# Group 1200.481 downloaded from the LMFDB on 14 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPerm := Group( (1,2,7,6,14,17,8,4,13,5,10,3)(9,18,12,23,20,16,11,21,24,15,22,19)(25,28)(27,29), (1,4)(2,8)(3,11)(5,14)(6,10)(7,15)(9,17)(12,24)(13,23)(16,19)(25,26)(28,29) ); GLFp := Group([[[ Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^2, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^2, 0*Z(5) ], [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^2 ]], [[ Z(5)^3, Z(5)^0, Z(5), Z(5)^0 ], [ Z(5)^0, Z(5), 0*Z(5), Z(5)^2 ], [ Z(5)^3, Z(5)^2, Z(5)^2, Z(5) ], [ Z(5), 0*Z(5), Z(5), Z(5) ]], [[ Z(5)^3, 0*Z(5), 0*Z(5), 0*Z(5) ], [ Z(5)^3, Z(5), 0*Z(5), 0*Z(5) ], [ Z(5), Z(5), Z(5)^0, Z(5) ], [ Z(5)^3, Z(5), Z(5)^2, Z(5)^2 ]], [[ Z(5), Z(5)^2, Z(5)^2, Z(5)^0 ], [ Z(5)^0, Z(5)^0, 0*Z(5), Z(5)^3 ], [ Z(5), Z(5)^0, Z(5)^3, 0*Z(5) ], [ Z(5)^0, Z(5)^0, Z(5), Z(5)^2 ]], [[ 0*Z(5), Z(5), Z(5)^2, Z(5) ], [ Z(5)^0, Z(5)^3, Z(5)^2, Z(5)^2 ], [ Z(5)^3, 0*Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), Z(5), Z(5)^0, Z(5) ]]]); # Booleans booleans_1200_481 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false); # Character Table chartbl_1200_481:=rec(); chartbl_1200_481.IsFinite:= true; chartbl_1200_481.UnderlyingCharacteristic:= 0; chartbl_1200_481.UnderlyingGroup:= GLFp; chartbl_1200_481.Size:= 1200; chartbl_1200_481.InfoText:= "Character table for group 1200.481 downloaded from the LMFDB."; chartbl_1200_481.Identifier:= " SL(2,5):D5 "; chartbl_1200_481.NrConjugacyClasses:= 36; chartbl_1200_481.ConjugacyClasses:= [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4], [2, 3, 4, 3, 2, 0, 3, 2, 1, 2, 0, 1, 4, 2, 1, 3], [4, 3, 3, 2, 0, 1, 0, 4, 3, 2, 0, 4, 0, 3, 0, 3], [1, 2, 4, 2, 3, 4, 1, 2, 4, 1, 0, 1, 3, 3, 2, 0], [4, 3, 1, 3, 2, 1, 4, 3, 1, 4, 0, 4, 2, 2, 3, 0], [2, 4, 4, 1, 1, 3, 4, 4, 2, 2, 0, 3, 3, 2, 1, 0], [4, 2, 4, 2, 2, 2, 0, 3, 1, 3, 1, 4, 4, 0, 4, 2], [2, 4, 3, 4, 4, 3, 0, 1, 2, 1, 1, 3, 3, 0, 3, 3], [1, 0, 0, 0, 0, 0, 3, 4, 3, 4, 4, 4, 4, 3, 1, 4], [1, 0, 0, 0, 0, 4, 1, 3, 1, 3, 2, 3, 3, 1, 2, 2], [4, 3, 0, 2, 1, 4, 0, 4, 0, 0, 1, 0, 1, 2, 0, 0], [1, 3, 0, 0, 2, 2, 0, 3, 0, 0, 1, 0, 1, 1, 0, 0], [1, 4, 1, 2, 4, 4, 2, 3, 3, 0, 1, 3, 1, 2, 3, 3], [2, 4, 1, 3, 4, 3, 3, 0, 4, 3, 3, 3, 1, 3, 2, 1], [0, 3, 3, 2, 0, 2, 0, 4, 3, 2, 1, 4, 0, 3, 0, 4], [0, 4, 3, 4, 4, 1, 0, 1, 2, 1, 4, 3, 3, 0, 3, 1], [2, 2, 4, 2, 2, 0, 0, 3, 1, 3, 4, 4, 4, 0, 4, 0], [4, 0, 0, 0, 0, 2, 1, 3, 1, 3, 0, 3, 3, 1, 2, 0], [4, 0, 0, 0, 0, 3, 3, 4, 3, 4, 2, 4, 4, 3, 1, 2], [3, 0, 0, 1, 2, 0, 0, 3, 0, 0, 4, 0, 0, 3, 0, 4], [1, 2, 0, 3, 4, 1, 0, 1, 0, 0, 4, 0, 4, 3, 0, 0], [1, 0, 0, 2, 0, 2, 2, 4, 2, 1, 3, 0, 0, 2, 3, 0], [1, 3, 3, 0, 3, 2, 0, 0, 4, 4, 4, 