/* Group 128.159 downloaded from the LMFDB on 30 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, 2, -2, -2, -2, -2, -2, 36, 58, 80, 102, 124]); a,b := Explode([GPC.1, GPC.2]); AssignNames(~GPC, ["a", "b", "b2", "b4", "b8", "b16", "b32"]); GPerm := PermutationGroup< 66 | (3,66,34,50,18,58,26,42,10,62,30,46,14,54,22,38,6,64,32,48,16,56,24,40,8,60,28,44,12,52,20,36,4,65,33,49,17,57,25,41,9,61,29,45,13,53,21,37,5,63,31,47,15,55,23,39,7,59,27,43,11,51,19,35), (1,2), (3,34,18,26,10,30,14,22,6,32,16,24,8,28,12,20,4,33,17,25,9,29,13,21,5,31,15,23,7,27,11,19)(35,66,50,58,42,62,46,54,38,64,48,56,40,60,44,52,36,65,49,57,41,61,45,53,37,63,47,55,39,59,43,51), (3,18,10,14,6,16,8,12,4,17,9,13,5,15,7,11)(19,34,26,30,22,32,24,28,20,33,25,29,21,31,23,27)(35,50,42,46,38,48,40,44,36,49,41,45,37,47,39,43)(51,66,58,62,54,64,56,60,52,65,57,61,53,63,55,59), (3,10,6,8,4,9,5,7)(11,18,14,16,12,17,13,15)(19,26,22,24,20,25,21,23)(27,34,30,32,28,33,29,31)(35,42,38,40,36,41,37,39)(43,50,46,48,44,49,45,47)(51,58,54,56,52,57,53,55)(59,66,62,64,60,65,61,63), (3,6,4,5)(7,10,8,9)(11,14,12,13)(15,18,16,17)(19,22,20,21)(23,26,24,25)(27,30,28,29)(31,34,32,33)(35,38,36,37)(39,42,40,41)(43,46,44,45)(47,50,48,49)(51,54,52,53)(55,58,56,57)(59,62,60,61)(63,66,64,65), (3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66) >; GLFp := MatrixGroup< 2, GF(193) | [[125, 0, 0, 158], [43, 0, 0, 9]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_128_159 := rec< RF | Agroup := true, Zgroup := false, abelian := true, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, a>,< 2, 1, a*b^32>,< 2, 1, b^32>,< 4, 1, a*b^16>,< 4, 1, a*b^48>,< 4, 1, b^16>,< 4, 1, b^48>,< 8, 1, a*b^8>,< 8, 1, a*b^56>,< 8, 1, a*b^24>,< 8, 1, a*b^40>,< 8, 1, b^8>,< 8, 1, b^56>,< 8, 1, b^24>,< 8, 1, b^40>,< 16, 1, a*b^4>,< 16, 1, a*b^60>,< 16, 1, a*b^12>,< 16, 1, a*b^52>,< 16, 1, a*b^20>,< 16, 1, a*b^44>,< 16, 1, a*b^28>,< 16, 1, a*b^36>,< 16, 1, b^4>,< 16, 1, b^60>,< 16, 1, b^12>,< 16, 1, b^52>,< 16, 1, b^20>,< 16, 1, b^44>,< 16, 1, b^28>,< 16, 1, b^36>,< 32, 1, a*b^2>,< 32, 1, a*b^62>,< 32, 1, a*b^6>,< 32, 1, a*b^58>,< 32, 1, a*b^10>,< 32, 1, a*b^54>,< 32, 1, a*b^14>,< 32, 1, a*b^50>,< 32, 1, a*b^18>,< 32, 1, a*b^46>,< 32, 1, a*b^22>,< 32, 1, a*b^42>,< 32, 1, a*b^26>,< 32, 1, a*b^38>,< 32, 1, a*b^30>,< 32, 1, a*b^34>,< 32, 1, b^2>,< 32, 1, b^62>,< 32, 1, b^6>,< 32, 1, b^58>,< 32, 1, b^10>,< 32, 1, b^54>,< 32, 1, b^14>,< 32, 1, b^50>,< 32, 1, b^18>,< 32, 1, b^46>,< 32, 1, b^22>,< 32, 1, b^42>,< 32, 1, b^26>,< 32, 1, b^38>,< 32, 1, b^30>,< 32, 1, b^34>,< 64, 1, b>,< 64, 1, b^63>,< 64, 1, b^3>,< 64, 1, b^61>,< 64, 1, b^5>,< 64, 1, b^59>,< 64, 1, b^7>,< 64, 1, b^57>,< 64, 1, b^9>,< 64, 1, b^55>,< 64, 1, b^11>,< 64, 1, b^53>,< 64, 1, b^13>,< 64, 1, b^51>,< 64, 1, b^15>,< 64, 1, b^49>,< 64, 1, b^17>,< 64, 1, b^47>,< 64, 1, b^19>,< 64, 1, b^45>,< 64, 1, b^21>,< 64, 1, b^43>,< 64, 1, b^23>,< 64, 1, b^41>,< 64, 1, b^25>,< 64, 1, b^39>,< 64, 1, b^27>,< 64, 1, b^37>,< 64, 1, b^29>,< 64, 1, b^35>,< 64, 1, b^31>,< 64, 1, b^33>,< 64, 1, a*b>,< 64, 1, a*b^63>,< 64, 1, a*b^3>,< 64, 1, a*b^61>,< 64, 1, a*b^5>,< 64, 1, a*b^59>,< 64, 1, a*b^7>,< 64, 1, a*b^57>,< 64, 1, a*b^9>,< 64, 1, a*b^55>,< 64, 1, a*b^11>,< 64, 1, a*b^53>,< 64, 1, a*b^13>,< 64, 1, a*b^51>,< 64, 1, a*b^15>,< 64, 1, a*b^49>,< 64, 1, a*b^17>,< 64, 1, a*b^47>,< 64, 1, a*b^19>,< 64, 1, a*b^45>,< 64, 1, a*b^21>,< 64, 1, a*b^43>,< 64, 1, a*b^23>,< 64, 1, a*b^41>,< 64, 1, a*b^25>,< 64, 1, a*b^39>,< 64, 1, a*b^27>,< 64, 1, a*b^37>,< 64, 1, a*b^29>,< 64, 1, a*b^35>,< 64, 1, a*b^31>,< 64, 1, a*b^33>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,K.1,K.1,K.1,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,K.1,-1*K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,K.1^5,K.1^3,-1*K.1^3,K.1^5,K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^7,K.1,K.1,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^3,K.1^7,K.1^5,K.1^5,K.1,K.1^5,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1^5,K.1,K.1^3,K.1,K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^7,K.1^7,K.1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^5,-1*K.1^7,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^5,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1,K.1^5,K.1^3,K.1^5,K.1^3,K.1^7,K.1^7,K.1^7,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^7,K.1^3,-1*K.1^3,K.1^5,K.1^7,K.1^5,K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1,K.1^7,K.1^5,K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1,K.1,K.1,-1*K.1^3,K.1,K.1^7,K.1^3,K.1^5,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,K.1^3,K.1^5,K.1^3,K.1^5,K.1,K.1,K.1,K.1^7,-1*K.1,-1*K.1,-1*K.1,K.1^5,K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^7,K.1^5,K.1,K.1^5,-1*K.1^5,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^7,K.1,K.1^3,K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^5,K.1^7,K.1,K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^3,K.1^5,-1*K.1^5,K.1^3,K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^7,K.1^7,K.1^7,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1^5,K.1,K.1^3,K.1^3,K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^5,K.1^5,K.1^7,K.1^5,-1*K.1^3,K.1^7,K.1^5,K.1^7,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1,K.1,K.1^7,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^5,K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,K.1^7,K.1,K.1^7,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^5,K.1^5,K.1^5,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^7,K.1^3,-1*K.1,-1*K.1,K.1^5,-1*K.1,K.1^3,K.1,-1*K.1^5,K.1,-1*K.1,K.1^7,-1*K.1^5,K.1^7,K.1^7,-1*K.1^7,K.1^5,-1*K.1^7,K.1,K.1^5,-1*K.1^7,K.1^5,K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,-1*K.1^3,K.1^3,K.1^5,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^5,K.1,K.1^7,K.1,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^7,K.1,-1*K.1,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^3,K.1^3,K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^5,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^5,K.1^3,-1*K.1,K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^5,K.1^5,K.1^7,K.1^5,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^7,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,K.1^5,K.1^5,K.1^5,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^3,K.1,K.1,-1*K.1^5,K.1,-1*K.1^3,-1*K.1,K.1^5,-1*K.1,K.1,-1*K.1^7,K.1^5,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^5,K.1^7,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^5,-1*K.1^3,K.1^5,-1*K.1^7,K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1^5,-1*K.1,-1*K.1^7,-1*K.1,K.1^7,K.1,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1,K.1,-1*K.1^7,K.1^5,K.1,K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^5,K.1^3,K.1^3,K.1^3,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^5,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^7,K.1^3,-1*K.1,K.1^3,K.1^5,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^5,K.1^5,K.1^3,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,K.1^7,K.1,K.1^7,-1*K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^3,K.1^5,K.1^5,K.1^5,-1*K.1,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^7,K.1^3,K.1,K.1,-1*K.1^5,K.1,K.1^3,K.1,K.1^5,K.1,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^5,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^7,-1*K.1,K.1,K.1^7,K.1^5,-1*K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1,K.1^3,K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^7,K.1^3,K.1,K.1^3,K.1^5,K.1^3,-1*K.1,K.1^3,K.1^5,K.1^5,-1*K.1^3,K.1^5,-1*K.1^5,K.1^5,K.1^7,K.1^5,-1*K.1^3,K.1^7,K.1,K.1^7,K.1,K.1^7,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1,-1*K.1^7,K.1^7,K.1,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,K.1^5,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1^7,K.1^5,K.1^7,-1*K.1^7,K.1^7,K.1^5,K.1^7,-1*K.1,K.1^5,K.1^7,K.1^5,K.1^3,K.1^5,-1*K.1^7,K.1^5,K.1^3,K.1^3,-1*K.1^5,K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1^5,K.1,K.1^7,K.1,K.1^7,K.1,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,-1*K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1^5,K.1,K.1^7,K.1,-1*K.1^7,K.1^3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^3,K.1^3,K.1^3,-1*K.1^7,K.1^5,K.1^5,K.1^5,K.1^5,K.1^5,K.1,K.1^5,K.1^7,K.1^7,-1*K.1^3,K.1^7,K.1^5,K.1^7,K.1^3,K.1^7,K.1^7,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^5,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,K.1^5,-1*K.1^3,K.1^3,K.1^5,-1*K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^5,K.1,-1*K.1,K.1,-1*K.1^7,K.1,K.1,K.1,K.1^5,K.1^7,K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^5,-1*K.1,K.1^3,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^7,K.1^5,-1*K.1^7,K.1,K.1^5,K.1^3,K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^3,K.1,K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^5,-1*K.1,K.1^3,K.1^3,K.1^7,K.1^3,-1*K.1,K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,K.1^5,-1*K.1^5,K.1^7,-1*K.1^5,K.1^3,K.1^7,-1*K.1^5,K.1^7,K.1,K.1^7,K.1^5,K.1^7,K.1,K.1,-1*K.1^7,K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^5,K.1^3,-1*K.1^3,-1*K.1^5,K.1^7,K.1^3,K.1^5,K.1^3,-1*K.1^5,-1*K.1,K.1,-1*K.1,K.1^7,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^5,K.1^5,K.1,K.1^5,-1*K.1^7,K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^5,K.1,-1*K.1^3,K.1,K.1^7,K.1,K.1^3,K.1,K.1^7,K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^7,-1*K.1^5,K.1^7,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,K.1^3,-1*K.1^5,K.1^5,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^7,-1*K.1^7,K.1^7,-1*K.1,K.1^7,K.1^7,K.1^7,K.1^3,K.1,K.1,K.1,K.1,K.1,-1*K.1^5,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^7,K.1^5,-1*K.1^5,K.1^5,-1*K.1^7,K.1^5,-1*K.1^3,-1*K.1^7,K.1^5,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1,-1*K.1,K.1^7,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^7,K.1^3,K.1^5,K.1^3,K.1^5,K.1^3,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^10,K.1^2,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,K.1^10,-1*K.1^14,K.1^14,-1*K.1^10,K.1^10,K.1^10,K.1^6,K.1^10,-1*K.1^6,K.1^13,K.1^3,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^3,K.1^5,K.1^3,K.1^13,K.1^9,K.1,-1*K.1^9,K.1^7,-1*K.1^9,K.1^9,K.1^9,-1*K.1^13,K.1^15,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,K.1^3,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^15,K.1^5,-1*K.1^9,-1*K.1^5,K.1^5,-1*K.1^11,-1*K.1,K.1^11,-1*K.1^3,K.1^11,K.1,-1*K.1^11,-1*K.1^5,K.1,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1^7,-1*K.1^15,-1*K.1^7,K.1^13,K.1^7,K.1^9,K.1^13,K.1^11,-1*K.1^13,K.1^11,-1*K.1^13,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^2,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^14,-1*K.1^10,K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^3,-1*K.1^13,K.1^5,K.1^3,-1*K.1^9,K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1^3,-1*K.1^7,-1*K.1^15,K.1^7,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^13,-1*K.1,K.1^11,K.1^11,K.1^15,-1*K.1^11,K.1,-1*K.1^11,K.1^7,K.1^11,-1*K.1^11,K.1^5,K.1^15,-1*K.1^5,K.1^13,-1*K.1^5,-1*K.1^15,K.1^5,K.1^11,-1*K.1^15,K.1^5,K.1^15,K.1^9,K.1^15,-1*K.1^13,-1*K.1^15,K.1^9,-1*K.1^9,K.1^7,K.1^9,K.1,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^5,K.1^3,-1*K.1^5,K.1^3,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^10,K.1^2,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,K.1^10,-1*K.1^14,K.1^14,-1*K.1^10,K.1^10,K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^13,-1*K.1^3,K.1^11,K.1^13,-1*K.1^7,