^-32,K.1^4,K.1^-27,K.1^9,K.1^-22,K.1^14,K.1^-17,K.1^19,K.1^-12,K.1^24,K.1^-7,K.1^29,K.1^-2,K.1^-33,K.1^3,K.1^-28,K.1^8,K.1^-23,K.1^13,K.1^31,-1*K.1^22,-1*K.1^-32,-1*K.1^-1,-1*K.1^30,-1*K.1^-6,-1*K.1^25,-1*K.1^-11,-1*K.1^20,-1*K.1^-16,-1*K.1^15,-1*K.1^-21,-1*K.1^10,-1*K.1^-26,-1*K.1^5,-1*K.1^-31,-1*K.1^-9,-1*K.1^31,-1*K.1^-5,-1*K.1^26,-1*K.1^-10,-1*K.1^21,-1*K.1^-15,-1*K.1^16,-1*K.1^-20,-1*K.1^11,-1*K.1^-25,-1*K.1^6,-1*K.1^-30,-1*K.1,-1*K.1^32,-1*K.1^-4,-1*K.1^27,-1*K.1^9,-1*K.1^-27,-1*K.1^-22,-1*K.1^14,-1*K.1^-17,-1*K.1^19,-1*K.1^-12,-1*K.1^24,-1*K.1^-7,-1*K.1^29,-1*K.1^-2,-1*K.1^-33,-1*K.1^3,-1*K.1^-28,-1*K.1^8,-1*K.1^-23,-1*K.1^13,-1*K.1^-18,-1*K.1^18,-1*K.1^-13,-1*K.1^23,-1*K.1^-8,-1*K.1^28,-1*K.1^-3,-1*K.1^33,-1*K.1^2,-1*K.1^-29,-1*K.1^7,-1*K.1^-24,-1*K.1^12,-1*K.1^-19,-1*K.1^17,-1*K.1^-14,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^5,K.1^-26,K.1^10,K.1^-21,K.1^15,K.1^-16,K.1^20,K.1^-11,K.1^25,K.1^-6,K.1^30,K.1^-1,K.1^-32,K.1^4,K.1^-27,K.1^9,K.1^-22,K.1^14,K.1^-17,K.1^19,K.1^-12,K.1^24,K.1^-7,K.1^29,K.1^-2,K.1^-33,K.1^3,K.1^-28,K.1^8,K.1^-23,K.1^13,K.1^-18,K.1^18,K.1^31,K.1^-5,K.1^26,K.1^-10,K.1^21,K.1^-15,K.1^16,K.1^-20,K.1^11,K.1^-25,K.1^6,K.1^-30,K.1,K.1^32,K.1^-4,K.1^27,K.1^-9,K.1^22,K.1^-14,K.1^17,K.1^-19,K.1^12,K.1^-24,K.1^7,K.1^-29,K.1^2,K.1^33,K.1^-3,K.1^28,K.1^-8,K.1^23,K.1^-13,K.1^-31,-1*K.1^-22,-1*K.1^32,-1*K.1,-1*K.1^-30,-1*K.1^6,-1*K.1^-25,-1*K.1^11,-1*K.1^-20,-1*K.1^16,-1*K.1^-15,-1*K.1^21,-1*K.1^-10,-1*K.1^26,-1*K.1^-5,-1*K.1^31,-1*K.1^9,-1*K.1^-31,-1*K.1^5,-1*K.1^-26,-1*K.1^10,-1*K.1^-21,-1*K.1^15,-1*K.1^-16,-1*K.1^20,-1*K.1^-11,-1*K.1^25,-1*K.1^-6,-1*K.1^30,-1*K.1^-1,-1*K.1^-32,-1*K.1^4,-1*K.1^-27,-1*K.1^-9,-1*K.1^27,-1*K.1^22,-1*K.1^-14,-1*K.1^17,-1*K.1^-19,-1*K.1^12,-1*K.1^-24,-1*K.1^7,-1*K.1^-29,-1*K.1^2,-1*K.1^33,-1*K.1^-3,-1*K.1^28,-1*K.1^-8,-1*K.1^23,-1*K.1^-13,-1*K.1^18,-1*K.1^-18,-1*K.1^13,-1*K.1^-23,-1*K.1^8,-1*K.1^-28,-1*