# Group 128.111 downloaded from the LMFDB on 03 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(1189995708627141265821,128); a := GPC.1; b := GPC.3; c := GPC.7; GPerm := Group( (1,2,5,10,7,12,21,29,6,11,20,28,4,9,18,26)(3,13,15,30,14,24,31,27,16,25,19,32,17,8,22,23)(33,34,36,35), (1,3,6,16)(2,8,11,24)(4,17,7,14)(5,19,20,15)(9,25,12,13)(10,27,28,23)(18,31,21,22)(26,30,29,32)(33,35,36,34), (1,4,6,7)(2,9,11,12)(3,14,16,17)(5,18,20,21)(8,13,24,25)(10,26,28,29)(15,31,19,22)(23,30,27,32), (1,5,7,21,6,20,4,18)(2,10,12,29,11,28,9,26)(3,15,14,31,16,19,17,22)(8,23,13,30,24,27,25,32)(33,36)(34,35), (1,6)(2,11)(3,16)(4,7)(5,20)(8,24)(9,12)(10,28)(13,25)(14,17)(15,19)(18,21)(22,31)(23,27)(26,29)(30,32)(33,36)(34,35), (1,7,6,4)(2,12,11,9)(3,14,16,17)(5,21,20,18)(8,13,24,25)(10,29,28,26)(15,31,19,22)(23,30,27,32), (1,6)(2,11)(3,16)(4,7)(5,20)(8,24)(9,12)(10,28)(13,25)(14,17)(15,19)(18,21)(22,31)(23,27)(26,29)(30,32) ); GLZN := Group([[[ZmodnZObj(25,51), ZmodnZObj(0,51)], [ZmodnZObj(0,51), ZmodnZObj(25,51)]],[[ZmodnZObj(13,51), ZmodnZObj(0,51)], [ZmodnZObj(0,51), ZmodnZObj(13,51)]],[[ZmodnZObj(16,51), ZmodnZObj(0,51)], [ZmodnZObj(0,51), ZmodnZObj(16,51)]],[[ZmodnZObj(16,51), ZmodnZObj(0,51)], [ZmodnZObj(0,51), ZmodnZObj(1,51)]],[[ZmodnZObj(0,51), ZmodnZObj(25,51)], [ZmodnZObj(1,51), ZmodnZObj(0,51)]],[[ZmodnZObj(38,51), ZmodnZObj(0,51)], [ZmodnZObj(0,51), ZmodnZObj(38,51)]],[[ZmodnZObj(0,51), ZmodnZObj(20,51)], [ZmodnZObj(10,51), ZmodnZObj(0,51)]]]); GLZq := Group([[[ZmodnZObj(5,32), ZmodnZObj(3,32)], [ZmodnZObj(2,32), ZmodnZObj(3,32)]],[[ZmodnZObj(31,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(31,32)]],[[ZmodnZObj(15,32), ZmodnZObj(20,32)], [ZmodnZObj(24,32), ZmodnZObj(7,32)]],[[ZmodnZObj(31,32), ZmodnZObj(24,32)], [ZmodnZObj(16,32), ZmodnZObj(15,32)]],[[ZmodnZObj(21,32), ZmodnZObj(30,32)], [ZmodnZObj(4,32), ZmodnZObj(9,32)]],[[ZmodnZObj(1,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(17,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]]]); # Booleans booleans_128_111 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_128_111:=rec(); chartbl_128_111.IsFinite:= true; chartbl_128_111.UnderlyingCharacteristic:= 0; chartbl_128_111.UnderlyingGroup:= GPC; chartbl_128_111.Size:= 128; chartbl_128_111.InfoText:= "Character table for group 128.111 downloaded from the LMFDB."; chartbl_128_111.Identifier:= " OD32:C4 "; chartbl_128_111.NrConjugacyClasses:= 56; chartbl_128_111.ConjugacyClasses:= [ of ..., f6, f2, f2*f6, f7, f2*f7, f5, f5*f6, f2*f5*f6, f2*f5, f5*f7, f2*f5*f7, f1, f1*f2, f1*f7, f1*f2*f7, f4*f7, f4*f5*f6*f7, f4*f5*f7, f4*f6*f7, f2*f4*f5*f7, f2*f4*f6*f7, f2*f4*f7, f2*f4*f5*f6*f7, f2*f4, f2*f4*f5, f4, f4*f5*f6, f1*f4, f1*f2*f4*f7, f1*f4*f7, f1*f2*f4, f3, f3*f4*f6*f7, f3*f4, f3*f7, f3*f5, f3*f4*f6, f3*f4*f7, f3*f6, f2*f3, f2*f3*f4*f6*f7, f2*f3*f4, f2*f3*f7, f2*f3*f5, f2*f3*f4*f6, f2*f3*f4*f7, f2*f3*f6, f1*f3, f1*f2*f3*f4*f7, f1*f2*f3*f4, f1*f3*f7, f1*f3*f4, f1*f2*f3*f7, f1*f2*f3, f1*f3*f4*f7]; chartbl_128_111.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]; chartbl_128_111.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 7, 8, 8, 7, 8, 7, 7, 8, 7, 8, 7, 8, 9, 10, 10, 9, 27, 28, 28, 27, 27, 28, 28, 27, 27, 28, 28, 27, 27, 28, 28, 27, 21, 22, 23, 24, 23, 24, 21, 22]]; chartbl_128_111.SizesCentralizers:= [128, 128, 128, 128, 64, 64, 128, 128, 128, 128, 64, 64, 32, 32, 32, 32, 128, 128, 128, 128, 128, 128, 128, 128, 64, 64, 64, 64, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 32, 32, 32]; chartbl_128_111.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "4A1", "4A-1", "4B1", "4B-1", "4C", "4D", "4E1", "4E-1", "4F1", "4F-1", "8A1", "8A-1", "8A3", "8A-3", "8B1", "8B-1", "8B3", "8B-3", "8C1", "8C-1", "8D1", "8D-1", "8E1", "8E-1", "8F1", "8F-1", "16A1", "16A-1", "16A3", "16A-3", "16A5", "16A-5", "16A7", "16A-7", "16B1", "16B-1", "16B3", "16B-3", "16B5", "16B-5", "16B7", "16B-7", "16C1", "16C-1", "16C3", "16C-3", "16D1", "16D-1", "16D3", "16D-3"]; chartbl_128_111.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]; chartbl_128_111.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1*E(4), E(4), -1*E(4), E(4), -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1, 1, -1, -1, 1, -1, 1, 1], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, E(4), -1*E(4), E(4), -1*E(4), -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1, 1, -1, -1, 1, -1, 1, 1], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1*E(4), E(4), -1*E(4), E(4), -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), 1, -1, 1, 1, -1, 1, -1, -1], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, E(4), -1*E(4), E(4), -1*E(4), -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1*E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), 1, -1, 1, 1, -1, 1, -1, -1], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1*E(4), E(4), -1*E(4), E(4), 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1*E(4), E(4), E(4), -1*E(4), -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4)], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, E(4), -1*E(4), E(4), -1*E(4), 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, E(4), -1*E(4), -1*E(4), E(4), -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4)], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1*E(4), E(4), -1*E(4), E(4), 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1*E(4), E(4), E(4), -1*E(4), 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4)], [1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, E(4), -1*E(4), E(4), -1*E(4), 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, E(4), -1*E(4), -1*E(4), E(4), 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4)], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4)], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1, 1, -1, 1, -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8), E(8), -1*E(8), E(8)^3], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1, 1, -1, 