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^9,-1*K.1,K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,K.1^13,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,-1*K.1^3,-1*K.1^15,K.1^5,K.1^5,K.1,-1*K.1^5,K.1^15,-1*K.1^5,K.1^9,K.1^5,-1*K.1^5,K.1^11,K.1,-1*K.1^11,K.1^3,-1*K.1^11,-1*K.1,K.1^11,K.1^5,-1*K.1,K.1^11,K.1,K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1^9,K.1^7,K.1^15,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^11,K.1^13,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^2,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^14,-1*K.1^10,K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^10,K.1^3,K.1^13,-1*K.1^5,-1*K.1^3,K.1^9,-1*K.1^13,K.1^11,K.1^13,K.1^3,K.1^7,K.1^15,-1*K.1^7,K.1^9,-1*K.1^7,K.1^7,K.1^7,-1*K.1^3,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^13,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^15,K.1^11,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^11,K.1^11,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^13,K.1^5,K.1^15,-1*K.1^5,-1*K.1^11,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^9,-1*K.1^15,K.1^13,K.1^15,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^3,K.1^9,K.1^7,K.1^3,K.1^5,-1*K.1^3,K.1^5,-1*K.1^3,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^10,-1*K.1^2,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^10,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^2,-1*K.1^10,K.1^14,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,-1*K.1^5,-1*K.1^11,-1*K.1^3,K.1^5,-1*K.1^15,K.1^11,K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1,K.1^9,K.1,-1*K.1^15,K.1,-1*K.1,-1*K.1,K.1^5,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^9,K.1^13,-1*K.1^7,K.1^13,K.1,-1*K.1^13,K.1^13,-1*K.1^3,-1*K.1^9,K.1^3,K.1^11,K.1^3,K.1^9,-1*K.1^3,-1*K.1^13,K.1^9,-1*K.1^3,-1*K.1^9,K.1^15,-1*K.1^9,-1*K.1^11,K.1^9,K.1^15,-1*K.1^15,K.1,K.1^15,-1*K.1^7,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1,-1*K.1^5,K.1^3,K.1^5,K.1^3,K.1^5,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^14,K.1^10,-1*K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^10,K.1^6,-1*K.1^10,K.1^11,K.1^5,K.1^13,-1*K.1^11,K.1,-1*K.1^5,-1*K.1^3,K.1^5,K.1^11,K.1^15,-1*K.1^7,-1*K.1^15,K.1,-1*K.1^15,K.1^15,K.1^15,-1*K.1^11,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,K.1^5,-1*K.1^9,K.1^3,K.1^3,K.1^7,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^15,K.1^3,-1*K.1^3,K.1^13,K.1^7,-1*K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1^7,K.1^13,K.1^3,-1*K.1^7,K.1^13,K.1^7,-1*K.1,K.1^7,K.1^5,-1*K.1^7,-1*K.1,K.1,-1*K.1^15,-1*K.1,K.1^9,-1*K.1,K.1^11,K.1,K.1^15,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^10,-1*K.1^2,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^10,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^2,-1*K.1^10,K.1^14,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,K.1^5,K.1^11,K.1^3,-1*K.1^5,K.1^15,-1*K.1^11,-1*K.1^13,K.1^11,K.1^5,K.1,-1*K.1^9,-1*K.1,K.1^15,-1*K.1,K.1,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,K.1^11,-1*K.1^7,K.1^13,K.1^13,K.1^9,-1*K.1^13,K.1^7,-1*K.1^13,-1*K.1,K.1^13,-1*K.1^13,K.1^3,K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^3,K.1^13,-1*K.1^9,K.1^3,K.1^9,-1*K.1^15,K.1^9,K.1^11,-1*K.1^9,-1*K.1^15,K.1^15,-1*K.1,-1*K.1^15,K.1^7,-1*K.1^15,K.1^5,K.1^15,K.1,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^14,K.1^10,-1*K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,K.1^10,K.1^6,-1*K.1^10,-1*K.1^11,-1*K.1^5,-1*K.1^13,K.1^11,-1*K.1,K.1^5,K.1^3,-1*K.1^5,-1*K.1^11,-1*K.1^15,K.1^7,K.1^15,-1*K.1,K.1^15,-1*K.1^15,-1*K.1^15,K.1^11,K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^9,K.1^3,K.1^15,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^7,K.1^13,K.1^5,K.1^13,K.1^7,-1*K.1^13,-1*K.1^3,K.1^7,-1*K.1^13,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^5,K.1^7,K.1,-1*K.1,K.1^15,K.1,-1*K.1^9,K.1,-1*K.1^11,-1*K.1,-1*K.1^15,-1*K.1^11,K.1^13,K.1^11,K.1^13,K.1^11,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^10,K.1^14,K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,K.1^14,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^10,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^14,K.1^2,-1*K.1^14,K.1^9,K.1^7,-1*K.1^15,-1*K.1^9,-1*K.1^11,-1*K.1^7,K.1,K.1^7,K.1^9,-1*K.1^5,K.1^13,K.1^5,-1*K.1^11,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^9,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^7,K.1^3,-1*K.1,-1*K.1,-1*K.1^13,K.1,-1*K.1^3,K.1,K.1^5,-1*K.1,K.1,-1*K.1^15,-1*K.1^13,K.1^15,-1*K.1^7,K.1^15,K.1^13,-1*K.1^15,-1*K.1,K.1^13,-1*K.1^15,-1*K.1^13,K.1^11,-1*K.1^13,K.1^7,K.1^13,K.1^11,-1*K.1^11,K.1^5,K.1^11,-1*K.1^3,K.1^11,K.1^9,-1*K.1^11,-1*K.1^5,K.1^9,K.1^15,-1*K.1^9,K.1^15,-1*K.1^9,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^10,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^10,K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^14,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^10,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^2,-1*K.1^7,-1*K.1^9,K.1,K.1^7,K.1^5,K.1^9,-1*K.1^15,-1*K.1^9,-1*K.1^7,K.1^11,-1*K.1^3,-1*K.1^11,K.1^5,-1*K.1^11,K.1^11,K.1^11,K.1^7,-1*K.1^13,-1*K.1^13,K.1^13,-1*K.1^13,K.1^13,-1*K.1^9,-1*K.1^13,K.1^15,K.1^15,K.1^3,-1*K.1^15,K.1^13,-1*K.1^15,-1*K.1^11,K.1^15,-1*K.1^15,K.1,K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,K.1,K.1^15,-1*K.1^3,K.1,K.1^3,-1*K.1^5,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^11,-1*K.1^5,K.1^13,-1*K.1^5,-1*K.1^7,K.1^5,K.1^11,-1*K.1^7,-1*K.1,K.1^7,-1*K.1,K.1^7,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^10,K.1^14,K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,K.1^14,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^10,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^14,K.1^2,-1*K.1^14,-1*K.1^9,-1*K.1^7,K.1^15,K.1^9,K.1^11,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^9,K.1^5,-1*K.1^13,-1*K.1^5,K.1^11,-1*K.1^5,K.1^5,K.1^5,K.1^9,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^3,K.1,K.1,K.1^13,-1*K.1,K.1^3,-1*K.1,-1*K.1^5,K.1,-1*K.1,K.1^15,K.1^13,-1*K.1^15,K.1^7,-1*K.1^15,-1*K.1^13,K.1^15,K.1,-1*K.1^13,K.1^15,K.1^13,-1*K.1^11,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^11,K.1^11,-1*K.1^5,-1*K.1^11,K.1^3,-1*K.1^11,-1*K.1^9,K.1^11,K.1^5,-1*K.1^9,-1*K.1^15,K.1^9,-1*K.1^15,K.1^9,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^10,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^2,-1*K.1^10,K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^14,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^10,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^2,K.1^7,K.1^9,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^9,K.1^15,K.1^9,K.1^7,-1*K.1^11,K.1^3,K.1^11,-1*K.1^5,K.1^11,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^13,K.1^13,-1*K.1^13,K.1^13,-1*K.1^13,K.1^9,K.1^13,-1*K.1^15,-1*K.1^15,-1*K.1^3,K.1^15,-1*K.1^13,K.1^15,K.1^11,-1*K.1^15,K.1^15,-1*K.1,-1*K.1^3,K.1,-1*K.1^9,K.1,K.1^3,-1*K.1,-1*K.1^15,K.1^3,-1*K.1,-1*K.1^3,K.1^5,-1*K.1^3,K.1^9,K.1^3,K.1^5,-1*K.1^5,K.1^11,K.1^5,-1*K.1^13,K.1^5,K.1^7,-1*K.1^5,-1*K.1^11,K.1^7,K.1,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^10,-1*K.1^14,-1*K.1^6,K.1^2,K.1^10,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^10,K.1^10,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^14,-1*K.1,-1*K.1^15,-1*K.1^7,K.1,-1*K.1^3,K.1^15,K.1^9,-1*K.1^15,-1*K.1,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^13,K.1,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^11,K.1^11,-1*K.1^15,-1*K.1^11,-1*K.1^9,-1*K.1^9,K.1^5,K.1^9,K.1^11,K.1^9,K.1^13,-1*K.1^9,K.1^9,-1*K.1^7,K.1^5,K.1^7,K.1^15,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^9,-1*K.1^5,-1*K.1^7,K.1^5,K.1^3,K.1^5,-1*K.1^15,-1*K.1^5,K.1^3,-1*K.1^3,K.1^13,K.1^3,K.1^11,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^7,K.1,K.1^7,K.1,K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^6,K.1^14,K.1^10,-1*K.1^10,-1*K.1^14,K.1^14,K.1^14,K.1^2,K.1^14,-1*K.1^2,K.1^15,K.1,K.1^9,-1*K.1^15,K.1^13,-1*K.1,-1*K.1^7,K.1,K.1^15,K.1^3,K.1^11,-1*K.1^3,K.1^13,-1*K.1^3,K.1^3,K.1^3,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,K.1^5,K.1^7,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^11,K.1^9,K.1^7,K.1^11,K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^11,K.1,K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,-1*K.1^13,-1*K.1^5,-1*K.1^13,K.1^15,K.1^13,K.1^3,K.1^15,-1*K.1^9,-1*K.1^15,-1*K.1^9,-1*K.1^15,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^10,-1*K.1^14,-1*K.1^6,K.1^2,K.1^10,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^10,K.1^10,K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^14,K.1,K.1^15,K.1^7,-1*K.1,K.1^3,-1*K.1^15,-1*K.1^9,K.1^15,K.1,K.1^13,K.1^5,-1*K.1^13,K.1^3,-1*K.1^13,K.1^13,K.1^13,-1*K.1,K.1^11,K.1^11,-1*K.1^11,K.1^11,-1*K.1^11,K.1^15,K.1^11,K.1^9,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^13,K.1^9,-1*K.1^9,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^15,-1*K.1^7,K.1^5,K.1^7,K.1^9,K.1^5,K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^15,K.1^5,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1^3,K.1,K.1^3,K.1^13,K.1,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^6,K.1^14,K.1^10,-1*K.1^10,-1*K.1^14,K.1^14,K.1^14,K.1^2,K.1^14,-1*K.1^2,-1*K.1^15,-1*K.1,-1*K.1^9,K.1^15,-1*K.1^13,K.1,K.1^7,-1*K.1,-1*K.1^15,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^3,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^11,K.1^7,K.1^5,K.1^7,K.1^3,-1*K.1^7,K.1^7,-1*K.1^9,K.1^11,K.1^9,K.1,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^11,-1*K.1^9,K.1^11,K.1^13,K.1^11,-1*K.1,-1*K.1^11,K.1^13,-1*K.1^13,K.1^3,K.1^13,K.1^5,K.1^13,-1*K.1^15,-1*K.1^13,-1*K.1^3,-1*K.1^15,K.1^9,K.1^15,K.1^9,K.1^15,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,K.1^4,K.1^14,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^14,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^6,-1*K.1^5,K.1^11,K.1^3,K.1^5,K.1^15,K.1^11,K.1^13,-1*K.1^11,K.1^5,K.1,K.1^9,-1*K.1,-1*K.1^15,K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^11,K.1^7,K.1^13,K.1^13,K.1^9,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^3,K.1^11,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^15,-1*K.1^9,-1*K.1^11,K.1^9,K.1^15,K.1^15,K.1,-1*K.1^15,K.1^7,K.1^15,-1*K.1^5,-1*K.1^15,K.1,K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^5,-1*K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^14,K.1^10,-1*K.1^2,K.1^6,K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^14,K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^6,K.1^10,K.1^11,-1*K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^5,-1*K.1^11,-1*K.1^15,-1*K.1^7,K.1^15,K.1,-1*K.1^15,K.1^15,K.1^15,K.1^11,K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^3,K.1^9,-1*K.1^3,K.1^15,K.1^3,K.1^3,-1*K.1^13,K.1^7,K.1^13,-1*K.1^5,-1*K.1^13,K.1^7,K.1^13,K.1^3,K.1^7,K.1^13,-1*K.1^7,K.1,K.1^7,K.1^5,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^15,K.1,-1*K.1^9,-1*K.1,K.1^11,K.1,-1*K.1^15,-1*K.1^11,K.1^13,K.1^11,-1*K.1^13,-1*K.1^11,K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,K.1^4,K.1^14,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^10,K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^14,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^6,K.1^10,-1*K.1^6,K.1^5,-1*K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1^15,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^5,-1*K.1,-1*K.1^9,K.1,K.1^15,-1*K.1,K.1,K.1,K.1^5,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^9,K.1^13,K.1^7,-1*K.1^13,K.1,K.1^13,K.1^13,-1*K.1^3,K.1^9,K.1^3,-