0, 1, 0, 2, 4], [4, 1, 2, 3, 0, 4, 1, 3, 4, 4, 3, 0, 2, 4, 1, 4], [3, 4, 3, 1, 2, 0, 0, 1, 0, 3, 3, 4, 4, 1, 4, 4], [2, 1, 2, 4, 2, 4, 2, 1, 0, 2, 0, 4, 3, 1, 2, 2], [3, 4, 4, 0, 0, 3, 4, 2, 1, 2, 2, 0, 4, 3, 2, 0], [3, 4, 0, 0, 3, 4, 4, 2, 3, 0, 0, 2, 0, 0, 2, 3], [0, 1, 3, 2, 3, 4, 1, 2, 0, 4, 0, 0, 1, 4, 1, 1], [0, 2, 4, 2, 3, 3, 4, 4, 0, 4, 3, 1, 4, 4, 0, 4], [0, 3, 1, 3, 1, 2, 1, 1, 4, 4, 3, 2, 4, 0, 3, 0], [0, 3, 1, 3, 3, 2, 1, 1, 1, 3, 1, 1, 3, 2, 2, 2], [0, 2, 4, 2, 0, 3, 4, 4, 2, 3, 1, 0, 3, 1, 4, 1], [0, 2, 2, 2, 4, 2, 0, 4, 1, 3, 0, 3, 1, 3, 1, 0], [4, 0, 0, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 1, 0, 0]]; chartbl_1200_481.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]; chartbl_1200_481.ComputedPowerMaps:= [ , [1, 1, 1, 4, 2, 2, 2, 9, 8, 11, 10, 13, 12, 15, 14, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 28, 27, 18, 17, 19, 19, 20, 20, 27, 28], [1, 2, 3, 1, 6, 5, 7, 9, 8, 11, 10, 13, 12, 15, 14, 2, 18, 17, 20, 19, 22, 21, 24, 23, 5, 6, 8, 9, 30, 29, 33, 34, 31, 32, 17, 18], [1, 2, 3, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 16, 2, 2, 2, 2, 2, 2, 2, 2, 25, 26, 4, 4, 7, 7, 6, 5, 5, 6, 16, 16]]; chartbl_1200_481.SizesCentralizers:= [1200, 1200, 8, 60, 240, 240, 40, 600, 600, 100, 100, 50, 50, 50, 50, 60, 600, 600, 100, 100, 50, 50, 50, 50, 12, 12, 30, 30, 20, 20, 20, 20, 20, 20, 30, 30]; chartbl_1200_481.ClassNames:= ["1A", "2A", "2B", "3A", "4A1", "4A-1", "4B", "5A1", "5A2", "5B1", "5B2", "5C1", "5C2", "5D1", "5D2", "6A", "10A1", "10A3", "10B1", "10B3", "10C1", "10C3", "10D1", "10D3", "12A1", "12A-1", "15A1", "15A2", "20A1", "20A3", "20B1", "20B-1", "20B3", "20B-3", "30A1", "30A7"]; chartbl_1200_481.OrderClassRepresentatives:= [1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 15, 15, 20, 20, 20, 20, 20, 20, 30, 30]; chartbl_1200_481.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1], [2, 2, 0, 2, 0, 0, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 2, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 2, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, 0, 0, E(5)^2+E(5)^-2, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1], [2, 2, 0, 2, 0, 0, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 2, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 2, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, 0, 0, E(5)+E(5)^-1, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2], [2, -2, 0, -1, -2*E(20)^5, 2*E(20)^5, 0, 2, 2, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, E(20)^4+E(20)^-4, 1, -2, -2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, -1*E(20)^5, E(20)^5, -1, -1, -1*E(20)^3-E(20)^7, -1*E(20)^3+E(20)^5-E(20)^7, E(20)^3-E(20)^5+E(20)^7, 