K.1^3,-1*K.1^-33,-1*K.1^-2,-1*K.1^29,-1*K.1^-7,-1*K.1^24,-1*K.1^-12,-1*K.1^19,-1*K.1^-17,-1*K.1^14,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-4,K.1^-6,K.1^-8,K.1^-10,K.1^-12,K.1^-14,K.1^-16,K.1^-18,K.1^-20,K.1^-22,K.1^-24,K.1^-26,K.1^-28,K.1^-30,K.1^-32,K.1^33,K.1^31,K.1^29,K.1^27,K.1^25,K.1^23,K.1^21,K.1^19,K.1^17,K.1^15,K.1^13,K.1^11,K.1^9,K.1^7,K.1^5,K.1^3,K.1,K.1^-1,K.1^2,K.1^4,K.1^6,K.1^8,K.1^10,K.1^12,K.1^14,K.1^16,K.1^18,K.1^20,K.1^22,K.1^24,K.1^26,K.1^28,K.1^30,K.1^32,K.1^-33,K.1^-31,K.1^-29,K.1^-27,K.1^-25,K.1^-23,K.1^-21,K.1^-19,K.1^-17,K.1^-15,K.1^-13,K.1^-11,K.1^-9,K.1^-7,K.1^-5,K.1^-3,K.1^-2,-1*K.1^31,-1*K.1^28,-1*K.1^26,-1*K.1^24,-1*K.1^22,-1*K.1^20,-1*K.1^18,-1*K.1^16,-1*K.1^14,-1*K.1^12,-1*K.1^10,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^33,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-10,-1*K.1^-12,-1*K.1^-14,-1*K.1^-16,-1*K.1^-18,-1*K.1^-20,-1*K.1^-22,-1*K.1^-24,-1*K.1^-26,-1*K.1^-28,-1*K.1^-30,-1*K.1^-32,-1*K.1^-33,-1*K.1^32,-1*K.1^-31,-1*K.1^-29,-1*K.1^-27,-1*K.1^-25,-1*K.1^-23,-1*K.1^-21,-1*K.1^-19,-1*K.1^-17,-1*K.1^-15,-1*K.1^-13,-1*K.1^-11,-1*K.1^-9,-1*K.1^-7,-1*K.1^-5,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^15,-1*K.1^17,-1*K.1^19,-1*K.1^21,-1*K.1^23,-1*K.1^25,-1*K.1^27,-1*K.1^29,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^4,K.1^6,K.1^8,K.1^10,K.1^12,K.1^14,K.1^16,K.1^18,K.1^20,K.1^22,K.1^24,K.1^26,K.1^28,K.1^30,K.1^32,K.1^-33,K.1^-31,K.1^-29,K.1^-27,K.1^-25,K.1^-23,K.1^-21,K.1^-19,K.1^-17,K.1^-15,K.1^-13,K.1^-11,K.1^-9,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^-10,K.1^-12,K.1^-14,K.1^-16,K.1^-18,K.1^-20,K.1^-22,K.1^-24,K.1^-26,K.1^-28,K.1^-30,K.1^-32,K.1^33,K.1^31,K.1^29,K.1^27,K.1^25,K.1^23,K.1^21,K.1^19,K.1^17,K.1^15,K.1^13,K.1^11,K.1^9,K.1^7,K.1^5,K.1^3,K.1^2,-1*K.1^-31,-1*K.1^-28,-1*K.1^-26,-1*K.1^-24,-1*K.1^-22,-1*K.1^-20,-1*K.1^-18,-1*K.1^-16,-1*K.1^-14,-1*K.1^-12,-1*