1*K.1^11,-1*K.1^3,K.1^9,K.1^3,K.1^13,K.1^9,K.1^3,-1*K.1^9,K.1^15,K.1^9,K.1^11,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1,K.1^15,-1*K.1^7,-1*K.1^15,K.1^5,K.1^15,-1*K.1,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^5,K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^14,K.1^10,-1*K.1^2,K.1^6,K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^14,K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^14,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^10,-1*K.1^6,K.1^10,-1*K.1^11,K.1^5,K.1^13,K.1^11,K.1,K.1^5,K.1^3,-1*K.1^5,K.1^11,K.1^15,K.1^7,-1*K.1^15,-1*K.1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^11,-1*K.1^9,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^5,K.1^9,K.1^3,K.1^3,K.1^7,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^15,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^7,-1*K.1^13,K.1^5,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^5,K.1^7,K.1,K.1,K.1^15,-1*K.1,K.1^9,K.1,-1*K.1^11,-1*K.1,K.1^15,K.1^11,-1*K.1^13,-1*K.1^11,K.1^13,K.1^11,-1*K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^10,K.1^2,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,K.1^10,K.1^14,K.1^14,K.1^10,-1*K.1^10,K.1^10,K.1^6,-1*K.1^10,K.1^6,K.1^13,-1*K.1^3,K.1^11,-1*K.1^13,-1*K.1^7,-1*K.1^3,K.1^5,K.1^3,-1*K.1^13,-1*K.1^9,K.1,K.1^9,K.1^7,-1*K.1^9,K.1^9,K.1^9,K.1^13,-1*K.1^15,-1*K.1^15,K.1^15,K.1^15,-1*K.1^15,-1*K.1^3,K.1^15,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^15,K.1^5,K.1^9,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^11,K.1,K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1^7,K.1^15,-1*K.1^7,K.1^13,K.1^7,-1*K.1^9,-1*K.1^13,-1*K.1^11,K.1^13,K.1^11,-1*K.1^13,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^14,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,K.1^6,K.1^14,K.1^10,-1*K.1^14,-1*K.1^14,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^6,-1*K.1^10,-1*K.1^3,K.1^13,-1*K.1^5,K.1^3,K.1^9,K.1^13,-1*K.1^11,-1*K.1^13,K.1^3,K.1^7,-1*K.1^15,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^13,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^15,K.1^11,K.1,-1*K.1^11,-1*K.1^7,K.1^11,K.1^11,-1*K.1^5,K.1^15,K.1^5,K.1^13,-1*K.1^5,K.1^15,K.1^5,K.1^11,K.1^15,K.1^5,-1*K.1^15,-1*K.1^9,K.1^15,-1*K.1^13,-1*K.1^15,K.1^9,K.1^9,K.1^7,-1*K.1^9,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^9,K.1^7,K.1^3,K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,-1*K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,K.1^4,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^10,K.1^2,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,-1*K.1^14,K.1^14,-1*K.1^2,K.1^10,K.1^14,K.1^14,K.1^10,-1*K.1^10,K.1^10,K.1^6,-1*K.1^10,K.1^6,-1*K.1^13,K.1^3,-1*K.1^11,K.1^13,K.1^7,K.1^3,-1*K.1^5,-1*K.1^3,K.1^13,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^13,K.1^15,K.1^15,-1*K.1^15,-1*K.1^15,K.1^15,K.1^3,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^15,-1*K.1^5,-1*K.1^9,K.1^5,K.1^5,-1*K.1^11,K.1,K.1^11,K.1^3,-1*K.1^11,K.1,K.1^11,K.1^5,K.1,K.1^11,-1*K.1,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^7,K.1^7,K.1^9,-1*K.1^7,-1*K.1^15,K.1^7,-1*K.1^13,-1*K.1^7,K.1^9,K.1^13,K.1^11,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^14,-1*K.1^10,K.1^2,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,K.1^6,K.1^14,K.1^10,-1*K.1^14,-1*K.1^14,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^10,K.1^6,-1*K.1^10,K.1^3,-1*K.1^13,K.1^5,-1*K.1^3,-1*K.1^9,-1*K.1^13,K.1^11,K.1^13,-1*K.1^3,-1*K.1^7,K.1^15,K.1^7,K.1^9,-1*K.1^7,K.1^7,K.1^7,K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^13,K.1,K.1^11,K.1^11,K.1^15,-1*K.1^11,-1*K.1,K.1^11,K.1^7,-1*K.1^11,-1*K.1^11,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^13,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^11,-1*K.1^15,-1*K.1^5,K.1^15,K.1^9,-1*K.1^15,K.1^13,K.1^15,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^9,K.1,-1*K.1^9,K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^2,-1*K.1^10,K.1^14,K.1^10,K.1^10,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1,K.1^15,K.1^7,K.1,K.1^3,K.1^15,K.1^9,-1*K.1^15,K.1,K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^13,-1*K.1,K.1^11,K.1^11,-1*K.1^11,-1*K.1^11,K.1^11,K.1^15,-1*K.1^11,K.1^9,K.1^9,-1*K.1^5,-1*K.1^9,K.1^11,K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1^9,K.1^7,K.1^5,-1*K.1^7,K.1^15,K.1^7,K.1^5,-1*K.1^7,-1*K.1^9,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,K.1^5,-1*K.1^15,-1*K.1^5,K.1^3,K.1^3,K.1^13,-1*K.1^3,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^3,K.1^13,K.1,-1*K.1^7,-1*K.1,K.1^7,K.1,-1*K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,K.1^12,K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^10,-1*K.1^10,K.1^14,-1*K.1^14,K.1^14,K.1^2,-1*K.1^14,K.1^2,K.1^15,-1*K.1,-1*K.1^9,-1*K.1^15,-1*K.1^13,-1*K.1,-1*K.1^7,K.1,-1*K.1^15,-1*K.1^3,K.1^11,K.1^3,K.1^13,-1*K.1^3,K.1^3,K.1^3,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^7,-1*K.1^7,K.1^11,K.1^7,-1*K.1^5,-1*K.1^7,K.1^3,K.1^7,K.1^7,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^11,K.1^9,K.1^7,-1*K.1^11,K.1^9,K.1^11,K.1^13,-1*K.1^11,K.1,K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^3,K.1^13,K.1^5,-1*K.1^13,K.1^15,K.1^13,-1*K.1^3,-1*K.1^15,K.1^9,K.1^15,-1*K.1^9,-1*K.1^15,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^10,-1*K.1^10,K.1^10,K.1^2,-1*K.1^10,K.1^14,K.1^10,K.1^10,K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^10,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,K.1,-1*K.1^15,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1^15,-1*K.1^9,K.1^15,-1*K.1,-1*K.1^13,K.1^5,K.1^13,K.1^3,-1*K.1^13,K.1^13,K.1^13,K.1,-1*K.1^11,-1*K.1^11,K.1^11,K.1^11,-1*K.1^11,-1*K.1^15,K.1^11,-1*K.1^9,-1*K.1^9,K.1^5,K.1^9,-1*K.1^11,-1*K.1^9,K.1^13,K.1^9,K.1^9,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^15,-1*K.1^7,-1*K.1^5,K.1^7,K.1^9,-1*K.1^5,K.1^7,K.1^5,K.1^3,-1*K.1^5,K.1^15,K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^13,K.1^3,K.1^11,-1*K.1^3,K.1,K.1^3,-1*K.1^13,-1*K.1,K.1^7,K.1,-1*K.1^7,-1*K.1,K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,K.1^12,K.1^10,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^10,K.1^14,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^10,-1*K.1^10,K.1^14,-1*K.1^14,K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^15,K.1,K.1^9,K.1^15,K.1^13,K.1,K.1^7,-1*K.1,K.1^15,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1,-1*K.1^5,K.1^7,K.1^7,-1*K.1^11,-1*K.1^7,K.1^5,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^9,K.1^11,-1*K.1^9,K.1,K.1^9,K.1^11,-1*K.1^9,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^11,K.1^13,K.1^13,K.1^3,-1*K.1^13,-1*K.1^5,K.1^13,-1*K.1^15,-1*K.1^13,K.1^3,K.1^15,-1*K.1^9,-1*K.1^15,K.1^9,K.1^15,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^10,K.1^14,K.1^6,K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^14,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^10,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^14,-1*K.1^2,K.1^14,K.1^9,-1*K.1^7,K.1^15,-1*K.1^9,K.1^11,-1*K.1^7,K.1,K.1^7,-1*K.1^9,K.1^5,K.1^13,-1*K.1^5,-1*K.1^11,K.1^5,-1*K.1^5,-1*K.1^5,K.1^9,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^7,K.1^3,K.1,K.1,K.1^13,-1*K.1,-1*K.1^3,K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1^15,-1*K.1^13,-1*K.1^15,-1*K.1^7,K.1^15,-1*K.1^13,-1*K.1^15,-1*K.1,-1*K.1^13,-1*K.1^15,K.1^13,-1*K.1^11,-1*K.1^13,K.1^7,K.1^13,K.1^11,K.1^11,K.1^5,-1*K.1^11,K.1^3,K.1^11,K.1^9,-1*K.1^11,K.1^5,-1*K.1^9,-1*K.1^15,K.1^9,K.1^15,-1*K.1^9,K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^10,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^6,K.1^6,K.1^14,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^14,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^10,K.1^10,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,-1*K.1^7,K.1^9,-1*K.1,K.1^7,-1*K.1^5,K.1^9,-1*K.1^15,-1*K.1^9,K.1^7,-1*K.1^11,-1*K.1^3,K.1^11,K.1^5,-1*K.1^11,K.1^11,K.1^11,-1*K.1^7,K.1^13,K.1^13,-1*K.1^13,-1*K.1^13,K.1^13,K.1^9,-1*K.1^13,-1*K.1^15,-1*K.1^15,-1*K.1^3,K.1^15,K.1^13,-1*K.1^15,K.1^11,K.1^15,K.1^15,-1*K.1,K.1^3,K.1,K.1^9,-1*K.1,K.1^3,K.1,K.1^15,K.1^3,K.1,-1*K.1^3,K.1^5,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^11,K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1^7,K.1^5,-1*K.1^11,K.1^7,K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^10,K.1^14,K.1^6,K.1^2,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^14,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^10,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^14,-1*K.1^2,K.1^14,-1*K.1^9,K.1^7,-1*K.1^15,K.1^9,-1*K.1^11,K.1^7,-1*K.1,-1*K.1^7,K.1^9,-1*K.1^5,-1*K.1^13,K.1^5,K.1^11,-1*K.1^5,K.1^5,K.1^5,-1*K.1^9,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^7,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^13,K.1,K.1^3,-1*K.1,K.1^5,K.1,K.1,-1*K.1^15,K.1^13,K.1^15,K.1^7,-1*K.1^15,K.1^13,K.1^15,K.1,K.1^13,K.1^15,-1*K.1^13,K.1^11,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1^5,K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^9,K.1^11,-1*K.1^5,K.1^9,K.1^15,-1*K.1^9,-1*K.1^15,K.1^9,-1*K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,K.1^12,-1*K.1^10,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^6,K.1^6,K.1^14,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^14,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^10,K.1^10,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^7,-1*K.1^9,K.1,-1*K.1^7,K.1^5,-1*K.1^9,K.1^15,K.1^9,-1*K.1^7,K.1^11,K.1^3,-1*K.1^11,-1*K.1^5,K.1^11,-1*K.1^11,-1*K.1^11,K.1^7,-1*K.1^13,-1*K.1^13,K.1^13,K.1^13,-1*K.1^13,-1*K.1^9,K.1^13,K.1^15,K.1^15,K.1^3,-1*K.1^15,-1*K.1^13,K.1^15,-1*K.1^11,-1*K.1^15,-1*K.1^15,K.1,-1*K.1^3,-1*K.1,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,-1*K.1^15,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^5,-1*K.1^3,K.1^9,K.1^3,K.1^5,K.1^5,K.1^11,-1*K.1^5,K.1^13,K.1^5,K.1^7,-1*K.1^5,K.1^11,-1*K.1^7,-1*K.1,K.1^7,K.1,-1*K.1^7,K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^4,K.1^20,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^18,K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^22,K.1^6,K.1^22,K.1^30,K.1^6,-1*K.1^18,-1*K.1^22,K.1^22,-1*K.1^30,K.1^10,K.1^26,K.1^10,-1*K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^26,K.1^14,K.1^30,K.1^14,K.1^2,-1*K.1^30,-1*K.1^2,-1*K.1^15,-1*K.1^17,K.1^25,K.1^31,K.1^29,-1*K.1^17,K.1^23,-1*K.1,K.1^31,-1*K.1^19,K.1^11,-1*K.1^3,K.1^13,-1*K.1^19,K.1^3,-1*K.1^3,K.1^15,-1*K.1^21,K.1^21,-1*K.1^5,K.1^5,-1*K.1^21,K.1^17,-1*K.1^5,K.1^23,-1*K.1^23,K.1^11,-1*K.1^7,K.1^21,-1*K.1^23,K.1^3,-1*K.1^7,K.1^7,-1*K.1^25,K.1^27,-1*K.1^9,K.1^17,-1*K.1^25,K.1^27,-1*K.1^9,K.1^7,-1*K.1^27,K.1^9,-1*K.1^11,K.1^13,-1*K.1^27,K.1,-1*K.1^11,K.1^29,-1*K.1^29,K.1^19,-1*K.1^13,K.1^5,-1*K.1^29,K.1^15,-1*K.1^13,K.1^19,-1*K.1^31,K.1^9,-1*K.1^15,K.1^25,-1*K.1^31,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,K.1^28,K.1^12,K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,K.1^20,K.1^22,-1*K.1^14,-1*K.1^30,-1*K.1^14,K.1^14,K.1^26,K.1^30,K.1^22,K.1^18,K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^14,K.1^10,-1*K.1^10,K.1^2,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^6,K.1^26,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^30,K.1^2,K.1^30,K.1^17,K.1^15,-1*K.1^7,-1*K.1,-1*K.1^3,K.1^15,-1*K.1^9,K.1^31,-1*K.1,K.1^13,-1*K.1^21,K.1^29,-1*K.1^19,K.1^13,-1*K.1^29,K.1^29,-1*K.1^17,K.1^11,-1*K.1^11,K.1^27,-1*K.1^27,K.1^11,-1*K.1^15,K.1^27,-1*K.1^9,K.1^9,-1*K.1^21,K.1^25,-1*K.1^11,K.1^9,-1*K.1^29,K.1^25,-1*K.1^25,K.1^7,-1*K.1^5,K.1^23,-1*K.1^15,K.1^7,-1*K.1^5,K.1^23,