0, E(20)^3+E(20)^7, 0, 1, 1], [2, -2, 0, -1, 2*E(20)^5, -2*E(20)^5, 0, 2, 2, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, E(20)^4+E(20)^-4, 1, -2, -2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, E(20)^5, -1*E(20)^5, -1, -1, E(20)^3+E(20)^7, E(20)^3-E(20)^5+E(20)^7, -1*E(20)^3+E(20)^5-E(20)^7, 0, -1*E(20)^3-E(20)^7, 0, 1, 1], [2, -2, 0, -1, -2*E(20)^5, 2*E(20)^5, 0, 2, 2, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, -1*E(20)^2-E(20)^-2, 1, -2, -2, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, -1*E(20)^5, E(20)^5, -1, -1, E(20)^3-E(20)^5+E(20)^7, E(20)^3+E(20)^7, -1*E(20)^3-E(20)^7, 0, -1*E(20)^3+E(20)^5-E(20)^7, 0, 1, 1], [2, -2, 0, -1, 2*E(20)^5, -2*E(20)^5, 0, 2, 2, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, E(20)^4+E(20)^-4, E(20)^4+E(20)^-4, -1*E(20)^2-E(20)^-2, -1*E(20)^2-E(20)^-2, 1, -2, -2, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, -1*E(20)^4-E(20)^-4, -1*E(20)^4-E(20)^-4, E(20)^2+E(20)^-2, E(20)^5, -1*E(20)^5, -1, -1, -1*E(20)^3+E(20)^5-E(20)^7, -1*E(20)^3-E(20)^7, E(20)^3+E(20)^7, 0, E(20)^3-E(20)^5+E(20)^7, 0, 1, 1], [3, 3, -1, 0, 3, 3, -1, 3, 3, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, 0, 3, 3, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, 0, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1, -1*E(5)-E(5)^-1, -1, 0, 0], [3, 3, -1, 0, 3, 3, -1, 3, 3, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, 0, 3, 3, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, 0, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1, -1*E(5)^2-E(5)^-2, -1, 0, 0], [3, 3, 1, 0, -3, -3, -1, 3, 3, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, 0, 3, 3, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, -1, E(5)+E(5)^-1, -1, 0, 0], [3, 3, 1, 0, -3, -3, -1, 3, 3, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, 0, 3, 3, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, -1, E(5)^2+E(5)^-2, -1, 0, 0], [4, 4, 0, 1, 4, 4, 0, 4, 4, -1, -1, -1, -1, -1, -1, 1, 4, 4, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 0, -1, 0, 1, 1], [4, 4, 0, 1, -4, -4, 0, 4, 4, -1, -1, -1, -1, -1, -1, 1, 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1], [4, -4, 0, 1, -4*E(4), 4*E(4), 0, 4, 4, -1, -1, -1, -1, -1, -1, -1, -4, -4, 1, 1, 1, 1, 1, 1, E(4), -1*E(4), 1, 1, -1*E(4), E(4), -1*E(4), 0, E(4), 0, -1, -1], [4, -4, 0, 1, 4*E(4), -4*E(4), 0, 4, 4, -1, -1, -1, -1, -1, -1, -1, -4, -4, 1, 1, 1, 1, 1, 1, -1*E(4), E(4), 1, 1, E(4), -1*E(4), E(4), 0, -1*E(4), 0, -1, -1], [4, -4, 0, -2, 0, 0, 0, 2*E(5)^2+2*E(5)^-2, 2*E(5)+2*E(5)^-1, 2*E(5)^2+2*E(5)^-2, 2*E(5)+2*E(5)^-1, -1, 1-E(5)^2-E(5)^-2, -1, 2+E(5)^2+E(5)^-2, 2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2-E(5)^2-E(5)^-2, -1+E(5)^2+E(5)^-2, 