K.1^-10,-1*K.1^-8,-1*K.1^-6,-1*K.1^-4,-1*K.1^-2,-1*K.1^-33,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^20,-1*K.1^22,-1*K.1^24,-1*K.1^26,-1*K.1^28,-1*K.1^30,-1*K.1^32,-1*K.1^33,-1*K.1^-32,-1*K.1^31,-1*K.1^29,-1*K.1^27,-1*K.1^25,-1*K.1^23,-1*K.1^21,-1*K.1^19,-1*K.1^17,-1*K.1^15,-1*K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^-7,-1*K.1^-9,-1*K.1^-11,-1*K.1^-13,-1*K.1^-15,-1*K.1^-17,-1*K.1^-19,-1*K.1^-21,-1*K.1^-23,-1*K.1^-25,-1*K.1^-27,-1*K.1^-29,-1*K.1^-30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-3,K.1^29,K.1^-6,K.1^26,K.1^-9,K.1^23,K.1^-12,K.1^20,K.1^-15,K.1^17,K.1^-18,K.1^14,K.1^-21,K.1^11,K.1^-24,K.1^8,K.1^-27,K.1^5,K.1^-30,K.1^2,K.1^-33,K.1^-1,K.1^31,K.1^-4,K.1^28,K.1^-7,K.1^25,K.1^-10,K.1^22,K.1^-13,K.1^19,K.1^-16,K.1^16,K.1^-32,K.1^3,K.1^-29,K.1^6,K.1^-26,K.1^9,K.1^-23,K.1^12,K.1^-20,K.1^15,K.1^-17,K.1^18,K.1^-14,K.1^21,K.1^-11,K.1^24,K.1^-8,K.1^27,K.1^-5,K.1^30,K.1^-2,K.1^33,K.1,K.1^-31,K.1^4,K.1^-28,K.1^7,K.1^-25,K.1^10,K.1^-22,K.1^13,K.1^-19,K.1^32,-1*K.1^-27,-1*K.1^21,-1*K.1^-14,-1*K.1^18,-1*K.1^-17,-1*K.1^15,-1*K.1^-20,-1*K.1^12,-1*K.1^-23,-1*K.1^9,-1*K.1^-26,-1*K.1^6,-1*K.1^-29,-1*K.1^3,-1*K.1^-32,-1*K.1^8,-1*K.1^32,-1*K.1^-3,-1*K.1^29,-1*K.1^-6,-1*K.1^26,-1*K.1^-9,-1*K.1^23,-1*K.1^-12,-1*K.1^20,-1*K.1^-15,-1*K.1^17,-1*K.1^-18,-1*K.1^14,-1*K.1^-21,-1*K.1^11,-1*K.1^-24,-1*K.1^-8,-1*K.1^24,-1*K.1^27,-1*K.1^-5,-1*K.1^30,-1*K.1^-2,-1*K.1^33,-1*K.1,-1*K.1^-31,-1*K.1^4,-1*K.1^-28,-1*K.1^7,-1*K.1^-25,-1*K.1^10,-1*K.1^-22,-1*K.1^13,-1*K.1^-19,-1*K.1^16,-1*K.1^-16,-1*K.1^19,-1*K.1^-13,-1*K.1^22,-1*K.1^-10,-1*K.1^25,-1*K.1^-7,-1*K.1^28,-1*K.1^-4,-1*K.1^31,-1*K.1^-1,-1*K.1^-33,-1*K.1^2,-1*K.1^-30,-1*K.1^5,-1*K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^3,K.1^-29,K.1^6,K.1^-26,K.1^9,K.1^-23,K.1^12,K.1^-20,K.1^15,K.1^-17,K.1^18,K.1^-14,K.1^21,K.1^-11,K.1^24,K.1^-8,K.1^27,K.1^-5,K.1^30,K.1^-2,K.1^33,K.1,K.1^-31,K.1^4,K.1^-28,