-1*K.1^25,K.1^5,-1*K.1^23,K.1^21,-1*K.1^19,K.1^5,-1*K.1^31,K.1^21,-1*K.1^3,K.1^3,-1*K.1^13,K.1^19,-1*K.1^27,K.1^3,-1*K.1^17,K.1^19,-1*K.1^13,K.1,-1*K.1^23,K.1^17,-1*K.1^7,K.1,-1*K.1^31,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^4,K.1^20,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^10,K.1^18,K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^22,K.1^6,K.1^22,K.1^30,K.1^6,-1*K.1^18,-1*K.1^22,K.1^22,-1*K.1^30,K.1^10,K.1^26,K.1^10,-1*K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^26,K.1^14,K.1^30,K.1^14,K.1^2,-1*K.1^30,-1*K.1^2,K.1^15,K.1^17,-1*K.1^25,-1*K.1^31,-1*K.1^29,K.1^17,-1*K.1^23,K.1,-1*K.1^31,K.1^19,-1*K.1^11,K.1^3,-1*K.1^13,K.1^19,-1*K.1^3,K.1^3,-1*K.1^15,K.1^21,-1*K.1^21,K.1^5,-1*K.1^5,K.1^21,-1*K.1^17,K.1^5,-1*K.1^23,K.1^23,-1*K.1^11,K.1^7,-1*K.1^21,K.1^23,-1*K.1^3,K.1^7,-1*K.1^7,K.1^25,-1*K.1^27,K.1^9,-1*K.1^17,K.1^25,-1*K.1^27,K.1^9,-1*K.1^7,K.1^27,-1*K.1^9,K.1^11,-1*K.1^13,K.1^27,-1*K.1,K.1^11,-1*K.1^29,K.1^29,-1*K.1^19,K.1^13,-1*K.1^5,K.1^29,-1*K.1^15,K.1^13,-1*K.1^19,K.1^31,-1*K.1^9,K.1^15,-1*K.1^25,K.1^31,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,K.1^28,K.1^12,K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,K.1^20,K.1^22,-1*K.1^14,-1*K.1^30,-1*K.1^14,K.1^14,K.1^26,K.1^30,K.1^22,K.1^18,K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^2,-1*K.1^26,K.1^14,K.1^10,-1*K.1^10,K.1^2,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^6,K.1^26,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^30,K.1^2,K.1^30,-1*K.1^17,-1*K.1^15,K.1^7,K.1,K.1^3,-1*K.1^15,K.1^9,-1*K.1^31,K.1,-1*K.1^13,K.1^21,-1*K.1^29,K.1^19,-1*K.1^13,K.1^29,-1*K.1^29,K.1^17,-1*K.1^11,K.1^11,-1*K.1^27,K.1^27,-1*K.1^11,K.1^15,-1*K.1^27,K.1^9,-1*K.1^9,K.1^21,-1*K.1^25,K.1^11,-1*K.1^9,K.1^29,-1*K.1^25,K.1^25,-1*K.1^7,K.1^5,-1*K.1^23,K.1^15,-1*K.1^7,K.1^5,-1*K.1^23,K.1^25,-1*K.1^5,K.1^23,-1*K.1^21,K.1^19,-1*K.1^5,K.1^31,-1*K.1^21,K.1^3,-1*K.1^3,K.1^13,-1*K.1^19,K.1^27,-1*K.1^3,K.1^17,-1*K.1^19,K.1^13,-1*K.1,K.1^23,-1*K.1^17,K.1^7,-1*K.1,K.1^31,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^4,K.1^20,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^18,-1*K.1^2,-1*K.1^18,K.1^18,K.1^6,K.1^2,K.1^10,K.1^14,K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^18,K.1^22,-1*K.1^22,K.1^30,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^26,K.1^6,K.1^14,K.1^26,-1*K.1^26,-1*K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^2,K.1^30,K.1^2,K.1^31,K.1,-1*K.1^9,K.1^15,-1*K.1^13,K.1,K.1^7,-1*K.1^17,K.1^15,-1*K.1^3,-1*K.1^27,K.1^19,K.1^29,-1*K.1^3,-1*K.1^19,K.1^19,-1*K.1^31,K.1^5,-1*K.1^5,-1*K.1^21,K.1^21,K.1^5,-1*K.1,-1*K.1^21,K.1^7,-1*K.1^7,-1*K.1^27,K.1^23,-1*K.1^5,-1*K.1^7,-1*K.1^19,K.1^23,-1*K.1^23,K.1^9,K.1^11,-1*K.1^25,-1*K.1,K.1^9,K.1^11,-1*K.1^25,-1*K.1^23,-1*K.1^11,K.1^25,K.1^27,K.1^29,-1*K.1^11,K.1^17,K.1^27,-1*K.1^13,K.1^13,K.1^3,-1*K.1^29,K.1^21,K.1^13,-1*K.1^31,-1*K.1^29,K.1^3,-1*K.1^15,K.1^25,K.1^31,-1*K.1^9,-1*K.1^15,K.1^17,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,K.1^28,K.1^12,K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,K.1^20,-1*K.1^22,K.1^14,K.1^30,K.1^14,-1*K.1^14,-1*K.1^26,-1*K.1^30,-1*K.1^22,-1*K.1^18,-1*K.1^10,K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^14,-1*K.1^10,K.1^10,-1*K.1^2,K.1^22,K.1^6,K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,K.1^2,K.1^18,K.1^30,-1*K.1^2,-1*K.1^30,-1*K.1,-1*K.1^31,K.1^23,-1*K.1^17,K.1^19,-1*K.1^31,-1*K.1^25,K.1^15,-1*K.1^17,K.1^29,K.1^5,-1*K.1^13,-1*K.1^3,K.1^29,K.1^13,-1*K.1^13,K.1,-1*K.1^27,K.1^27,K.1^11,-1*K.1^11,-1*K.1^27,K.1^31,K.1^11,-1*K.1^25,K.1^25,K.1^5,-1*K.1^9,K.1^27,K.1^25,K.1^13,-1*K.1^9,K.1^9,-1*K.1^23,-1*K.1^21,K.1^7,K.1^31,-1*K.1^23,-1*K.1^21,K.1^7,K.1^9,K.1^21,-1*K.1^7,-1*K.1^5,-1*K.1^3,K.1^21,-1*K.1^15,-1*K.1^5,K.1^19,-1*K.1^19,-1*K.1^29,K.1^3,-1*K.1^11,-1*K.1^19,K.1,K.1^3,-1*K.1^29,K.1^17,-1*K.1^7,-1*K.1,K.1^23,K.1^17,-1*K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^4,K.1^20,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^18,-1*K.1^2,-1*K.1^18,K.1^18,K.1^6,K.1^2,K.1^10,K.1^14,K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^18,K.1^22,-1*K.1^22,K.1^30,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^26,K.1^6,K.1^14,K.1^26,-1*K.1^26,-1*K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^2,K.1^30,K.1^2,-1*K.1^31,-1*K.1,K.1^9,-1*K.1^15,K.1^13,-1*K.1,-1*K.1^7,K.1^17,-1*K.1^15,K.1^3,K.1^27,-1*K.1^19,-1*K.1^29,K.1^3,K.1^19,-1*K.1^19,K.1^31,-1*K.1^5,K.1^5,K.1^21,-1*K.1^21,-1*K.1^5,K.1,K.1^21,-1*K.1^7,K.1^7,K.1^27,-1*K.1^23,K.1^5,K.1^7,K.1^19,-1*K.1^23,K.1^23,-1*K.1^9,-1*K.1^11,K.1^25,K.1,-1*K.1^9,-1*K.1^11,K.1^25,K.1^23,K.1^11,-1*K.1^25,-1*K.1^27,-1*K.1^29,K.1^11,-1*K.1^17,-1*K.1^27,K.1^13,-1*K.1^13,-1*K.1^3,K.1^29,-1*K.1^21,-1*K.1^13,K.1^31,K.1^29,-1*K.1^3,K.1^15,-1*K.1^25,-1*K.1^31,K.1^9,K.1^15,-1*K.1^17,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,K.1^28,K.1^12,K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,K.1^20,-1*K.1^22,K.1^14,K.1^30,K.1^14,-1*K.1^14,-1*K.1^26,-1*K.1^30,-1*K.1^22,-1*K.1^18,-1*K.1^10,K.1^26,K.1^10,K.1^2,K.1^26,-1*K.1^14,-1*K.1^10,K.1^10,-1*K.1^2,K.1^22,K.1^6,K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,K.1^2,K.1^18,K.1^30,-1*K.1^2,-1*K.1^30,K.1,K.1^31,-1*K.1^23,K.1^17,-1*K.1^19,K.1^31,K.1^25,-1*K.1^15,K.1^17,-1*K.1^29,-1*K.1^5,K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,K.1^13,-1*K.1,K.1^27,-1*K.1^27,-1*K.1^11,K.1^11,K.1^27,-1*K.1^31,-1*K.1^11,K.1^25,-1*K.1^25,-1*K.1^5,K.1^9,-1*K.1^27,-1*K.1^25,-1*K.1^13,K.1^9,-1*K.1^9,K.1^23,K.1^21,-1*K.1^7,-1*K.1^31,K.1^23,K.1^21,-1*K.1^7,-1*K.1^9,-1*K.1^21,K.1^7,K.1^5,K.1^3,-1*K.1^21,K.1^15,K.1^5,-1*K.1^19,K.1^19,K.1^29,-1*K.1^3,K.1^11,K.1^19,-1*K.1,-1*K.1^3,K.1^29,-1*K.1^17,K.1^7,K.1,-1*K.1^23,-1*K.1^17,K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,K.1^4,K.1^20,K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,K.1^12,K.1^26,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^22,K.1^18,K.1^26,-1*K.1^30,K.1^6,K.1^22,-1*K.1^6,-1*K.1^14,K.1^22,-1*K.1^2,K.1^6,-1*K.1^6,K.1^14,-1*K.1^26,K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^30,-1*K.1^10,K.1^10,K.1^30,-1*K.1^14,K.1^30,-1*K.1^18,K.1^14,K.1^18,K.1^23,K.1^9,-1*K.1^17,K.1^7,K.1^21,K.1^9,-1*K.1^31,-1*K.1^25,K.1^7,-1*K.1^27,K.1^19,-1*K.1^11,K.1^5,-1*K.1^27,K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^13,K.1^13,K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^9,K.1^29,-1*K.1^31,K.1^31,K.1^19,K.1^15,K.1^13,K.1^31,K.1^11,K.1^15,-1*K.1^15,K.1^17,-1*K.1^3,K.1,-1*K.1^9,K.1^17,-1*K.1^3,K.1,-1*K.1^15,K.1^3,-1*K.1,-1*K.1^19,K.1^5,K.1^3,K.1^25,-1*K.1^19,K.1^21,-1*K.1^21,K.1^27,-1*K.1^5,-1*K.1^29,-1*K.1^21,-1*K.1^23,-1*K.1^5,K.1^27,-1*K.1^7,-1*K.1,K.1^23,-1*K.1^17,-1*K.1^7,K.1^25,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^28,K.1^12,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^6,-1*K.1^30,K.1^14,-1*K.1^30,K.1^30,K.1^10,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,K.1^18,-1*K.1^10,K.1^30,-1*K.1^26,K.1^26,-1*K.1^18,K.1^6,-1*K.1^22,K.1^6,K.1^22,K.1^10,K.1^2,K.1^22,-1*K.1^22,-1*K.1^2,K.1^18,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^9,-1*K.1^23,K.1^15,-1*K.1^25,-1*K.1^11,-1*K.1^23,K.1,K.1^7,-1*K.1^25,K.1^5,-1*K.1^13,K.1^21,-1*K.1^27,K.1^5,-1*K.1^21,K.1^21,K.1^9,K.1^19,-1*K.1^19,-1*K.1^3,K.1^3,K.1^19,K.1^23,-1*K.1^3,K.1,-1*K.1,-1*K.1^13,-1*K.1^17,-1*K.1^19,-1*K.1,-1*K.1^21,-1*K.1^17,K.1^17,-1*K.1^15,K.1^29,-1*K.1^31,K.1^23,-1*K.1^15,K.1^29,-1*K.1^31,K.1^17,-1*K.1^29,K.1^31,K.1^13,-1*K.1^27,-1*K.1^29,-1*K.1^7,K.1^13,-1*K.1^11,K.1^11,-1*K.1^5,K.1^27,K.1^3,K.1^11,K.1^9,K.1^27,-1*K.1^5,K.1^25,K.1^31,-1*K.1^9,K.1^15,K.1^25,-1*K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,K.1^4,K.1^20,K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,K.1^12,K.1^26,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^22,K.1^18,K.1^26,-1*K.1^30,K.1^6,K.1^22,-1*K.1^6,-1*K.1^14,K.1^22,-1*K.1^2,K.1^6,-1*K.1^6,K.1^14,-1*K.1^26,K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^30,-1*K.1^10,K.1^10,K.1^30,-1*K.1^14,K.1^30,-1*K.1^18,K.1^14,K.1^18,-1*K.1^23,-1*K.1^9,K.1^17,-1*K.1^7,-1*K.1^21,-1*K.1^9,K.1^31,K.1^25,-1*K.1^7,K.1^27,-1*K.1^19,K.1^11,-1*K.1^5,K.1^27,-1*K.1^11,K.1^11,K.1^23,K.1^13,-1*K.1^13,-1*K.1^29,K.1^29,K.1^13,K.1^9,-1*K.1^29,K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^15,-1*K.1^13,-1*K.1^31,-1*K.1^11,-1*K.1^15,K.1^15,-1*K.1^17,K.1^3,-1*K.1,K.1^9,-1*K.1^17,K.1^3,-1*K.1,K.1^15,-1*K.1^3,K.1,K.1^19,-1*K.1^5,-1*K.1^3,-1*K.1^25,K.1^19,-1*K.1^21,K.1^21,-1*K.1^27,K.1^5,K.1^29,K.1^21,K.1^23,K.1^5,-1*K.1^27,K.1^7,K.1,-1*K.1^23,K.1^17,K.1^7,-1*K.1^25,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^28,K.1^12,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^6,-1*K.1^30,K.1^14,-1*K.1^30,K.1^30,K.1^10,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^26,-1*K.1^10,K.1^26,K.1^18,-1*K.1^10,K.1^30,-1*K.1^26,K.1^26,-1*K.1^18,K.1^6,-1*K.1^22,K.1^6,K.1^22,K.1^10,K.1^2,K.1^22,-1*K.1^22,-1*K.1^2,K.1^18,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,K.1^9,K.1^23,-1*K.1^15,K.1^25,K.1^11,K.1^23,-1*K.1,-1*K.1^7,K.1^25,-1*K.1^5,K.1^13,-1*K.1^21,K.1^27,-1*K.1^5,K.1^21,-1*K.1^21,-1*K.1^9,-1*K.1^19,K.1^19,K.1^3,-1*K.1^3,-1*K.1^19,-1*K.1^23,K.1^3,-1*K.1,K.1,K.1^13,K.1^17,K.1^19,K.1,K.1^21,K.1^17,-1*K.1^17,K.1^15,-1*K.1^29,K.1^31,-1*K.1^23,K.1^15,-1*K.1^29,K.1^31,-1*K.1^17,K.1^29,-1*K.1^31,-1*K.1^13,K.1^27,K.1^29,K.1^7,-1*K.1^13,K.1^11,-1*K.1^11,K.1^5,-1*K.1^27,-1*K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^27,K.1^5,-1*K.1^25,-1*K.1^31,K.1^9,-1*K.1^15,-1*K.1^25,K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,K.1^4,K.1^20,K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,K.1^12,-1*K.1^26,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^22,-1*K.1^18,-1*K.1^26,K.1^30,-1*K.1^6,-1*K.1^22,K.1^6,K.1^14,-1*K.1^22,K.1^2,-1*K.1^6,K.1^6,-1*K.1^14,K.1^26,-1*K.1^10,K.1^26,K.1^10,K.1^22,K.1^30,K.1^10,-1*K.1^10,-1*K.1^30,K.1^14,-1*K.1^30,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^7,-1*K.1^25,-1*K.1,K.1^23,K.1^5,-1*K.1^25,K.1^15,-1*K.1^9,K.1^23,K.1^11,-1*K.1^3,-1*K.1^27,-1*K.1^21,K.1^11,K.1^27,-1*K.1^27,K.1^7,K.1^29,-1*K.1^29,K.1^13,-1*K.1^13,K.1^29,K.1^25,K.1^13,K.1^15,-1*K.1^15,-1*K.1^3,K.1^31,-1*K.1^29,-1*K.1^15,K.1^27,K.1^31,-1*K.1^31,K.1,-1*K.1^19,-1*K.1^17,K.1^25,K.1,-1*K.1^19,-1*K.1^17,-1*K.1^31,K.1^19,K.1^17,K.1^3,-1*K.1^21,K.1^19,K.1^9,K.1^3,K.1^5,-1*K.1^5,-1*K.1^11,K.1^21,-1*K.1^13,-1*K.1^5,K.1^7,K.1^21,-1*K.1^11,-1*K.1^23,K.1^17,-1*K.1^7,-1*K.1,-1*K.1^23,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^28,K.1^12,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,K.1^6,K.1^30,-1*K.1^14,K.1^30,-1*K.1^30,-1*K.1^10,K.1^14,K.1^6,-1*K.1^2,K.1^26,K.1^10,-1*K.1^26,-1*K.1^18,K.1^10,-1*K.1^30,K.1^26,-1*K.1^26,K.1^18,-1*K.1^6,K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^22,K.1^22,K.1^2,-1*K.1^18,K.1^2,-1*K.1^14,K.1^18,K.1^14,K.1^25,K.1^7,K.1^31,-1*K.1^9,-1*K.1^27,K.1^7,-1*K.1^17,K.1^23,-1*K.1^9,-1*K.1^21,K.1^29,K.1^5,K.1^11,-1*K.1^21,-1*K.1^5,K.1^5,-1*K.1^25,-1*K.1^3,K.1^3,-1*K.1^19,K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^19,-1*K.1^17,K.1^17,K.1^29,-1*K.1,K.1^3,K.1^17,-1*K.1^5,-1*K.1,K.1,-1*K.1^31,K.1^13,K.1^15,-1*K.1^7,-1*K.1^31,K.1^13,K.1^15,K.1,-1*K.1^13,-1*K.1^15,-1*K.1^29,K.1^11,-1*K.1^13,-1*K.1^23,-1*K.1^29,-1*K.1^27,K.1^27,K.1^21,-1*K.1^11,K.1^19,K.1^27,-1*K.1^25,-1*K.1^11,K.1^21,K.1^9,-1*K.1^15,K.1^25,K.1^31,K.1^9,-1*K.1^23,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^24,K.1^4,K.1^20,K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,K.1^12,-1*K.1^26,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