1, 1, 0, 0, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, 0, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1], [4, -4, 0, -2, 0, 0, 0, 2*E(5)+2*E(5)^-1, 2*E(5)^2+2*E(5)^-2, 2*E(5)+2*E(5)^-1, 2*E(5)^2+2*E(5)^-2, -1, 2+E(5)^2+E(5)^-2, -1, 1-E(5)^2-E(5)^-2, 2, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -1+E(5)^2+E(5)^-2, -2-E(5)^2-E(5)^-2, 1, 1, 0, 0, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, 0, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2], [4, -4, 0, -2, 0, 0, 0, 2*E(5)^2+2*E(5)^-2, 2*E(5)+2*E(5)^-1, 2*E(5)+2*E(5)^-1, 2*E(5)^2+2*E(5)^-2, 2+E(5)^2+E(5)^-2, -1, 1-E(5)^2-E(5)^-2, -1, 2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, 1, 1, -2-E(5)^2-E(5)^-2, -1+E(5)^2+E(5)^-2, 0, 0, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, 0, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1], [4, -4, 0, -2, 0, 0, 0, 2*E(5)+2*E(5)^-1, 2*E(5)^2+2*E(5)^-2, 2*E(5)^2+2*E(5)^-2, 2*E(5)+2*E(5)^-1, 1-E(5)^2-E(5)^-2, -1, 2+E(5)^2+E(5)^-2, -1, 2, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, 1, 1, -1+E(5)^2+E(5)^-2, -2-E(5)^2-E(5)^-2, 0, 0, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, 0, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2], [5, 5, 1, -1, 5, 5, 1, 5, 5, 0, 0, 0, 0, 0, 0, -1, 5, 5, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 0, 1, -1, -1], [5, 5, -1, -1, -5, -5, 1, 5, 5, 0, 0, 0, 0, 0, 0, -1, 5, 5, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, 1, 0, 1, -1, -1], [6, -6, 0, 0, -6*E(4), 6*E(4), 0, 6, 6, 1, 1, 1, 1, 1, 1, 0, -6, -6, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, E(4), -1*E(4), E(4), 0, -1*E(4), 0, 0, 0], [6, -6, 0, 0, 6*E(4), -6*E(4), 0, 6, 6, 1, 1, 1, 1, 1, 1, 0, -6, -6, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1*E(4), E(4), -1*E(4), 0, E(4), 0, 0, 0], [6, 6, 0, 0, 0, 0, -2, 3*E(5)^2+3*E(5)^-2, 3*E(5)+3*E(5)^-1, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2-E(5)^2-E(5)^-2, 1, -1+E(5)^2+E(5)^-2, 1, 0, 3*E(5)+3*E(5)^-1, 3*E(5)^2+3*E(5)^-2, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, 1, 1, -2-E(5)^2-E(5)^-2, -1+E(5)^2+E(5)^-2, 0, 0, 0, 0, 0, 0, 0, -1*E(5)^2-E(5)^-2, 0, -1*E(5)-E(5)^-1, 0, 0], [6, 6, 0, 0, 0, 0, -2, 3*E(5)+3*E(5)^-1, 3*E(5)^2+3*E(5)^-2, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -1+E(5)^2+E(5)^-2, 1, -2-E(5)^2-E(5)^-2, 1, 0, 3*E(5)^2+3*E(5)^-2, 3*E(5)+3*E(5)^-1, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, 1, 1, -1+E(5)^2+E(5)^-2, -2-E(5)^2-E(5)^-2, 0, 0, 0, 0, 0, 0, 0, -1*E(5)-E(5)^-1, 0, -1*E(5)^2-E(5)^-2, 0, 0], [6, 6, 0, 0, 0, 0, -2, 3*E(5)^2+3*E(5)^-2, 3*E(5)+3*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, 1, -1+E(5)^2+E(5)^-2, 1, -2-E(5)^2-E(5)^-2, 