K.1^7,K.1^-25,K.1^10,K.1^-22,K.1^13,K.1^-19,K.1^16,K.1^-16,K.1^32,K.1^-3,K.1^29,K.1^-6,K.1^26,K.1^-9,K.1^23,K.1^-12,K.1^20,K.1^-15,K.1^17,K.1^-18,K.1^14,K.1^-21,K.1^11,K.1^-24,K.1^8,K.1^-27,K.1^5,K.1^-30,K.1^2,K.1^-33,K.1^-1,K.1^31,K.1^-4,K.1^28,K.1^-7,K.1^25,K.1^-10,K.1^22,K.1^-13,K.1^19,K.1^-32,-1*K.1^27,-1*K.1^-21,-1*K.1^14,-1*K.1^-18,-1*K.1^17,-1*K.1^-15,-1*K.1^20,-1*K.1^-12,-1*K.1^23,-1*K.1^-9,-1*K.1^26,-1*K.1^-6,-1*K.1^29,-1*K.1^-3,-1*K.1^32,-1*K.1^-8,-1*K.1^-32,-1*K.1^3,-1*K.1^-29,-1*K.1^6,-1*K.1^-26,-1*K.1^9,-1*K.1^-23,-1*K.1^12,-1*K.1^-20,-1*K.1^15,-1*K.1^-17,-1*K.1^18,-1*K.1^-14,-1*K.1^21,-1*K.1^-11,-1*K.1^24,-1*K.1^8,-1*K.1^-24,-1*K.1^-27,-1*K.1^5,-1*K.1^-30,-1*K.1^2,-1*K.1^-33,-1*K.1^-1,-1*K.1^31,-1*K.1^-4,-1*K.1^28,-1*K.1^-7,-1*K.1^25,-1*K.1^-10,-1*K.1^22,-1*K.1^-13,-1*K.1^19,-1*K.1^-16,-1*K.1^16,-1*K.1^-19,-1*K.1^13,-1*K.1^-22,-1*K.1^10,-1*K.1^-25,-1*K.1^7,-1*K.1^-28,-1*K.1^4,-1*K.1^-31,-1*K.1,-1*K.1^33,-1*K.1^-2,-1*K.1^30,-1*K.1^-5,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^-9,K.1^-10,K.1^-11,K.1^-12,K.1^-13,K.1^-14,K.1^-15,K.1^-16,K.1^-17,K.1^-18,K.1^-19,K.1^-20,K.1^-21,K.1^-22,K.1^-23,K.1^-24,K.1^-25,K.1^-26,K.1^-27,K.1^-28,K.1^-29,K.1^-30,K.1^-31,K.1^-32,K.1^-33,K.1^33,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^9,K.1^10,K.1^11,K.1^12,K.1^13,K.1^14,K.1^15,K.1^16,K.1^17,K.1^18,K.1^19,K.1^20,K.1^21,K.1^22,K.1^23,K.1^24,K.1^25,K.1^26,K.1^27,K.1^28,K.1^29,K.1^30,K.1^31,K.1^32,K.1^-1,-1*K.1^-18,-1*K.1^14,-1*K.1^13,-1*K.1^12,-1*K.1^11,-1*K.1^10,-1*K.1^9,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^2,-1*K.1,-1*K.1^-17,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-9,-1*K.1^-10,-1*K.1^-11,-1*K.1^-12,-1*K.1^-13,-1*K.1^-14,-1*K.1^-15,-1*K.1^-16,-1*K.1^17,-1*K.1^16,-1*K.1^18,-1*K.1^19,-1*K.1^20,-1*K.1^21,-1*K.1^22,-1*K.1^23,-1*K.1^24,-1*K.1^25,-1*K.1^26,-1*K.1^27,-1*K.1^28,-1*K.1^29,-1*K.1^30,-1*K.1^31,-1*K.1^32,-1*K.1