# Group 128.144 downloaded from the LMFDB on 22 February 2026. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(20454561330425315986176559339445,128); a := GPC.1; b := GPC.3; c := GPC.5; GPerm := Group( (1,9)(2,10)(3,12,4,11)(5,15,7,13)(6,16,8,14), (1,6,2,5)(3,8,4,7)(9,13)(10,14)(11,15)(12,16), (5,6)(7,8)(9,12,10,11)(13,16,14,15), (3,4)(5,7)(6,8)(11,12)(13,15)(14,16), (1,4,2,3)(5,7,6,8)(9,11,10,12)(13,16,14,15), (1,2)(3,4)(5,6)(7,8), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) ); # Booleans booleans_128_144 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_128_144:=rec(); chartbl_128_144.IsFinite:= true; chartbl_128_144.UnderlyingCharacteristic:= 0; chartbl_128_144.UnderlyingGroup:= GPC; chartbl_128_144.Size:= 128; chartbl_128_144.InfoText:= "Character table for group 128.144 downloaded from the LMFDB."; chartbl_128_144.Identifier:= " C4^2.(C2*C4) "; chartbl_128_144.NrConjugacyClasses:= 14; chartbl_128_144.ConjugacyClasses:= [ of ..., f7, f4, f2*f3*f7, f2*f4*f6*f7, f6, f3, f2*f3*f5*f7, f1*f2*f4*f5*f7, f1*f3*f5*f6, f1*f3, f1*f2*f3*f6*f7, f5, f5*f6]; chartbl_128_144.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]; chartbl_128_144.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6]]; chartbl_128_144.SizesCentralizers:= [128, 128, 64, 16, 16, 32, 16, 8, 8, 8, 8, 8, 16, 16]; chartbl_128_144.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "4A", "4B", "4C", "4D1", "4D-1", "4E1", "4E-1", "8A1", "8A-1"]; chartbl_128_144.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 8, 8]; chartbl_128_144.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1], [1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1], [1, 1, 1, -1, -1, 1, 1, -1*E(4), -1, E(4), E(4), -1*E(4), 1, 1], [1, 1, 1, -1, -1, 1, 1, E(4), -1, -1*E(4), -1*E(4), E(4), 1, 1], [1, 1, 1, -1, -1, 1, 1, -1*E(4), 1, -1*E(4), E(4), E(4), -1, -1], [1, 1, 1, -1, -1, 1, 1, E(4), 1, E(4), -1*E(4), -1*E(4), -1, -1], [2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0], [4, 4, 4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(4), 2*E(4)], [4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(4), -2*E(4)], [8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_128_144);