^22,-1*K.1^18,-1*K.1^26,K.1^30,-1*K.1^6,-1*K.1^22,K.1^6,K.1^14,-1*K.1^22,K.1^2,-1*K.1^6,K.1^6,-1*K.1^14,K.1^26,-1*K.1^10,K.1^26,K.1^10,K.1^22,K.1^30,K.1^10,-1*K.1^10,-1*K.1^30,K.1^14,-1*K.1^30,K.1^18,-1*K.1^14,-1*K.1^18,K.1^7,K.1^25,K.1,-1*K.1^23,-1*K.1^5,K.1^25,-1*K.1^15,K.1^9,-1*K.1^23,-1*K.1^11,K.1^3,K.1^27,K.1^21,-1*K.1^11,-1*K.1^27,K.1^27,-1*K.1^7,-1*K.1^29,K.1^29,-1*K.1^13,K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^13,-1*K.1^15,K.1^15,K.1^3,-1*K.1^31,K.1^29,K.1^15,-1*K.1^27,-1*K.1^31,K.1^31,-1*K.1,K.1^19,K.1^17,-1*K.1^25,-1*K.1,K.1^19,K.1^17,K.1^31,-1*K.1^19,-1*K.1^17,-1*K.1^3,K.1^21,-1*K.1^19,-1*K.1^9,-1*K.1^3,-1*K.1^5,K.1^5,K.1^11,-1*K.1^21,K.1^13,K.1^5,-1*K.1^7,-1*K.1^21,K.1^11,K.1^23,-1*K.1^17,K.1^7,K.1,K.1^23,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,K.1^24,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^28,K.1^12,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,K.1^6,K.1^30,-1*K.1^14,K.1^30,-1*K.1^30,-1*K.1^10,K.1^14,K.1^6,-1*K.1^2,K.1^26,K.1^10,-1*K.1^26,-1*K.1^18,K.1^10,-1*K.1^30,K.1^26,-1*K.1^26,K.1^18,-1*K.1^6,K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^22,K.1^22,K.1^2,-1*K.1^18,K.1^2,-1*K.1^14,K.1^18,K.1^14,-1*K.1^25,-1*K.1^7,-1*K.1^31,K.1^9,K.1^27,-1*K.1^7,K.1^17,-1*K.1^23,K.1^9,K.1^21,-1*K.1^29,-1*K.1^5,-1*K.1^11,K.1^21,K.1^5,-1*K.1^5,K.1^25,K.1^3,-1*K.1^3,K.1^19,-1*K.1^19,K.1^3,K.1^7,K.1^19,K.1^17,-1*K.1^17,-1*K.1^29,K.1,-1*K.1^3,-1*K.1^17,K.1^5,K.1,-1*K.1,K.1^31,-1*K.1^13,-1*K.1^15,K.1^7,K.1^31,-1*K.1^13,-1*K.1^15,-1*K.1,K.1^13,K.1^15,K.1^29,-1*K.1^11,K.1^13,K.1^23,K.1^29,K.1^27,-1*K.1^27,-1*K.1^21,K.1^11,-1*K.1^19,-1*K.1^27,K.1^25,K.1^11,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^25,-1*K.1^31,-1*K.1^9,K.1^23,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,K.1^20,-1*K.1^4,K.1^12,-1*K.1^20,K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,-1*K.1^28,-1*K.1^2,-1*K.1^10,K.1^26,-1*K.1^10,K.1^10,-1*K.1^14,-1*K.1^26,-1*K.1^2,K.1^22,-1*K.1^30,K.1^14,K.1^30,K.1^6,K.1^14,K.1^10,-1*K.1^30,K.1^30,-1*K.1^6,K.1^2,K.1^18,K.1^2,-1*K.1^18,-1*K.1^14,K.1^22,-1*K.1^18,K.1^18,-1*K.1^22,K.1^6,-1*K.1^22,K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^3,-1*K.1^29,K.1^5,K.1^19,-1*K.1^25,-1*K.1^29,-1*K.1^11,-1*K.1^13,K.1^19,K.1^23,K.1^15,K.1^7,-1*K.1^9,K.1^23,-1*K.1^7,K.1^7,K.1^3,-1*K.1^17,K.1^17,-1*K.1,K.1,-1*K.1^17,K.1^29,-1*K.1,-1*K.1^11,K.1^11,K.1^15,-1*K.1^27,K.1^17,K.1^11,-1*K.1^7,-1*K.1^27,K.1^27,-1*K.1^5,K.1^31,K.1^21,K.1^29,-1*K.1^5,K.1^31,K.1^21,K.1^27,-1*K.1^31,-1*K.1^21,-1*K.1^15,-1*K.1^9,-1*K.1^31,K.1^13,-1*K.1^15,-1*K.1^25,K.1^25,-1*K.1^23,K.1^9,K.1,K.1^25,K.1^3,K.1^9,-1*K.1^23,-1*K.1^19,-1*K.1^21,-1*K.1^3,K.1^5,-1*K.1^19,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,-1*K.1^12,K.1^28,-1*K.1^20,K.1^12,-1*K.1^28,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,K.1^4,K.1^30,K.1^22,-1*K.1^6,K.1^22,-1*K.1^22,K.1^18,K.1^6,K.1^30,-1*K.1^10,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^2,-1*K.1^2,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^30,K.1^14,K.1^18,-1*K.1^10,K.1^14,-1*K.1^14,K.1^10,-1*K.1^26,K.1^10,-1*K.1^6,K.1^26,K.1^6,K.1^29,K.1^3,-1*K.1^27,-1*K.1^13,K.1^7,K.1^3,K.1^21,K.1^19,-1*K.1^13,-1*K.1^9,-1*K.1^17,-1*K.1^25,K.1^23,-1*K.1^9,K.1^25,-1*K.1^25,-1*K.1^29,K.1^15,-1*K.1^15,K.1^31,-1*K.1^31,K.1^15,-1*K.1^3,K.1^31,K.1^21,-1*K.1^21,-1*K.1^17,K.1^5,-1*K.1^15,-1*K.1^21,K.1^25,K.1^5,-1*K.1^5,K.1^27,-1*K.1,-1*K.1^11,-1*K.1^3,K.1^27,-1*K.1,-1*K.1^11,-1*K.1^5,K.1,K.1^11,K.1^17,K.1^23,K.1,-1*K.1^19,K.1^17,K.1^7,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^31,-1*K.1^7,-1*K.1^29,-1*K.1^23,K.1^9,K.1^13,K.1^11,K.1^29,-1*K.1^27,K.1^13,-1*K.1^19,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,K.1^20,-1*K.1^4,K.1^12,-1*K.1^20,K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,-1*K.1^28,-1*K.1^2,-1*K.1^10,K.1^26,-1*K.1^10,K.1^10,-1*K.1^14,-1*K.1^26,-1*K.1^2,K.1^22,-1*K.1^30,K.1^14,K.1^30,K.1^6,K.1^14,K.1^10,-1*K.1^30,K.1^30,-1*K.1^6,K.1^2,K.1^18,K.1^2,-1*K.1^18,-1*K.1^14,K.1^22,-1*K.1^18,K.1^18,-1*K.1^22,K.1^6,-1*K.1^22,K.1^26,-1*K.1^6,-1*K.1^26,K.1^3,K.1^29,-1*K.1^5,-1*K.1^19,K.1^25,K.1^29,K.1^11,K.1^13,-1*K.1^19,-1*K.1^23,-1*K.1^15,-1*K.1^7,K.1^9,-1*K.1^23,K.1^7,-1*K.1^7,-1*K.1^3,K.1^17,-1*K.1^17,K.1,-1*K.1,K.1^17,-1*K.1^29,K.1,K.1^11,-1*K.1^11,-1*K.1^15,K.1^27,-1*K.1^17,-1*K.1^11,K.1^7,K.1^27,-1*K.1^27,K.1^5,-1*K.1^31,-1*K.1^21,-1*K.1^29,K.1^5,-1*K.1^31,-1*K.1^21,-1*K.1^27,K.1^31,K.1^21,K.1^15,K.1^9,K.1^31,-1*K.1^13,K.1^15,K.1^25,-1*K.1^25,K.1^23,-1*K.1^9,-1*K.1,-1*K.1^25,-1*K.1^3,-1*K.1^9,K.1^23,K.1^19,K.1^21,K.1^3,-1*K.1^5,K.1^19,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,-1*K.1^12,K.1^28,-1*K.1^20,K.1^12,-1*K.1^28,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,K.1^4,K.1^30,K.1^22,-1*K.1^6,K.1^22,-1*K.1^22,K.1^18,K.1^6,K.1^30,-1*K.1^10,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^2,-1*K.1^2,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^30,K.1^14,K.1^18,-1*K.1^10,K.1^14,-1*K.1^14,K.1^10,-1*K.1^26,K.1^10,-1*K.1^6,K.1^26,K.1^6,-1*K.1^29,-1*K.1^3,K.1^27,K.1^13,-1*K.1^7,-1*K.1^3,-1*K.1^21,-1*K.1^19,K.1^13,K.1^9,K.1^17,K.1^25,-1*K.1^23,K.1^9,-1*K.1^25,K.1^25,K.1^29,-1*K.1^15,K.1^15,-1*K.1^31,K.1^31,-1*K.1^15,K.1^3,-1*K.1^31,-1*K.1^21,K.1^21,K.1^17,-1*K.1^5,K.1^15,K.1^21,-1*K.1^25,-1*K.1^5,K.1^5,-1*K.1^27,K.1,K.1^11,K.1^3,-1*K.1^27,K.1,K.1^11,K.1^5,-1*K.1,-1*K.1^11,-1*K.1^17,-1*K.1^23,-1*K.1,K.1^19,-1*K.1^17,-1*K.1^7,K.1^7,-1*K.1^9,K.1^23,K.1^31,K.1^7,K.1^29,K.1^23,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^29,K.1^27,-1*K.1^13,K.1^19,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,K.1^20,-1*K.1^4,K.1^12,-1*K.1^20,K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,-1*K.1^28,K.1^2,K.1^10,-1*K.1^26,K.1^10,-1*K.1^10,K.1^14,K.1^26,K.1^2,-1*K.1^22,K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^30,-1*K.1^30,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^18,K.1^14,-1*K.1^22,K.1^18,-1*K.1^18,K.1^22,-1*K.1^6,K.1^22,-1*K.1^26,K.1^6,K.1^26,K.1^19,K.1^13,K.1^21,K.1^3,K.1^9,K.1^13,K.1^27,-1*K.1^29,K.1^3,K.1^7,-1*K.1^31,-1*K.1^23,-1*K.1^25,K.1^7,K.1^23,-1*K.1^23,-1*K.1^19,K.1,-1*K.1,-1*K.1^17,K.1^17,K.1,-1*K.1^13,-1*K.1^17,K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^11,-1*K.1,-1*K.1^27,K.1^23,-1*K.1^11,K.1^11,-1*K.1^21,K.1^15,-1*K.1^5,-1*K.1^13,-1*K.1^21,K.1^15,-1*K.1^5,K.1^11,-1*K.1^15,K.1^5,K.1^31,-1*K.1^25,-1*K.1^15,K.1^29,K.1^31,K.1^9,-1*K.1^9,-1*K.1^7,K.1^25,K.1^17,-1*K.1^9,-1*K.1^19,K.1^25,-1*K.1^7,-1*K.1^3,K.1^5,K.1^19,K.1^21,-1*K.1^3,K.1^29,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,-1*K.1^12,K.1^28,-1*K.1^20,K.1^12,-1*K.1^28,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,K.1^4,-1*K.1^30,-1*K.1^22,K.1^6,-1*K.1^22,K.1^22,-1*K.1^18,-1*K.1^6,-1*K.1^30,K.1^10,-1*K.1^2,K.1^18,K.1^2,K.1^26,K.1^18,K.1^22,-1*K.1^2,K.1^2,-1*K.1^26,K.1^30,K.1^14,K.1^30,-1*K.1^14,-1*K.1^18,K.1^10,-1*K.1^14,K.1^14,-1*K.1^10,K.1^26,-1*K.1^10,K.1^6,-1*K.1^26,-1*K.1^6,-1*K.1^13,-1*K.1^19,-1*K.1^11,-1*K.1^29,-1*K.1^23,-1*K.1^19,-1*K.1^5,K.1^3,-1*K.1^29,-1*K.1^25,K.1,K.1^9,K.1^7,-1*K.1^25,-1*K.1^9,K.1^9,K.1^13,-1*K.1^31,K.1^31,K.1^15,-1*K.1^15,-1*K.1^31,K.1^19,K.1^15,-1*K.1^5,K.1^5,K.1,K.1^21,K.1^31,K.1^5,-1*K.1^9,K.1^21,-1*K.1^21,K.1^11,-1*K.1^17,K.1^27,K.1^19,K.1^11,-1*K.1^17,K.1^27,-1*K.1^21,K.1^17,-1*K.1^27,-1*K.1,K.1^7,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^23,K.1^23,K.1^25,-1*K.1^7,-1*K.1^15,K.1^23,K.1^13,-1*K.1^7,K.1^25,K.1^29,-1*K.1^27,-1*K.1^13,-1*K.1^11,K.1^29,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,K.1^20,-1*K.1^4,K.1^12,-1*K.1^20,K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,-1*K.1^28,K.1^2,K.1^10,-1*K.1^26,K.1^10,-1*K.1^10,K.1^14,K.1^26,K.1^2,-1*K.1^22,K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^6,-1*K.1^14,-1*K.1^10,K.1^30,-1*K.1^30,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^18,K.1^14,-1*K.1^22,K.1^18,-1*K.1^18,K.1^22,-1*K.1^6,K.1^22,-1*K.1^26,K.1^6,K.1^26,-1*K.1^19,-1*K.1^13,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^27,K.1^29,-1*K.1^3,-1*K.1^7,K.1^31,K.1^23,K.1^25,-1*K.1^7,-1*K.1^23,K.1^23,K.1^19,-1*K.1,K.1,K.1^17,-1*K.1^17,-1*K.1,K.1^13,K.1^17,-1*K.1^27,K.1^27,K.1^31,K.1^11,K.1,K.1^27,-1*K.1^23,K.1^11,-1*K.1^11,K.1^21,-1*K.1^15,K.1^5,K.1^13,K.1^21,-1*K.1^15,K.1^5,-1*K.1^11,K.1^15,-1*K.1^5,-1*K.1^31,K.1^25,K.1^15,-1*K.1^29,-1*K.1^31,-1*K.1^9,K.1^9,K.1^7,-1*K.1^25,-1*K.1^17,K.1^9,K.1^19,-1*K.1^25,K.1^7,K.1^3,-1*K.1^5,-1*K.1^19,-1*K.1^21,K.1^3,-1*K.1^29,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,-1*K.1^12,K.1^28,-1*K.1^20,K.1^12,-1*K.1^28,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,K.1^4,-1*K.1^30,-1*K.1^22,K.1^6,-1*K.1^22,K.1^22,-1*K.1^18,-1*K.1^6,-1*K.1^30,K.1^10,-1*K.1^2,K.1^18,K.1^2,K.1^26,K.1^18,K.1^22,-1*K.1^2,K.1^2,-1*K.1^26,K.1^30,K.1^14,K.1^30,-1*K.1^14,-1*K.1^18,K.1^10,-1*K.1^14,K.1^14,-1*K.1^10,K.1^26,-1*K.1^10,K.1^6,-1*K.1^26,-1*K.1^6,K.1^13,K.1^19,K.1^11,K.1^29,K.1^23,K.1^19,K.1^5,-1*K.1^3,K.1^29,K.1^25,-1*K.1,-1*K.1^9,-1*K.1^7,K.1^25,K.1^9,-1*K.1^9,-1*K.1^13,K.1^31,-1*K.1^31,-1*K.1^15,K.1^15,K.1^31,-1*K.1^19,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^21,-1*K.1^31,-1*K.1^5,K.1^9,-1*K.1^21,K.1^21,-1*K.1^11,K.1^17,-1*K.1^27,-1*K.1^19,-1*K.1^11,K.1^17,-1*K.1^27,K.1^21,-1*K.1^17,K.1^27,K.1,-1*K.1^7,-1*K.1^17,K.1^3,K.1,K.1^23,-1*K.1^23,-1*K.1^25,K.1^7,K.1^15,-1*K.1^23,-1*K.1^13,K.1^7,-1*K.1^25,-1*K.1^29,K.1^27,K.1^13,K.1^11,-1*K.1^29,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,-1*K.1^20,K.1^4,-1*K.1^12,K.1^20,-1*K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,K.1^28,K.1^18,K.1^26,K.1^10,K.1^26,-1*K.1^26,-1*K.1^30,-1*K.1^10,K.1^18,-1*K.1^6,K.1^14,K.1^30,-1*K.1^14,K.1^22,K.1^30,-1*K.1^26,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^22,K.1^6,K.1^10,-1*K.1^22,-1*K.1^10,-1*K.1^11,-1*K.1^21,-1*K.1^29,K.1^27,K.1^17,-1*K.1^21,-1*K.1^19,-1*K.1^5,K.1^27,-1*K.1^31,-1*K.1^23,-1*K.1^15,K.1,-1*K.1^31,K.1^15,-1*K.1^15,K.1^11,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^9,K.1^21,-1*K.1^25,-1*K.1^19,K.1^19,-1*K.1^23,K.1^3,-1*K.1^9,K.1^19,K.1^15,K.1^3,-1*K.1^3,K.1^29,K.1^7,K.1^13,K.1^21,K.1^29,K.1^7,K.1^13,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^23,K.1,-1*K.1^7,K.1^5,K.1^23,K.1^17,-1*K.1^17,K.1^31,-1*K.1,K.1^25,-1*K.1^17,K.1^11,-1*K.1,K.1^31,-1*K.1^27,-1*K.1^13,-1*K.1^11,-1*K.1^29,-1*K.1^27,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,K.1^12,-1*K.1^28,K.1^20,-1*K.1^12,K.1^28,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^22,-1*K.1^6,K.1^6,K.1^2,K.1^22,-1*K.1^14,K.1^26,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^18,K.1^18,K.1^10,K.1^14,-1*K.1^30,K.1^14,K.1^30,K.1^2,K.1^26,K.1^30,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^10,K.1^22,K.1^21,K.1^11,K.1^3,-1*K.1^5,-1*K.1^15,K.1^11,K.1^13,K.1^27,-1*K.1^5,K.1,K.1^9,K.1^17,-1*K.1^31,K.1,-1*K.1^17,K.1^17,-1*K.1^21,-1*K.1^23,K.1^23,K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^11,K.1^7,K.1^13,-1*K.1^13,K.1^9,-1*K.1^29,K.1^23,-1*K.1^13,-1*K.1^17,-1*K.1^29,K.1^29,-1*K.1^3,-1*K.1^25,-1*K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^25,-1*K.1^19,K.1^29,K.1^25,K.1^19,-1*K.1^9,-1*K.1^31,K.1^25,-1*K.1^27,-1*K.1^9,-1*K.1^15,K.1^15,-1*K.1,K.1^31,-1*K.1^7,K.1^15,-1*K.1^21,K.1^31,-1*K.1,K.1^5,K.1^19,K.1^21,K.1^3,K.1^5,-1*K.1^27,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,-1*K.1^20,K.1^4,-1*K.1^12,K.1^20,-1*K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,K.1^28,K.1^18,K.1^26,K.1^10,K.1^26,-1*K.1^26,-1*K.1^30,-1*K.1^10,K.1^18,-1*K.1^6,K.1^14,K.1^30,-1*K.1^14,K.1^22,K.1^30,-1*K.1^26,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