/* Group 128.1886 downloaded from the LMFDB on 06 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, 2, 2, 2, 2, 2, 2, 2, 1430, 135, 58, 851, 102, 2028, 124]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "d4"]); GPerm := PermutationGroup< 20 | (2,6)(4,11)(7,12)(8,13)(10,15)(14,16)(18,20), (1,2,4,6,5,8,11,13)(3,7,10,12,9,14,15,16), (1,3)(2,7)(4,10)(5,9)(6,12)(8,14)(11,15)(13,16)(17,18,19,20), (3,9)(7,14)(10,15)(12,16), (1,4,5,11)(2,6,8,13)(3,10,9,15)(7,12,14,16), (17,19)(18,20), (1,5)(2,8)(3,9)(4,11)(6,13)(7,14)(10,15)(12,16) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_128_1886 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^4>,< 2, 1, c^2>,< 2, 1, c^2*d^4>,< 2, 2, a>,< 2, 2, a*c^2>,< 2, 8, b>,< 2, 8, b*c>,< 2, 8, a*b>,< 2, 8, a*b*c*d>,< 4, 2, a*d^2>,< 4, 2, a*c^2*d^2>,< 4, 2, d^2>,< 4, 2, c^2*d^2>,< 4, 4, c>,< 4, 4, c*d^2>,< 4, 4, a*c>,< 4, 4, a*c*d^2>,< 4, 8, b*d>,< 4, 8, b*c*d>,< 4, 8, a*b*d>,< 4, 8, a*b*c>,< 8, 2, d>,< 8, 2, d^5>,< 8, 2, c^2*d>,< 8, 2, c^2*d^5>,< 8, 4, c*d>,< 8, 4, a*d>,< 8, 4, c*d^3>,< 8, 4, a*c^2*d>,< 8, 4, a*c*d>,< 8, 4, a*c*d^3>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 2, 0, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, -2, 0, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, 0, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, -2, 0, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 0, 2, 0, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_128_1886:= KnownIrreducibles(CR);