^33,-1*K.1^-33,-1*K.1^-32,-1*K.1^-31,-1*K.1^-30,-1*K.1^-29,-1*K.1^-28,-1*K.1^-27,-1*K.1^-26,-1*K.1^-25,-1*K.1^-24,-1*K.1^-23,-1*K.1^-22,-1*K.1^-21,-1*K.1^-20,-1*K.1^-19,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^9,K.1^10,K.1^11,K.1^12,K.1^13,K.1^14,K.1^15,K.1^16,K.1^17,K.1^18,K.1^19,K.1^20,K.1^21,K.1^22,K.1^23,K.1^24,K.1^25,K.1^26,K.1^27,K.1^28,K.1^29,K.1^30,K.1^31,K.1^32,K.1^33,K.1^-33,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^-9,K.1^-10,K.1^-11,K.1^-12,K.1^-13,K.1^-14,K.1^-15,K.1^-16,K.1^-17,K.1^-18,K.1^-19,K.1^-20,K.1^-21,K.1^-22,K.1^-23,K.1^-24,K.1^-25,K.1^-26,K.1^-27,K.1^-28,K.1^-29,K.1^-30,K.1^-31,K.1^-32,K.1,-1*K.1^18,-1*K.1^-14,-1*K.1^-13,-1*K.1^-12,-1*K.1^-11,-1*K.1^-10,-1*K.1^-9,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,-1*K.1^-1,-1*K.1^17,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^9,-1*K.1^10,-1*K.1^11,-1*K.1^12,-1*K.1^13,-1*K.1^14,-1*K.1^15,-1*K.1^16,-1*K.1^-17,-1*K.1^-16,-1*K.1^-18,-1*K.1^-19,-1*K.1^-20,-1*K.1^-21,-1*K.1^-22,-1*K.1^-23,-1*K.1^-24,-1*K.1^-25,-1*K.1^-26,-1*K.1^-27,-1*K.1^-28,-1*K.1^-29,-1*K.1^-30,-1*K.1^-31,-1*K.1^-32,-1*K.1^-33,-1*K.1^33,-1*K.1^32,-1*K.1^31,-1*K.1^30,-1*K.1^29,-1*K.1^28,-1*K.1^27,-1*K.1^26,-1*K.1^25,-1*K.1^24,-1*K.1^23,-1*K.1^22,-1*K.1^21,-1*K.1^20,-1*K.1^19,-1*K.1^-15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1^-1,K.1^32,K.1^-2,K.1^31,K.1^-3,K.1^30,K.1^-4,K.1^29,K.1^-5,K.1^28,K.1^-6,K.1^27,K.1^-7,K.1^26,K.1^-8,K.1^25,K.1^-9,K.1^24,K.1^-10,K.1^23,K.1^-11,K.1^22,K.1^-12,K.1^21,K.1^-13,K.1^20,K.1^-14,K.1^19,K.1^-15,K.1^18,K.1^-16,K.1^17,K.1^-17,K.1^-33,K.1,K.1^-32,K.1^2,K.1^-31,K.1^3,K.1^-30,K.1^4,K.1^-29,K.1^5,K.1^-28,K.1^6,K.1^-27,K.1^7,K.1^-26,K.1^8,K.1^-25,K.1^9,K.1^-24,K.1^10,K.1^-23,K.1^11,K.1^-22,K.1^12,K.1^-21,K.1^13,K.1^-20,K.1^14,K.1^-19,K.1^15,K.1^-18,K.1^16,K.1^33,-1*K.1^-9,-1*K.1^7,-1*K.1^-27,-1*K.1^6,-1*K.1^-28,-1*K.1^5,-1*K.1^-29,-1*K.1^4,-1*K.1^-30