,K.1^22,K.1^6,K.1^10,-1*K.1^22,-1*K.1^10,K.1^11,K.1^21,K.1^29,-1*K.1^27,-1*K.1^17,K.1^21,K.1^19,K.1^5,-1*K.1^27,K.1^31,K.1^23,K.1^15,-1*K.1,K.1^31,-1*K.1^15,K.1^15,-1*K.1^11,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^21,K.1^25,K.1^19,-1*K.1^19,K.1^23,-1*K.1^3,K.1^9,-1*K.1^19,-1*K.1^15,-1*K.1^3,K.1^3,-1*K.1^29,-1*K.1^7,-1*K.1^13,-1*K.1^21,-1*K.1^29,-1*K.1^7,-1*K.1^13,K.1^3,K.1^7,K.1^13,-1*K.1^23,-1*K.1,K.1^7,-1*K.1^5,-1*K.1^23,-1*K.1^17,K.1^17,-1*K.1^31,K.1,-1*K.1^25,K.1^17,-1*K.1^11,K.1,-1*K.1^31,K.1^27,K.1^13,K.1^11,K.1^29,K.1^27,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,K.1^12,-1*K.1^28,K.1^20,-1*K.1^12,K.1^28,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^22,-1*K.1^6,K.1^6,K.1^2,K.1^22,-1*K.1^14,K.1^26,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^18,K.1^18,K.1^10,K.1^14,-1*K.1^30,K.1^14,K.1^30,K.1^2,K.1^26,K.1^30,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^10,K.1^22,-1*K.1^21,-1*K.1^11,-1*K.1^3,K.1^5,K.1^15,-1*K.1^11,-1*K.1^13,-1*K.1^27,K.1^5,-1*K.1,-1*K.1^9,-1*K.1^17,K.1^31,-1*K.1,K.1^17,-1*K.1^17,K.1^21,K.1^23,-1*K.1^23,-1*K.1^7,K.1^7,K.1^23,K.1^11,-1*K.1^7,-1*K.1^13,K.1^13,-1*K.1^9,K.1^29,-1*K.1^23,K.1^13,K.1^17,K.1^29,-1*K.1^29,K.1^3,K.1^25,K.1^19,K.1^11,K.1^3,K.1^25,K.1^19,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^9,K.1^31,-1*K.1^25,K.1^27,K.1^9,K.1^15,-1*K.1^15,K.1,-1*K.1^31,K.1^7,-1*K.1^15,K.1^21,-1*K.1^31,K.1,-1*K.1^5,-1*K.1^19,-1*K.1^21,-1*K.1^3,-1*K.1^5,K.1^27,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,-1*K.1^20,K.1^4,-1*K.1^12,K.1^20,-1*K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,K.1^28,-1*K.1^18,-1*K.1^26,-1*K.1^10,-1*K.1^26,K.1^26,K.1^30,K.1^10,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^30,K.1^14,-1*K.1^22,-1*K.1^30,K.1^26,-1*K.1^14,K.1^14,K.1^22,K.1^18,-1*K.1^2,K.1^18,K.1^2,K.1^30,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^10,K.1^22,K.1^10,K.1^27,K.1^5,K.1^13,K.1^11,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^21,K.1^11,-1*K.1^15,-1*K.1^7,K.1^31,K.1^17,-1*K.1^15,-1*K.1^31,K.1^31,-1*K.1^27,K.1^25,-1*K.1^25,K.1^9,-1*K.1^9,K.1^25,-1*K.1^5,K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^19,-1*K.1^25,K.1^3,-1*K.1^31,-1*K.1^19,K.1^19,-1*K.1^13,-1*K.1^23,K.1^29,-1*K.1^5,-1*K.1^13,-1*K.1^23,K.1^29,K.1^19,K.1^23,-1*K.1^29,K.1^7,K.1^17,K.1^23,K.1^21,K.1^7,-1*K.1,K.1,K.1^15,-1*K.1^17,-1*K.1^9,K.1,-1*K.1^27,-1*K.1^17,K.1^15,-1*K.1^11,-1*K.1^29,K.1^27,K.1^13,-1*K.1^11,K.1^21,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,K.1^12,-1*K.1^28,K.1^20,-1*K.1^12,K.1^28,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,-1*K.1^4,K.1^14,K.1^6,K.1^22,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^22,K.1^14,-1*K.1^26,K.1^18,K.1^2,-1*K.1^18,K.1^10,K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^30,K.1^30,K.1^26,K.1^10,K.1^26,K.1^22,-1*K.1^10,-1*K.1^22,-1*K.1^5,-1*K.1^27,-1*K.1^19,-1*K.1^21,K.1^31,-1*K.1^27,K.1^29,K.1^11,-1*K.1^21,K.1^17,K.1^25,-1*K.1,-1*K.1^15,K.1^17,K.1,-1*K.1,K.1^5,-1*K.1^7,K.1^7,-1*K.1^23,K.1^23,-1*K.1^7,K.1^27,-1*K.1^23,K.1^29,-1*K.1^29,K.1^25,K.1^13,K.1^7,-1*K.1^29,K.1,K.1^13,-1*K.1^13,K.1^19,K.1^9,-1*K.1^3,K.1^27,K.1^19,K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^25,-1*K.1^15,-1*K.1^9,-1*K.1^11,-1*K.1^25,K.1^31,-1*K.1^31,-1*K.1^17,K.1^15,K.1^23,-1*K.1^31,K.1^5,K.1^15,-1*K.1^17,K.1^21,K.1^3,-1*K.1^5,-1*K.1^19,K.1^21,-1*K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,-1*K.1^16,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^24,-1*K.1^20,K.1^4,-1*K.1^12,K.1^20,-1*K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,K.1^28,-1*K.1^18,-1*K.1^26,-1*K.1^10,-1*K.1^26,K.1^26,K.1^30,K.1^10,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^30,K.1^14,-1*K.1^22,-1*K.1^30,K.1^26,-1*K.1^14,K.1^14,K.1^22,K.1^18,-1*K.1^2,K.1^18,K.1^2,K.1^30,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^10,K.1^22,K.1^10,-1*K.1^27,-1*K.1^5,-1*K.1^13,-1*K.1^11,K.1,-1*K.1^5,K.1^3,K.1^21,-1*K.1^11,K.1^15,K.1^7,-1*K.1^31,-1*K.1^17,K.1^15,K.1^31,-1*K.1^31,K.1^27,-1*K.1^25,K.1^25,-1*K.1^9,K.1^9,-1*K.1^25,K.1^5,-1*K.1^9,K.1^3,-1*K.1^3,K.1^7,K.1^19,K.1^25,-1*K.1^3,K.1^31,K.1^19,-1*K.1^19,K.1^13,K.1^23,-1*K.1^29,K.1^5,K.1^13,K.1^23,-1*K.1^29,-1*K.1^19,-1*K.1^23,K.1^29,-1*K.1^7,-1*K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^7,K.1,-1*K.1,-1*K.1^15,K.1^17,K.1^9,-1*K.1,K.1^27,K.1^17,-1*K.1^15,K.1^11,K.1^29,-1*K.1^27,-1*K.1^13,K.1^11,-1*K.1^21,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,-1,1,K.1^16,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^8,K.1^12,-1*K.1^28,K.1^20,-1*K.1^12,K.1^28,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,-1*K.1^4,K.1^14,K.1^6,K.1^22,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^22,K.1^14,-1*K.1^26,K.1^18,K.1^2,-1*K.1^18,K.1^10,K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^30,K.1^30,K.1^26,K.1^10,K.1^26,K.1^22,-1*K.1^10,-1*K.1^22,K.1^5,K.1^27,K.1^19,K.1^21,-1*K.1^31,K.1^27,-1*K.1^29,-1*K.1^11,K.1^21,-1*K.1^17,-1*K.1^25,K.1,K.1^15,-1*K.1^17,-1*K.1,K.1,-1*K.1^5,K.1^7,-1*K.1^7,K.1^23,-1*K.1^23,K.1^7,-1*K.1^27,K.1^23,-1*K.1^29,K.1^29,-1*K.1^25,-1*K.1^13,-1*K.1^7,K.1^29,-1*K.1,-1*K.1^13,K.1^13,-1*K.1^19,-1*K.1^9,K.1^3,-1*K.1^27,-1*K.1^19,-1*K.1^9,K.1^3,K.1^13,K.1^9,-1*K.1^3,K.1^25,K.1^15,K.1^9,K.1^11,K.1^25,-1*K.1^31,K.1^31,K.1^17,-1*K.1^15,-1*K.1^23,K.1^31,-1*K.1^5,-1*K.1^15,K.1^17,-1*K.1^21,-1*K.1^3,K.1^5,K.1^19,-1*K.1^21,K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^4,K.1^20,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^18,K.1^2,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^10,-1*K.1^14,K.1^22,K.1^6,K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^22,K.1^30,K.1^10,K.1^26,-1*K.1^10,K.1^26,K.1^6,K.1^14,-1*K.1^26,-1*K.1^26,K.1^14,K.1^30,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^2,K.1^31,-1*K.1,K.1^9,K.1^15,K.1^13,K.1,K.1^7,-1*K.1^17,-1*K.1^15,K.1^3,-1*K.1^27,-1*K.1^19,K.1^29,-1*K.1^3,-1*K.1^19,K.1^19,K.1^31,-1*K.1^5,K.1^5,K.1^21,K.1^21,K.1^5,K.1,-1*K.1^21,-1*K.1^7,K.1^7,K.1^27,-1*K.1^23,-1*K.1^5,-1*K.1^7,K.1^19,K.1^23,K.1^23,-1*K.1^9,K.1^11,K.1^25,-1*K.1,K.1^9,-1*K.1^11,-1*K.1^25,-1*K.1^23,K.1^11,K.1^25,-1*K.1^27,-1*K.1^29,-1*K.1^11,K.1^17,K.1^27,-1*K.1^13,-1*K.1^13,K.1^3,K.1^29,-1*K.1^21,K.1^13,-1*K.1^31,-1*K.1^29,-1*K.1^3,K.1^15,-1*K.1^25,-1*K.1^31,-1*K.1^9,-1*K.1^15,-1*K.1^17,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^12,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^20,K.1^22,K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^14,K.1^26,-1*K.1^30,-1*K.1^22,K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^2,K.1^26,K.1^14,K.1^10,K.1^10,-1*K.1^2,-1*K.1^22,-1*K.1^6,K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,-1*K.1^2,K.1^18,K.1^30,K.1^2,K.1^30,-1*K.1,K.1^31,-1*K.1^23,-1*K.1^17,-1*K.1^19,-1*K.1^31,-1*K.1^25,K.1^15,K.1^17,-1*K.1^29,K.1^5,K.1^13,-1*K.1^3,K.1^29,K.1^13,-1*K.1^13,-1*K.1,K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^27,-1*K.1^31,K.1^11,K.1^25,-1*K.1^25,-1*K.1^5,K.1^9,K.1^27,K.1^25,-1*K.1^13,-1*K.1^9,-1*K.1^9,K.1^23,-1*K.1^21,-1*K.1^7,K.1^31,-1*K.1^23,K.1^21,K.1^7,K.1^9,-1*K.1^21,-1*K.1^7,K.1^5,K.1^3,K.1^21,-1*K.1^15,-1*K.1^5,K.1^19,K.1^19,-1*K.1^29,-1*K.1^3,K.1^11,-1*K.1^19,K.1,K.1^3,K.1^29,-1*K.1^17,K.1^7,K.1,K.1^23,K.1^17,K.1^15,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^4,K.1^20,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^4,-1*K.1^12,-1*K.1^10,-1*K.1^18,K.1^2,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^10,-1*K.1^14,K.1^22,K.1^6,K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^22,K.1^30,K.1^10,K.1^26,-1*K.1^10,K.1^26,K.1^6,K.1^14,-1*K.1^26,-1*K.1^26,K.1^14,K.1^30,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^2,-1*K.1^31,K.1,-1*K.1^9,-1*K.1^15,-1*K.1^13,-1*K.1,-1*K.1^7,K.1^17,K.1^15,-1*K.1^3,K.1^27,K.1^19,-1*K.1^29,K.1^3,K.1^19,-1*K.1^19,-1*K.1^31,K.1^5,-1*K.1^5,-1*K.1^21,-1*K.1^21,-1*K.1^5,-1*K.1,K.1^21,K.1^7,-1*K.1^7,-1*K.1^27,K.1^23,K.1^5,K.1^7,-1*K.1^19,-1*K.1^23,-1*K.1^23,K.1^9,-1*K.1^11,-1*K.1^25,K.1,-1*K.1^9,K.1^11,K.1^25,K.1^23,-1*K.1^11,-1*K.1^25,K.1^27,K.1^29,K.1^11,-1*K.1^17,-1*K.1^27,K.1^13,K.1^13,-1*K.1^3,-1*K.1^29,K.1^21,-1*K.1^13,K.1^31,K.1^29,K.1^3,-1*K.1^15,K.1^25,K.1^31,K.1^9,K.1^15,K.1^17,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^12,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^20,K.1^22,K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^14,K.1^26,-1*K.1^30,-1*K.1^22,K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^10,K.1^2,K.1^26,K.1^14,K.1^10,K.1^10,-1*K.1^2,-1*K.1^22,-1*K.1^6,K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,-1*K.1^2,K.1^18,K.1^30,K.1^2,K.1^30,K.1,-1*K.1^31,K.1^23,K.1^17,K.1^19,K.1^31,K.1^25,-1*K.1^15,-1*K.1^17,K.1^29,-1*K.1^5,-1*K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,K.1^13,K.1,-1*K.1^27,K.1^27,K.1^11,K.1^11,K.1^27,K.1^31,-1*K.1^11,-1*K.1^25,K.1^25,K.1^5,-1*K.1^9,-1*K.1^27,-1*K.1^25,K.1^13,K.1^9,K.1^9,-1*K.1^23,K.1^21,K.1^7,-1*K.1^31,K.1^23,-1*K.1^21,-1*K.1^7,-1*K.1^9,K.1^21,K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^21,K.1^15,K.1^5,-1*K.1^19,-1*K.1^19,K.1^29,K.1^3,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^3,-1*K.1^29,K.1^17,-1*K.1^7,-1*K.1,-1*K.1^23,-1*K.1^17,-1*K.1^15,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^4,K.1^20,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^4,-1*K.1^12,K.1^10,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^30,K.1^6,K.1^18,K.1^22,K.1^22,-1*K.1^30,-1*K.1^10,-1*K.1^26,K.1^10,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^26,K.1^26,-1*K.1^14,-1*K.1^30,K.1^14,K.1^2,K.1^30,K.1^2,-1*K.1^15,K.1^17,-1*K.1^25,K.1^31,-1*K.1^29,-1*K.1^17,K.1^23,-1*K.1,-1*K.1^31,K.1^19,K.1^11,K.1^3,K.1^13,-1*K.1^19,K.1^3,-1*K.1^3,-1*K.1^15,K.1^21,-1*K.1^21,K.1^5,K.1^5,-1*K.1^21,-1*K.1^17,-1*K.1^5,-1*K.1^23,K.1^23,-1*K.1^11,K.1^7,K.1^21,-1*K.1^23,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^25,K.1^27,K.1^9,K.1^17,-1*K.1^25,-1*K.1^27,-1*K.1^9,K.1^7,K.1^27,K.1^9,K.1^11,-1*K.1^13,-1*K.1^27,K.1,-1*K.1^11,K.1^29,K.1^29,K.1^19,K.1^13,-1*K.1^5,-1*K.1^29,K.1^15,-1*K.1^13,-1*K.1^19,K.1^31,-1*K.1^9,K.1^15,K.1^25,-1*K.1^31,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^12,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^22,-1*K.1^14,K.1^30,K.1^14,K.1^14,-1*K.1^26,K.1^30,K.1^22,-1*K.1^18,K.1^10,K.1^26,K.1^10,-1*K.1^2,-1*K.1^26,-1*K.1^14,-1*K.1^10,-1*K.1^10,K.1^2,K.1^22,K.1^6,-1*K.1^22,K.1^6,K.1^26,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,K.1^2,-1*K.1^18,-1*K.1^30,-1*K.1^2,-1*K.1^30,K.1^17,-1*K.1^15,K.1^7,-1*K.1,K.1^3,K.1^15,-1*K.1^9,K.1^31,K.1,-1*K.1^13,-1*K.1^21,-1*K.1^29,-1*K.1^19,K.1^13,-1*K.1^29,K.1^29,K.1^17,-1*K.1^11,K.1^11,-1*K.1^27,-1*K.1^27,K.1^11,K.1^15,K.1^27,K.1^9,-1*K.1^9,K.1^21,-1*K.1^25,-1*K.1^11,K.1^9,K.1^29,K.1^25,K.1^25,-1*K.1^7,-1*K.1^5,-1*K.1^23,-1*K.1^15,K.1^7,K.1^5,K.1^23,-1*K.1^25,-1*K.1^5,-1*K.1^23,-1*K.1^21,K.1^19,K.1^5,-1*K.1^31,K.1^21,-1*K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^19,K.1^27,K.1^3,-1*K.1^17,K.1^19,K.1^13,-1*K.1,K.1^23,-1*K.1^17,-1*K.1^7,K.1,K.1^31,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^4,K.1^20,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,K.1^12,K.1^4,-1*K.1^12,K.1^10,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^30,K.1^6,K.1^18,K.1^22,K.1^22,-1*K.1^30,-1*K.1^10,-1*K.1^26,K.1^10,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^26,K.1^26,-1*K.1^14,-1*K.1^30,K.1^14,K.1^2,K.1^30,K.1^2,K.1^15,-1*K.1^17,K.1^25,-1*K.1^31,K.1^29,K.1^17,-1*K.1^23,K.1,K.1^31,-1*K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^13,K.1^19,-1*K.1^3,