/* Group 125.3 downloaded from the LMFDB on 13 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([3, -5, 5, -5, 631]); a,b,c := Explode([GPC.1, GPC.2, GPC.3]); AssignNames(~GPC, ["a", "b", "c"]); GPerm := PermutationGroup< 25 | (1,6,12,19,22)(2,7,13,20,23)(3,8,14,16,24)(4,9,15,17,25)(5,10,11,18,21), (1,21,16,11,6)(2,22,17,12,7)(3,23,18,13,8)(4,24,19,14,9)(5,25,20,15,10), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22) >; GLFp := MatrixGroup< 3, GF(5) | [[4, 4, 4, 1, 4, 3, 3, 4, 0], [2, 0, 4, 2, 1, 3, 1, 0, 0], [1, 3, 4, 1, 2, 2, 0, 3, 0]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_125_3 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 5, 1, c>,< 5, 1, c^4>,< 5, 1, c^2>,< 5, 1, c^3>,< 5, 5, b>,< 5, 5, b^4>,< 5, 5, b^2>,< 5, 5, b^3>,< 5, 5, a>,< 5, 5, a^4>,< 5, 5, a^2>,< 5, 5, a^3>,< 5, 5, a*b>,< 5, 5, a^4*b^4>,< 5, 5, a^2*b^2>,< 5, 5, a^3*b^3>,< 5, 5, a*b^2>,< 5, 5, a^4*b^3>,< 5, 5, a^2*b^4>,< 5, 5, a^3*b>,< 5, 5, a^2*b>,< 5, 5, a^3*b^4>,< 5, 5, a^4*b^2>,< 5, 5, a*b^3>,< 5, 5, a*b^4>,< 5, 5, a^4*b>,< 5, 5, a^2*b^3>,< 5, 5, a^3*b^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,1,K.1,K.1^-1,K.1^-2,1,K.1^-2,1,K.1^2,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,1,K.1^-1,K.1,K.1^2,1,K.1^2,1,K.1^-2,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1^-2,1,K.1^-2,K.1^2,K.1^-1,1,K.1^-1,1,K.1,1,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,1,K.1^2,K.1^-2,K.1,1,K.1,1,K.1^-1,1,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^2,1,K.1,K.1^-2,K.1^-1,1,K.1^-2,K.1^2,K.1^-1,1,K.1^-1,K.1,K.1,K.1^-2,1,K.1^-1,K.1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-2,1,K.1^-1,K.1^2,K.1,1,K.1^2,K.1^-2,K.1,1,K.1,K.1^-1,K.1^-1,K.1^2,1,K.1,K.1^-1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1,1,K.1^-2,K.1^-1,K.1^2,1,K.1^-1,K.1,K.1^2,1,K.1^2,K.1^-2,K.1^-2,K.1^-1,1,K.1^2,K.1^-2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-1,1,K.1^2,K.1,K.1^-2,1,K.1,K.1^-1,K.1^-2,1,K.1^-2,K.1^2,K.1^2,K.1,1,K.1^-2,K.1^2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,1,K.1^2,K.1^-2,K.1^-1,1,K.1^-2,K.1^-1,K.1^2,K.1,1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,1,K.1^-2,K.1^2,K.1,1,K.1^2,K.1,K.1^-2,K.1^-1,1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,1,K.1,K.1^-1,K.1^2,1,K.1^-1,K.1^2,K.1,K.1^-2,1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^2,K.1,1,K.1^-1,K.1,K.1^-2,1,K.1,K.1^-2,K.1^-1,K.1^2,1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,1,K.1,K.1^2,K.1^-1,1,K.1^-1,K.1,K.1^2,1,K.1^-1,K.1^2,K.1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,1,K.1^-1,K.1^-2,K.1,1,K.1,K.1^-1,K.1^-2,1,K.1,K.1^-2,K.1^-1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,1,K.1^-2,K.1,K.1^2,1,K.1^2,K.1^-2,K.1,1,K.1^2,K.1,K.1^-2,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,1,K.1^2,K.1^-1,K.1^-2,1,K.1^-2,K.1^2,K.1^-1,1,K.1^-2,K.1^-1,K.1^2,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-2,K.1,K.1^-1,1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,1,K.1^2,K.1^-1,K.1,K.1^2,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^2,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,1,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,1,K.1^-2,K.1,K.1^-1,K.1^-2,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,1,K.1,K.1^2,K.1^-2,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^2,K.1^-2,1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1^-2,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-2,1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^2,1,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^-1,1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^2,K.1,1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |5,5*K.1^-2,5*K.1^2,5*K.1^-1,5*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |5,5*K.1^2,5*K.1^-2,5*K.1,5*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |5,5*K.1^-1,5*K.1,5*K.1^2,5*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |5,5*K.1,5*K.1^-1,5*K.1^-2,5*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_125_3:= KnownIrreducibles(CR);