1, E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8), -1*E(8)^3, E(8), E(8), E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8), E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8)], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1, 1, -1, 1, E(8), E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8)^3, E(8), -1*E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1, 1, -1, 1, -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8), -1*E(8), E(8), E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8)], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, 1, -1, 1, -1, E(8)^3, E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8), -1*E(8)^3, E(8), E(8), E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8)], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, 1, -1, 1, -1, -1*E(8), -1*E(8)^3, -1*E(8), E(8), E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8), E(8)^3, -1*E(8), E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, 1, -1, 1, -1, -1*E(8)^3, -1*E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8), E(8), -1*E(8), E(8), E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8), E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8)], [1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, 1, -1, 1, -1, E(8), E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8)^3, E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8), E(8), -1*E(8), E(8)^3], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8), E(8), E(8), E(8)^3, -1*E(8), E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8), E(8)^3, E(8), E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8), E(8), E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3, E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8)], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^3, E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8)^3, E(8)^3, E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8), -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8), E(8), -1*E(8), E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8), E(8), E(8), E(8)^3, -1*E(8), E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8)^3, -1*E(8), E(8), E(8), -1*E(8)^3], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8), E(8)^3, E(8), E(8), -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, E(8), E(8), E(8)^3, -1*E(8), E(8), -1*E(8), E(8)^3, -1*E(8), E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8)], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^3, E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8), -1*E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8)^3, E(8), -1*E(8), -1*E(8), E(8)^3], [1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, E(8), -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3, E(8)^3, E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8)^3, -1*E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8), E(8), -1*E(8)^3, E(8), -1*E(8)^3, E(8)^3, E(8)^3, -1*E(8)], [2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, -2*E(4), 2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 2*E(4), -2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -2*E(4), -2*E(4), 2*E(4), -2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 2*E(4), 2*E(4), -2*E(4), 2*E(4), -2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^3+E(16)^7, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)-E(16)^5, -1*E(16)+E(16)^5, -1*E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, E(16)-E(16)^5, E(16)^3-E(16)^7, E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^6, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, -1*E(16)+E(16)^5, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, E(16)+E(16)^5, E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)-E(16)^5, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)+E(16)^5, E(16)-E(16)^5, E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)+E(16)^5, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^6, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(16)+E(16)^5, E(16)^3+E(16)^7, E(16)-E(16)^5, E(16)-E(16)^5, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)^3-E(16)^7, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^2, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, -1*E(16)-E(16)^5, E(16)+E(16)^5, E(16)+E(16)^5, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)^3+E(16)^7, E(16)-E(16)^5, E(16)^3-E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, E(16)+E(16)^5, E(16)+E(16)^5, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, E(16)-E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^2, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)-E(16)^5, E(16)+E(16)^5, -1*E(16)-E(16)^5, -1*E(16)-E(16)^5, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 0, 0, 2*E(16)^4, -2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, -1*E(16)-E(16)^5, E(16)-E(16)^5, E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)^3+E(16)^7, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, -1*E(16)+E(16)^5, -1*E(16)+E(16)^5, E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)+E(16)^5, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)+E(16)^5, E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)+E(16)^5, E(16)-E(16)^5, E(16)-E(16)^5, -1*E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)-E(16)^5, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)^3-E(16)^7, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)+E(16)^5, E(16)+E(16)^5, -1*E(16)-E(16)^5, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)-E(16)^5, E(16)^3-E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)+E(16)^5, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)+E(16)^5, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, E(16)-E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 0, 0, 0, 0, E(16)^3-E(16)^7, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)-E(16)^5, -1*E(16)-E(16)^5, E(16)+E(16)^5, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 0, 0, 0, 0, E(16)-E(16)^5, E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)-E(16)^5, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_128_111);