/* Group 126.7 downloaded from the LMFDB on 30 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([4, -2, -3, -3, -7, 8, 722, 582, 46, 867, 295]); a,b := Explode([GPC.1, GPC.3]); AssignNames(~GPC, ["a", "a2", "b", "b3"]); GPerm := PermutationGroup< 10 | (2,3)(4,6)(5,7), (2,4,5)(3,6,7)(8,9,10), (8,10,9), (1,2,5,6,4,7,3) >; GLFp := MatrixGroup< 2, GF(7) | [[1, 1, 0, 1], [1, 0, 0, 3], [2, 0, 0, 4]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_126_7 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 7, a^3>,< 3, 1, b^14>,< 3, 1, b^7>,< 3, 7, a^2>,< 3, 7, a^4>,< 3, 7, a^2*b^11>,< 3, 7, a^4*b^19>,< 3, 7, a^2*b>,< 3, 7, a^4*b^17>,< 6, 7, a>,< 6, 7, a^5>,< 6, 7, a*b>,< 6, 7, a^5*b^2>,< 6, 7, a*b^2>,< 6, 7, a^5*b>,< 6, 7, a^3*b>,< 6, 7, a^3*b^2>,< 7, 6, b^3>,< 21, 6, b>,< 21, 6, b^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,1,K.1,K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,1,K.1^-1,K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,K.1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,1,K.1,1,K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,1,K.1^-1,1,K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,1,K.1,K.1,K.1^-1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1^-1,K.1,-1*K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1,K.1^-1,-1*K.1^-1,-1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1^-1,K.1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1,-1*K.1,-1,-1*K.1^-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,K.1,K.1^-1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1,-1*K.1^-1,-1,-1*K.1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,0,6*K.1^-1,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,0,6*K.1,6*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_126_7:= KnownIrreducibles(CR);