,-1*K.1^3,-1*K.1^-31,-1*K.1^2,-1*K.1^-32,-1*K.1,-1*K.1^-33,-1*K.1^25,-1*K.1^33,-1*K.1^-1,-1*K.1^32,-1*K.1^-2,-1*K.1^31,-1*K.1^-3,-1*K.1^30,-1*K.1^-4,-1*K.1^29,-1*K.1^-5,-1*K.1^28,-1*K.1^-6,-1*K.1^27,-1*K.1^-7,-1*K.1^26,-1*K.1^-8,-1*K.1^-25,-1*K.1^8,-1*K.1^9,-1*K.1^-24,-1*K.1^10,-1*K.1^-23,-1*K.1^11,-1*K.1^-22,-1*K.1^12,-1*K.1^-21,-1*K.1^13,-1*K.1^-20,-1*K.1^14,-1*K.1^-19,-1*K.1^15,-1*K.1^-18,-1*K.1^16,-1*K.1^-17,-1*K.1^17,-1*K.1^-16,-1*K.1^18,-1*K.1^-15,-1*K.1^19,-1*K.1^-14,-1*K.1^20,-1*K.1^-13,-1*K.1^21,-1*K.1^-12,-1*K.1^22,-1*K.1^-11,-1*K.1^23,-1*K.1^-10,-1*K.1^24,-1*K.1^-26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(67: Sparse := true); S := [ K |1,-1,K.1,K.1^-32,K.1^2,K.1^-31,K.1^3,K.1^-30,K.1^4,K.1^-29,K.1^5,K.1^-28,K.1^6,K.1^-27,K.1^7,K.1^-26,K.1^8,K.1^-25,K.1^9,K.1^-24,K.1^10,K.1^-23,K.1^11,K.1^-22,K.1^12,K.1^-21,K.1^13,K.1^-20,K.1^14,K.1^-19,K.1^15,K.1^-18,K.1^16,K.1^-17,K.1^17,K.1^33,K.1^-1,K.1^32,K.1^-2,K.1^31,K.1^-3,K.1^30,K.1^-4,K.1^29,K.1^-5,K.1^28,K.1^-6,K.1^27,K.1^-7,K.1^26,K.1^-8,K.1^25,K.1^-9,K.1^24,K.1^-10,K.1^23,K.1^-11,K.1^22,K.1^-12,K.1^21,K.1^-13,K.1^20,K.1^-14,K.1^19,K.1^-15,K.1^18,K.1^-16,K.1^-33,-1*K.1^9,-1*K.1^-7,-1*K.1^27,-1*K.1^-6,-1*K.1^28,-1*K.1^-5,-1*K.1^29,-1*K.1^-4,-1*K.1^30,-1*K.1^-3,-1*K.1^31,-1*K.1^-2,-1*K.1^32,-1*K.1^-1,-1*K.1^33,-1*K.1^-25,-1*K.1^-33,-1*K.1,-1*K.1^-32,-1*K.1^2,-1*K.1^-31,-1*K.1^3,-1*K.1^-30,-1*K.1^4,-1*K.1^-29,-1*K.1^5,-1*K.1^-28,-1*K.1^6,-1*K.1^-27,-1*K.1^7,-1*K.1^-26,-1*K.1^8,-1*K.1^25,-1*K.1^-8,-1*K.1^-9,-1*K.1^24,-1*K.1^-10,-1*K.1^23,-1*K.1^-11,-1*K.1^22,-1*K.1^-12,-1*K.1^21,-1*K.1^-13,-1*K.1^20,-1*K.1^-14,-1*K.1^19,-1*K.1^-15,-1*K.1^18,-1*K.1^-16,-1*K.1^17,-1*K.1^-17,-1*K.1^16,-1*K.1^-18,-1*K.1^15,-1*K.1^-19,-1*K.1^14,-1*K.1^-20,-1*K.1^13,-1*K.1^-21,-1*K.1^12,-1*K.1^-22,-1*K.1^11,-1*K.1^-23,-1*K.1^10,-1*K.1^-24,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_134_2:= KnownIrreducibles(CR);