K.1^3,K.1^15,-1*K.1^21,K.1^21,-1*K.1^5,-1*K.1^5,K.1^21,K.1^17,K.1^5,K.1^23,-1*K.1^23,K.1^11,-1*K.1^7,-1*K.1^21,K.1^23,K.1^3,K.1^7,K.1^7,-1*K.1^25,-1*K.1^27,-1*K.1^9,-1*K.1^17,K.1^25,K.1^27,K.1^9,-1*K.1^7,-1*K.1^27,-1*K.1^9,-1*K.1^11,K.1^13,K.1^27,-1*K.1,K.1^11,-1*K.1^29,-1*K.1^29,-1*K.1^19,-1*K.1^13,K.1^5,K.1^29,-1*K.1^15,K.1^13,K.1^19,-1*K.1^31,K.1^9,-1*K.1^15,-1*K.1^25,K.1^31,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^12,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^20,-1*K.1^22,-1*K.1^14,K.1^30,K.1^14,K.1^14,-1*K.1^26,K.1^30,K.1^22,-1*K.1^18,K.1^10,K.1^26,K.1^10,-1*K.1^2,-1*K.1^26,-1*K.1^14,-1*K.1^10,-1*K.1^10,K.1^2,K.1^22,K.1^6,-1*K.1^22,K.1^6,K.1^26,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,K.1^2,-1*K.1^18,-1*K.1^30,-1*K.1^2,-1*K.1^30,-1*K.1^17,K.1^15,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^31,-1*K.1,K.1^13,K.1^21,K.1^29,K.1^19,-1*K.1^13,K.1^29,-1*K.1^29,-1*K.1^17,K.1^11,-1*K.1^11,K.1^27,K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^9,K.1^9,-1*K.1^21,K.1^25,K.1^11,-1*K.1^9,-1*K.1^29,-1*K.1^25,-1*K.1^25,K.1^7,K.1^5,K.1^23,K.1^15,-1*K.1^7,-1*K.1^5,-1*K.1^23,K.1^25,K.1^5,K.1^23,K.1^21,-1*K.1^19,-1*K.1^5,K.1^31,-1*K.1^21,K.1^3,K.1^3,K.1^13,K.1^19,-1*K.1^27,-1*K.1^3,K.1^17,-1*K.1^19,-1*K.1^13,K.1,-1*K.1^23,K.1^17,K.1^7,-1*K.1,-1*K.1^31,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^12,K.1^26,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^22,-1*K.1^18,-1*K.1^26,-1*K.1^30,-1*K.1^6,K.1^22,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^2,K.1^6,K.1^6,-1*K.1^14,-1*K.1^26,K.1^10,K.1^26,K.1^10,K.1^22,K.1^30,-1*K.1^10,-1*K.1^10,K.1^30,-1*K.1^14,-1*K.1^30,K.1^18,K.1^14,K.1^18,-1*K.1^7,K.1^25,K.1,K.1^23,-1*K.1^5,-1*K.1^25,K.1^15,-1*K.1^9,-1*K.1^23,-1*K.1^11,-1*K.1^3,K.1^27,-1*K.1^21,K.1^11,K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^29,K.1^29,-1*K.1^13,-1*K.1^13,K.1^29,-1*K.1^25,K.1^13,-1*K.1^15,K.1^15,K.1^3,-1*K.1^31,-1*K.1^29,-1*K.1^15,-1*K.1^27,K.1^31,K.1^31,-1*K.1,-1*K.1^19,K.1^17,K.1^25,K.1,K.1^19,-1*K.1^17,-1*K.1^31,-1*K.1^19,K.1^17,-1*K.1^3,K.1^21,K.1^19,K.1^9,K.1^3,K.1^5,K.1^5,-1*K.1^11,-1*K.1^21,K.1^13,-1*K.1^5,K.1^7,K.1^21,K.1^11,K.1^23,-1*K.1^17,K.1^7,-1*K.1,-1*K.1^23,-1*K.1^9,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,-1*K.1^28,K.1^12,K.1^4,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^28,-1*K.1^20,-1*K.1^6,K.1^30,K.1^14,-1*K.1^30,-1*K.1^30,K.1^10,K.1^14,K.1^6,K.1^2,K.1^26,-1*K.1^10,K.1^26,-1*K.1^18,K.1^10,K.1^30,-1*K.1^26,-1*K.1^26,K.1^18,K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^2,K.1^22,K.1^22,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^25,-1*K.1^7,-1*K.1^31,-1*K.1^9,K.1^27,K.1^7,-1*K.1^17,K.1^23,K.1^9,K.1^21,K.1^29,-1*K.1^5,K.1^11,-1*K.1^21,-1*K.1^5,K.1^5,K.1^25,K.1^3,-1*K.1^3,K.1^19,K.1^19,-1*K.1^3,K.1^7,-1*K.1^19,K.1^17,-1*K.1^17,-1*K.1^29,K.1,K.1^3,K.1^17,K.1^5,-1*K.1,-1*K.1,K.1^31,K.1^13,-1*K.1^15,-1*K.1^7,-1*K.1^31,-1*K.1^13,K.1^15,K.1,K.1^13,-1*K.1^15,K.1^29,-1*K.1^11,-1*K.1^13,-1*K.1^23,-1*K.1^29,-1*K.1^27,-1*K.1^27,K.1^21,K.1^11,-1*K.1^19,K.1^27,-1*K.1^25,-1*K.1^11,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^25,K.1^31,K.1^9,K.1^23,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^12,K.1^26,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^22,-1*K.1^18,-1*K.1^26,-1*K.1^30,-1*K.1^6,K.1^22,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^2,K.1^6,K.1^6,-1*K.1^14,-1*K.1^26,K.1^10,K.1^26,K.1^10,K.1^22,K.1^30,-1*K.1^10,-1*K.1^10,K.1^30,-1*K.1^14,-1*K.1^30,K.1^18,K.1^14,K.1^18,K.1^7,-1*K.1^25,-1*K.1,-1*K.1^23,K.1^5,K.1^25,-1*K.1^15,K.1^9,K.1^23,K.1^11,K.1^3,-1*K.1^27,K.1^21,-1*K.1^11,-1*K.1^27,K.1^27,K.1^7,K.1^29,-1*K.1^29,K.1^13,K.1^13,-1*K.1^29,K.1^25,-1*K.1^13,K.1^15,-1*K.1^15,-1*K.1^3,K.1^31,K.1^29,K.1^15,K.1^27,-1*K.1^31,-1*K.1^31,K.1,K.1^19,-1*K.1^17,-1*K.1^25,-1*K.1,-1*K.1^19,K.1^17,K.1^31,K.1^19,-1*K.1^17,K.1^3,-1*K.1^21,-1*K.1^19,-1*K.1^9,-1*K.1^3,-1*K.1^5,-1*K.1^5,K.1^11,K.1^21,-1*K.1^13,K.1^5,-1*K.1^7,-1*K.1^21,-1*K.1^11,-1*K.1^23,K.1^17,-1*K.1^7,K.1,K.1^23,K.1^9,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,-1*K.1^28,K.1^12,K.1^4,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^28,-1*K.1^20,-1*K.1^6,K.1^30,K.1^14,-1*K.1^30,-1*K.1^30,K.1^10,K.1^14,K.1^6,K.1^2,K.1^26,-1*K.1^10,K.1^26,-1*K.1^18,K.1^10,K.1^30,-1*K.1^26,-1*K.1^26,K.1^18,K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^2,K.1^22,K.1^22,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^25,K.1^7,K.1^31,K.1^9,-1*K.1^27,-1*K.1^7,K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^21,-1*K.1^29,K.1^5,-1*K.1^11,K.1^21,K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^3,K.1^3,-1*K.1^19,-1*K.1^19,K.1^3,-1*K.1^7,K.1^19,-1*K.1^17,K.1^17,K.1^29,-1*K.1,-1*K.1^3,-1*K.1^17,-1*K.1^5,K.1,K.1,-1*K.1^31,-1*K.1^13,K.1^15,K.1^7,K.1^31,K.1^13,-1*K.1^15,-1*K.1,-1*K.1^13,K.1^15,-1*K.1^29,K.1^11,K.1^13,K.1^23,K.1^29,K.1^27,K.1^27,-1*K.1^21,-1*K.1^11,K.1^19,-1*K.1^27,K.1^25,K.1^11,K.1^21,K.1^9,-1*K.1^15,K.1^25,-1*K.1^31,-1*K.1^9,-1*K.1^23,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^26,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^22,K.1^18,K.1^26,K.1^30,K.1^6,-1*K.1^22,K.1^6,-1*K.1^14,K.1^22,K.1^2,-1*K.1^6,-1*K.1^6,K.1^14,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^30,K.1^10,K.1^10,-1*K.1^30,K.1^14,K.1^30,-1*K.1^18,-1*K.1^14,-1*K.1^18,K.1^23,-1*K.1^9,K.1^17,K.1^7,-1*K.1^21,K.1^9,-1*K.1^31,-1*K.1^25,-1*K.1^7,K.1^27,K.1^19,K.1^11,K.1^5,-1*K.1^27,K.1^11,-1*K.1^11,K.1^23,K.1^13,-1*K.1^13,-1*K.1^29,-1*K.1^29,-1*K.1^13,K.1^9,K.1^29,K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^15,K.1^13,K.1^31,-1*K.1^11,K.1^15,K.1^15,-1*K.1^17,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^17,K.1^3,K.1,-1*K.1^15,-1*K.1^3,-1*K.1,K.1^19,-1*K.1^5,K.1^3,K.1^25,-1*K.1^19,K.1^21,K.1^21,K.1^27,K.1^5,K.1^29,-1*K.1^21,-1*K.1^23,-1*K.1^5,-1*K.1^27,K.1^7,K.1,-1*K.1^23,-1*K.1^17,-1*K.1^7,-1*K.1^25,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,-1*K.1^28,K.1^12,K.1^4,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^28,-1*K.1^20,K.1^6,-1*K.1^30,-1*K.1^14,K.1^30,K.1^30,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^26,K.1^10,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^30,K.1^26,K.1^26,-1*K.1^18,-1*K.1^6,K.1^22,K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^22,-1*K.1^22,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,K.1^14,-1*K.1^9,K.1^23,-1*K.1^15,-1*K.1^25,K.1^11,-1*K.1^23,K.1,K.1^7,K.1^25,-1*K.1^5,-1*K.1^13,-1*K.1^21,-1*K.1^27,K.1^5,-1*K.1^21,K.1^21,-1*K.1^9,-1*K.1^19,K.1^19,K.1^3,K.1^3,K.1^19,-1*K.1^23,-1*K.1^3,-1*K.1,K.1,K.1^13,K.1^17,-1*K.1^19,-1*K.1,K.1^21,-1*K.1^17,-1*K.1^17,K.1^15,K.1^29,K.1^31,K.1^23,-1*K.1^15,-1*K.1^29,-1*K.1^31,K.1^17,K.1^29,K.1^31,-1*K.1^13,K.1^27,-1*K.1^29,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1^5,-1*K.1^27,-1*K.1^3,K.1^11,K.1^9,K.1^27,K.1^5,-1*K.1^25,-1*K.1^31,K.1^9,K.1^15,K.1^25,K.1^7,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^26,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^22,K.1^18,K.1^26,K.1^30,K.1^6,-1*K.1^22,K.1^6,-1*K.1^14,K.1^22,K.1^2,-1*K.1^6,-1*K.1^6,K.1^14,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^30,K.1^10,K.1^10,-1*K.1^30,K.1^14,K.1^30,-1*K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^23,K.1^9,-1*K.1^17,-1*K.1^7,K.1^21,-1*K.1^9,K.1^31,K.1^25,K.1^7,-1*K.1^27,-1*K.1^19,-1*K.1^11,-1*K.1^5,K.1^27,-1*K.1^11,K.1^11,-1*K.1^23,-1*K.1^13,K.1^13,K.1^29,K.1^29,K.1^13,-1*K.1^9,-1*K.1^29,-1*K.1^31,K.1^31,K.1^19,K.1^15,-1*K.1^13,-1*K.1^31,K.1^11,-1*K.1^15,-1*K.1^15,K.1^17,K.1^3,K.1,K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1,K.1^15,K.1^3,K.1,-1*K.1^19,K.1^5,-1*K.1^3,-1*K.1^25,K.1^19,-1*K.1^21,-1*K.1^21,-1*K.1^27,-1*K.1^5,-1*K.1^29,K.1^21,K.1^23,K.1^5,K.1^27,-1*K.1^7,-1*K.1,K.1^23,K.1^17,K.1^7,K.1^25,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^8,K.1^24,K.1^8,-1*K.1^28,K.1^12,K.1^4,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,K.1^20,K.1^28,-1*K.1^20,K.1^6,-1*K.1^30,-1*K.1^14,K.1^30,K.1^30,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^26,K.1^10,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^30,K.1^26,K.1^26,-1*K.1^18,-1*K.1^6,K.1^22,K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^22,-1*K.1^22,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,K.1^14,K.1^9,-1*K.1^23,K.1^15,K.1^25,-1*K.1^11,K.1^23,-1*K.1,-1*K.1^7,-1*K.1^25,K.1^5,K.1^13,K.1^21,K.1^27,-1*K.1^5,K.1^21,-1*K.1^21,K.1^9,K.1^19,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^19,K.1^23,K.1^3,K.1,-1*K.1,-1*K.1^13,-1*K.1^17,K.1^19,K.1,-1*K.1^21,K.1^17,K.1^17,-1*K.1^15,-1*K.1^29,-1*K.1^31,-1*K.1^23,K.1^15,K.1^29,K.1^31,-1*K.1^17,-1*K.1^29,-1*K.1^31,K.1^13,-1*K.1^27,K.1^29,K.1^7,-1*K.1^13,K.1^11,K.1^11,K.1^5,K.1^27,K.1^3,-1*K.1^11,-1*K.1^9,-1*K.1^27,-1*K.1^5,K.1^25,K.1^31,-1*K.1^9,-1*K.1^15,-1*K.1^25,-1*K.1^7,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^2,K.1^10,K.1^26,-1*K.1^10,-1*K.1^10,-1*K.1^14,K.1^26,K.1^2,K.1^22,K.1^30,K.1^14,K.1^30,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^30,-1*K.1^30,K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^18,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^18,-1*K.1^22,K.1^6,K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^26,K.1^19,-1*K.1^13,-1*K.1^21,K.1^3,-1*K.1^9,K.1^13,K.1^27,-1*K.1^29,-1*K.1^3,-1*K.1^7,-1*K.1^31,K.1^23,-1*K.1^25,K.1^7,K.1^23,-1*K.1^23,K.1^19,-1*K.1,K.1,K.1^17,K.1^17,K.1,K.1^13,-1*K.1^17,-1*K.1^27,K.1^27,K.1^31,K.1^11,-1*K.1,-1*K.1^27,-1*K.1^23,-1*K.1^11,-1*K.1^11,K.1^21,K.1^15,K.1^5,-1*K.1^13,-1*K.1^21,-1*K.1^15,-1*K.1^5,K.1^11,K.1^15,K.1^5,-1*K.1^31,K.1^25,-1*K.1^15,K.1^29,K.1^31,K.1^9,K.1^9,-1*K.1^7,-1*K.1^25,-1*K.1^17,-1*K.1^9,-1*K.1^19,K.1^25,K.1^7,K.1^3,-1*K.1^5,-1*K.1^19,K.1^21,-1*K.1^3,-1*K.1^29,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,K.1^4,K.1^30,-1*K.1^22,-1*K.1^6,K.1^22,K.1^22,K.1^18,-1*K.1^6,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^26,K.1^18,-1*K.1^22,K.1^2,K.1^2,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^18,K.1^10,K.1^14,K.1^14,K.1^10,-1*K.1^26,-1*K.1^10,K.1^6,K.1^26,K.1^6,-1*K.1^13,K.1^19,K.1^11,-1*K.1^29,K.1^23,-1*K.1^19,-1*K.1^5,K.1^3,K.1^29,K.1^25,K.1,-1*K.1^9,K.1^7,-1*K.1^25,-1*K.1^9,K.1^9,-1*K.1^13,K.1^31,-1*K.1^31,-1*K.1^15,-1*K.1^15,-1*K.1^31,-1*K.1^19,K.1^15,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^21,K.1^31,K.1^5,K.1^9,K.1^21,K.1^21,-1*K.1^11,-1*K.1^17,-1*K.1^27,K.1^19,K.1^11,K.1^17,K.1^27,-1*K.1^21,-1*K.1^17,-1*K.1^27,K.1,-1*K.1^7,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^23,-1*K.1^23,K.1^25,K.1^7,K.1^15,K.1^23,K.1^13,-1*K.1^7,-1*K.1^25,-1*K.1^29,K.1^27,K.1^13,-1*K.1^11,K.1^29,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,-1*K.1^28,-1*K.1^2,K.1^10,K.1^26,-1*K.1^10,-1*K.1^10,-1*K.1^14,K.1^26,K.1^2,K.1^22,K.1^30,K.1^14,K.1^30,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^30,-1*K.1^30,K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^18,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^18,-1*K.1^22,K.1^6,K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^19,K.1^13,K.1^21,-1*K.1^3,K.1^9,-1*K.1^13,-1*K.1^27,K.1^29,K.1^3,K.1^7,K.1^31,-1*K.1^23,K.1^25,-1*K.1^7,-1*K.1^23,K.1^23,-1*K.1^19,K.1,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1,-1*K.1^13,K.1^17,K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^11,K.1,K.1^27,K.1^23,K.1^11,K.1^11,-1*K.1^21,-1*K.1^15,-1*K.1^5,K.1^13,K.1^21,K.1^15,K.1^5,-1*K.1^11,-1*K.1^15,-1*K.1^5,K.1^31,-1*K.1^25,K.1^15,-1*K.1^29,-1*K.1^31,-1*K.1^9,-1*K.1^9,K.1^7,K.1^25,K.1^17,K.1^9,K.1^19,-1*K.1^25,-1*K.1^7,-1*K.1^3,K.1^5,K.1^19,-1*K.1^21,K.1^3,K.1^29,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,K.1^4,K.1^30,-1*K.1^22,-1*K.1^6,K.1^22,K.1^22,K.1^18,-1*K.1^6,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^26,K.1^18,-1*K.1^22,K.1^2,K.1^2,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^18,K.1^10,K.1^14,K.1^14,K.1^10,-1*K.1^26,-1*K.1^10,K.1^6,K.1^26,K.1^6,K.1^13,-1*K.1^19,-1*K.1^11,K.1^29,-1*K.1^23,K.1^19,K.1^5,-1*K.1^3,-1*K.1^29,-1*K.1^25,-1*K.1,K.1^9,-1*K.1^7,K.1^25,K.1^9,-1*K.1^9,K.1^13,-1*K.1^31,K.1^31,K.1^15,K.1^15,K.1^31,K.1^19,-1*K.1^15,-1*K.1^5,K.1^5,K.1,K.1^21,-1*K.1^31,-1*K.1^5,-1*K.1^9,-1*K.1^21,-1*K.1^21,K.1^11,K.1^17,K.1^27,-1*K.1^19,-1*K.1^11,-1*K.1^17,-1*K.1^27,K.1^21,K.1^17,K.1^27,-1*K.1,K.1^7,-1*K.1^17,K.1^3,K.1,K.1^23,K.1^23,-1*K.1^25,-1*K.1^7,-1*K.1^15,-1*K.1^23,-1*K.1^13,K.1^7,K.1^25,K.1^29,-1*K.1^27,-1*K.1^13,K.1^11,-1*K.1^29,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,-1*K.1^28,K.1^2,-1*K.1^10,-1*K.1^26,K.1^10,K.1^10,K.1^14,-1*K.1^26,-1*K.1^2,-1*K.1^22,-1*K.1^30,-1*K.1^14,-1*K.1^30,K.1^6,K.1^14,-1*K.1^10,K.1^30,K.1^30,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^14,K.1^22,K.1^18,K.1^18,K.1^22,-1*K.1^6,-1*K.1^22,K.1^26,K.1^6,K.1^26,-1*K.1^3,K.1^29,-1*K.1^5,K.1^19,K.1^25,-1*K.1^29,-1*K.1^11,-1*K.1^13,-1*K.1^19,-1*K.1^23,K.1^15,-1*K.1^7,-1*K.1^9,K.1^23,-1*K.1^7,K.1^7,-1*K.1^3,K.1^17,-1*K.1^17,K.1,K.1,-1*K.1^17,-1*K.1^29,-1*K.1,K.1^11,-1*K.1^11,-1*K.1^15,K.1^27,K.1^17,K.1^11,K.1^7,-1*K.1^27,-1*K.1^27,K.1^5,K.1^31,-1*K.1^21,K.1^29,-1*K.1^5,-1*K.1^31,K.1^21,K.1^27,K.1^31,-1*K.1^21,K.1^15,K.1^9,-1*K.1^31,K.1^13,-1*K.1^15,-1*K.1^25,-1*K.1^25,-1*K.1^23,-1*K.1^9,-1*K.1,K.1^25,K.1^3,K.1^9,K.1^23,K.1^19,K.1^21,K.1^3,K.1^5,-1*K.1^19,-1*K.1^13,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,K.1^4,-1*K.1^30,K.1^22,K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^18,K.1^6,K.1^30,K.1^10,K.1^2,K.1^18,K.1^2,-1*K.1^26,-1*K.1^18,K.1^22,-1*K.1^2,-1*K.1^2,K.1^26,K.1^30,K.1^14,-1*K.1^30,K.1^14,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^14,-1*K.1^10,K.1^26,K.1^10,-1*K.1^6,-1*K.1^26,-1*K.1^6,K.1^29,-1*K.1^3,K.1^27,-1*K.1^13,-1*K.1^7,K.1^3,K.1^21,K.1^19,K.1^13,K.1^9,-1*K.1^17,K.1^25,K.1^23,-1*K.1^9,K.1^25,-1*K.1^25,K.1^29,-1*K.1^15,K.1^15,-1*K.1^31,-1*K.1^31,K.1^15,K.1^3,K.1^31,-1*K.1^21,K.1^21,K.1^17,-1*K.1^5,-1*K.1^15,-1*K.1^21,-1*K.1^25,K.1^5,K.1^5,-1*K.1^27,-1*K.1,K.1^11,-1*K.1^3,K.1^27,K.1,-1*K.1^11,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^17,-1*K.1^23,K.1,-1*K.1^19,K.1^17,K.1^7,K.1^7,K.1^9,K.1^23,K.1^31,-1*K.1^7,-1*K.1^29,-1*K.1^23,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^29,-1*K.1^27,K.1^13,K.1^19,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,-1*K.1^28,K.1^2,-1*K.1^10,-1*K.1^26,K.1^10,K.1^10,K.1^14,-1*K.1^26,-1*K.1^2,-1*K.1^22,-1*K.1^30,-1*K.1^14,-1*K.1^30,K.1^6,K.1^14,-1*K.1^10,K.1^30,K.1^30,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^14,K.1^22,K.1^18,K.1^18,K.1^22,-1*K.1^6,-1*K.1^22,K.1^26,K.1^6,K.1^26,K.1^3,-1*K.1^29,K.1^5,-1*K.1^19,-1*K.1^25,K.1^29,K.1^11,K.1^13,K.1^19,K.1^23,-1*K.1^15,K.1^7,K.1^9,-1*K.1^23,K.1^7,-1*K.1^7,K.1^3,-1*K.1^17,K.1^17,-1*K.1,-1*K.1,K.1^17,K.1^29,K.1,-1*K.1^11,K.1^11,K.1^15,-1*K.1^27,-1*K.1^17,-1*K.1^11,-1*K.1^7,K.1^27,K.1^27,-1*K.1^5,-1*K.1^31,K.1^21,-1*K.1^29,K.1^5,K.1^31,-1*K.1^21,-1*K.1^27,-1*K.1^31,K.1^21,-1*K.1^15,-1*K.1^9,K.1^31,-1*K.1^13,K.1^15,K.1^25,K.1^25,K.1^23,K.1^9,K.1,-1*K.1^25,-1*K.1^3,-1*K.1^9,-1*K.1^23,-1*K.1^19,-1*K.1^21,-1*K.1^3,-1*K.1^5,K.1^19,K.1^13,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,K.1^28,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^4,K.1^12,K.1^4,-1*K.1^30,K.1^22,K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^18,K.1^6,K.1^30,K.1^10,K.1^2,K.1^18,K.1^2,-1*K.1^26,-1*K.1^18,K.1^22,-1*K.1^2,-1*K.1^2,K.1^26,K.1^30,K.1^14,-1*K.1^30,K.1^14,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^14,-1*K.1^10,K.1^26,K.1^10,-1*K.1^6,-1*K.1^26,-1*K.1^6,-1*K.1^29,K.1^3,-1*K.1^27,K.1^13,K.1^7,-1*K.1^3,-1*K.1^21,-1*K.1^19,-1*K.1^13,-1*K.1^9,K.1^17,-1*K.1^25,-1*K.1^23,K.1^9,-1*K.1^25,K.1^25,-1*K.1^29,K.1^15,-1*K.1^15,K.1^31,K.1^31,-1*K.1^15,-1*K.1^3,-1*K.1^31,K.1^21,-1*K.1^21,-1*K.1^17,K.1^5,K.1^15,K.1^21,K.1^25,-1*K.1^5,-1*K.1^5,K.1^27,K.1,-1*K.1^11,K.1^3,-1*K.1^27,-1*K.1,K.1^11,K.1^5,K.1,-1*K.1^11,K.1^17,K.1^23,-1*K.1,K.1^19,-1*K.1^17,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^23,-1*K.1^31,K.1^7,K.1^29,K.1^23,K.1^9,K.1^13,K.1^11,K.1^29,K.1^27,-1*K.1^13,-1*K.1^19,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,K.1^28,K.1^18,-1*K.1^26,K.1^10,K.1^26,K.1^26,-1*K.1^30,K.1^10,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^14,K.1^14,K.1^22,-1*K.1^18,K.1^2,K.1^18,K.1^2,K.1^30,K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^22,-1*K.1^6,-1*K.1^10,-1*K.1^22,-1*K.1^10,K.1^27,-1*K.1^5,-1*K.1^13,K.1^11,K.1,K.1^5,-1*K.1^3,-1*K.1^21,-1*K.1^11,K.1^15,-1*K.1^7,-1*K.1^31,K.1^17,-1*K.1^15,-1*K.1^31,K.1^31,K.1^27,-1*K.1^25,K.1^25,-1*K.1^9,-1*K.1^9,K.1^25,K.1^5,K.1^9,K.1^3,-1*K.1^3,K.1^7,K.1^19,-1*K.1^25,K.1^3,K.1^31,-1*K.1^19,-1*K.1^19,K.1^13,-1*K.1^23,-1*K.1^29,-1*K.1^5,-1*K.1^13,K.1^23,K.1^29,K.1^19,-1*K.1^23,-1*K.1^29,-1*K.1^7,-1*K.1^17,K.1^23,K.1^21,K.1^7,-1*K.1,-1*K.1,K.1^15,K.1^17,K.1^9,K.1,-1*K.1^27,-1*K.1^17,-1*K.1^15,K.1^11,K.1^29,-1*K.1^27,K.1^13,-1*K.1^11,-1*K.1^21,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^14,K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^22,K.1^14,K.1^26,K.1^18,-1*K.1^2,K.1^18,K.1^10,K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^26,K.1^30,K.1^30,-1*K.1^26,-1*K.1^10,K.1^26,K.1^22,K.1^10,K.1^22,-1*K.1^5,K.1^27,K.1^19,-1*K.1^21,-1*K.1^31,-1*K.1^27,K.1^29,K.1^11,K.1^21,-1*K.1^17,K.1^25,K.1,-1*K.1^15,K.1^17,K.1,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^7,K.1^23,K.1^23,-1*K.1^7,-1*K.1^27,-1*K.1^23,-1*K.1^29,K.1^29,-1*K.1^25,-1*K.1^13,K.1^7,-1*K.1^29,-1*K.1,K.1^13,K.1^13,-1*K.1^19,K.1^9,K.1^3,K.1^27,K.1^19,-1*K.1^9,-1*K.1^3,-1*K.1^13,K.1^9,K.1^3,K.1^25,K.1^15,-1*K.1^9,-1*K.1^11,-1*K.1^25,K.1^31,K.1^31,-1*K.1^17,-1*K.1^15,-1*K.1^23,-1*K.1^31,K.1^5,K.1^15,K.1^17,-1*K.1^21,-1*K.1^3,K.1^5,-1*K.1^19,K.1^21,K.1^11,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,K.1^28,K.1^18,-1*K.1^26,K.1^10,K.1^26,K.1^26,-1*K.1^30,K.1^10,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^14,K.1^14,K.1^22,-1*K.1^18,K.1^2,K.1^18,K.1^2,K.1^30,K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,K.1^22,-1*K.1^6,-1*K.1^10,-1*K.1^22,-1*K.1^10,-1*K.1^27,K.1^5,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^5,K.1^3,K.1^21,K.1^11,-1*K.1^15,K.1^7,K.1^31,-1*K.1^17,K.1^15,K.1^31,-1*K.1^31,-1*K.1^27,K.1^25,-1*K.1^25,K.1^9,K.1^9,-1*K.1^25,-1*K.1^5,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^19,K.1^25,-1*K.1^3,-1*K.1^31,K.1^19,K.1^19,-1*K.1^13,K.1^23,K.1^29,K.1^5,K.1^13,-1*K.1^23,-1*K.1^29,-1*K.1^19,K.1^23,K.1^29,K.1^7,K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^7,K.1,K.1,-1*K.1^15,-1*K.1^17,-1*K.1^9,-1*K.1,K.1^27,K.1^17,K.1^15,-1*K.1^11,-1*K.1^29,K.1^27,-1*K.1^13,K.1^11,K.1^21,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^14,K.1^6,-1*K.1^22,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^22,K.1^14,K.1^26,K.1^18,-1*K.1^2,K.1^18,K.1^10,K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^26,K.1^30,K.1^30,-1*K.1^26,-1*K.1^10,K.1^26,K.1^22,K.1^10,K.1^22,K.1^5,-1*K.1^27,-1*K.1^19,K.1^21,K.1^31,K.1^27,-1*K.1^29,-1*K.1^11,-1*K.1^21,K.1^17,-1*K.1^25,-1*K.1,K.1^15,-1*K.1^17,-1*K.1,K.1,K.1^5,-1*K.1^7,K.1^7,-1*K.1^23,-1*K.1^23,K.1^7,K.1^27,K.1^23,K.1^29,-1*K.1^29,K.1^25,K.1^13,-1*K.1^7,K.1^29,K.1,-1*K.1^13,-1*K.1^13,K.1^19,-1*K.1^9,-1*K.1^3,-1*K.1^27,-1*K.1^19,K.1^9,K.1^3,K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^25,-1*K.1^15,K.1^9,K.1^11,K.1^25,-1*K.1^31,-1*K.1^31,K.1^17,K.1^15,K.1^23,K.1^31,-1*K.1^5,-1*K.1^15,-1*K.1^17,K.1^21,K.1^3,-1*K.1^5,K.1^19,-1*K.1^21,-1*K.1^11,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,K.1^28,-1*K.1^18,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^26,K.1^30,-1*K.1^10,K.1^18,K.1^6,K.1^14,-1*K.1^30,K.1^14,K.1^22,K.1^30,K.1^26,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^30,-1*K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^22,K.1^6,K.1^10,K.1^22,K.1^10,-1*K.1^11,K.1^21,K.1^29,K.1^27,-1*K.1^17,-1*K.1^21,-1*K.1^19,-1*K.1^5,-1*K.1^27,K.1^31,-1*K.1^23,K.1^15,K.1,-1*K.1^31,K.1^15,-1*K.1^15,-1*K.1^11,-1*K.1^9,K.1^9,K.1^25,K.1^25,K.1^9,-1*K.1^21,-1*K.1^25,K.1^19,-1*K.1^19,K.1^23,-1*K.1^3,-1*K.1^9,K.1^19,-1*K.1^15,K.1^3,K.1^3,-1*K.1^29,K.1^7,-1*K.1^13,K.1^21,K.1^29,-1*K.1^7,K.1^13,-1*K.1^3,K.1^7,-1*K.1^13,-1*K.1^23,-1*K.1,-1*K.1^7,K.1^5,K.1^23,K.1^17,K.1^17,K.1^31,K.1,-1*K.1^25,-1*K.1^17,K.1^11,-1*K.1,-1*K.1^31,K.1^27,K.1^13,K.1^11,-1*K.1^29,-1*K.1^27,-1*K.1^5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^6,K.1^22,K.1^6,K.1^6,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^18,K.1^18,K.1^10,-1*K.1^14,K.1^30,K.1^14,K.1^30,K.1^2,K.1^26,-1*K.1^30,-1*K.1^30,K.1^26,K.1^10,-1*K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^22,K.1^21,-1*K.1^11,-1*K.1^3,-1*K.1^5,K.1^15,K.1^11,K.1^13,K.1^27,K.1^5,-1*K.1,K.1^9,-1*K.1^17,-1*K.1^31,K.1,-1*K.1^17,K.1^17,K.1^21,K.1^23,-1*K.1^23,-1*K.1^7,-1*K.1^7,-1*K.1^23,K.1^11,K.1^7,-1*K.1^13,K.1^13,-1*K.1^9,K.1^29,K.1^23,-1*K.1^13,K.1^17,-1*K.1^29,-1*K.1^29,K.1^3,-1*K.1^25,K.1^19,-1*K.1^11,-1*K.1^3,K.1^25,-1*K.1^19,K.1^29,-1*K.1^25,K.1^19,K.1^9,K.1^31,K.1^25,-1*K.1^27,-1*K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1,-1*K.1^31,K.1^7,K.1^15,-1*K.1^21,K.1^31,K.1,-1*K.1^5,-1*K.1^19,-1*K.1^21,K.1^3,K.1^5,K.1^27,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^24,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,K.1^28,-1*K.1^18,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^26,K.1^30,-1*K.1^10,K.1^18,K.1^6,K.1^14,-1*K.1^30,K.1^14,K.1^22,K.1^30,K.1^26,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^30,-1*K.1^6,K.1^2,K.1^2,-1*K.1^6,-1*K.1^22,K.1^6,K.1^10,K.1^22,K.1^10,K.1^11,-1*K.1^21,-1*K.1^29,-1*K.1^27,K.1^17,K.1^21,K.1^19,K.1^5,K.1^27,-1*K.1^31,K.1^23,-1*K.1^15,-1*K.1,K.1^31,-1*K.1^15,K.1^15,K.1^11,K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^9,K.1^21,K.1^25,-1*K.1^19,K.1^19,-1*K.1^23,K.1^3,K.1^9,-1*K.1^19,K.1^15,-1*K.1^3,-1*K.1^3,K.1^29,-1*K.1^7,K.1^13,-1*K.1^21,-1*K.1^29,K.1^7,-1*K.1^13,K.1^3,-1*K.1^7,K.1^13,K.1^23,K.1,K.1^7,-1*K.1^5,-1*K.1^23,-1*K.1^17,-1*K.1^17,-1*K.1^31,-1*K.1,K.1^25,K.1^17,-1*K.1^11,K.1,K.1^31,-1*K.1^27,-1*K.1^13,-1*K.1^11,K.1^29,K.1^27,K.1^5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,1,-1,-1,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,-1*K.1^28,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,K.1^4,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^6,K.1^22,K.1^6,K.1^6,-1*K.1^2,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^2,-1*K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^6,K.1^18,K.1^18,K.1^10,-1*K.1^14,K.1^30,K.1^14,K.1^30,K.1^2,K.1^26,-1*K.1^30,-1*K.1^30,K.1^26,K.1^10,-1*K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^22,-1*K.1^21,K.1^11,K.1^3,K.1^5,-1*K.1^15,-1*K.1^11,-1*K.1^13,-1*K.1^27,-1*K.1^5,K.1,-1*K.1^9,K.1^17,K.1^31,-1*K.1,K.1^17,-1*K.1^17,-1*K.1^21,-1*K.1^23,K.1^23,K.1^7,K.1^7,K.1^23,-1*K.1^11,-1*K.1^7,K.1^13,-1*K.1^13,K.1^9,-1*K.1^29,-1*K.1^23,K.1^13,-1*K.1^17,K.1^29,K.1^29,-1*K.1^3,K.1^25,-1*K.1^19,K.1^11,K.1^3,-1*K.1^25,K.1^19,-1*K.1^29,K.1^25,-1*K.1^19,-1*K.1^9,-1*K.1^31,-1*K.1^25,K.1^27,K.1^9,K.1^15,K.1^15,K.1,K.1^31,-1*K.1^7,-1*K.1^15,K.1^21,-1*K.1^31,-1*K.1,K.1^5,K.1^19,K.1^21,-1*K.1^3,-1*K.1^5,-1*K.1^27,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_128_159:= KnownIrreducibles(CR);