0, 3*E(5)+3*E(5)^-1, 3*E(5)^2+3*E(5)^-2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2-E(5)^2-E(5)^-2, -1+E(5)^2+E(5)^-2, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1*E(5)^2-E(5)^-2, 0, -1*E(5)-E(5)^-1, 0, 0], [6, 6, 0, 0, 0, 0, -2, 3*E(5)+3*E(5)^-1, 3*E(5)^2+3*E(5)^-2, -2*E(5)-2*E(5)^-1, -2*E(5)^2-2*E(5)^-2, 1, -2-E(5)^2-E(5)^-2, 1, -1+E(5)^2+E(5)^-2, 0, 3*E(5)^2+3*E(5)^-2, 3*E(5)+3*E(5)^-1, -2*E(5)^2-2*E(5)^-2, -2*E(5)-2*E(5)^-1, -1+E(5)^2+E(5)^-2, -2-E(5)^2-E(5)^-2, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1*E(5)-E(5)^-1, 0, -1*E(5)^2-E(5)^-2, 0, 0], [8, 8, 0, 2, 0, 0, 0, 4*E(5)^2+4*E(5)^-2, 4*E(5)+4*E(5)^-1, -2, -2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 2, 4*E(5)+4*E(5)^-1, 4*E(5)^2+4*E(5)^-2, -2, -2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, 0, 0, 0, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1], [8, 8, 0, 2, 0, 0, 0, 4*E(5)+4*E(5)^-1, 4*E(5)^2+4*E(5)^-2, -2, -2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 2, 4*E(5)^2+4*E(5)^-2, 4*E(5)+4*E(5)^-1, -2, -2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, 0, 0, 0, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2], [8, -8, 0, 2, 0, 0, 0, 4*E(5)^2+4*E(5)^-2, 4*E(5)+4*E(5)^-1, -2, -2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -2, -4*E(5)-4*E(5)^-1, -4*E(5)^2-4*E(5)^-2, 2, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, 0, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, 0, 0, 0, 0, 0, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1], [8, -8, 0, 2, 0, 0, 0, 4*E(5)+4*E(5)^-1, 4*E(5)^2+4*E(5)^-2, -2, -2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -2, -4*E(5)^2-4*E(5)^-2, -4*E(5)-4*E(5)^-1, 2, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, 0, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, 0, 0, 0, 0, 0, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2], [10, 10, 0, -2, 0, 0, 2, 5*E(5)^2+5*E(5)^-2, 5*E(5)+5*E(5)^-1, 0, 0, 0, 0, 0, 0, -2, 5*E(5)+5*E(5)^-1, 5*E(5)^2+5*E(5)^-2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, E(5)^2+E(5)^-2, 0, E(5)+E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1], [10, 10, 0, -2, 0, 0, 2, 5*E(5)+5*E(5)^-1, 5*E(5)^2+5*E(5)^-2, 0, 0, 0, 0, 0, 0, -2, 5*E(5)^2+5*E(5)^-2, 5*E(5)+5*E(5)^-1, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, E(5)+E(5)^-1, 0, E(5)^2+E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2], [12, -12, 0, 0, 0, 0, 0, 6*E(5)^2+6*E(5)^-2, 6*E(5)+6*E(5)^-1, 2, 2, E(5)+E(5)^-1, E(5)^2+E(5)^-2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, 0, -6*E(5)-6*E(5)^-1, -6*E(5)^2-6*E(5)^-2, -2, -2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, -12, 0, 0, 0, 0, 0, 6*E(5)+6*E(5)^-1, 6*E(5)^2+6*E(5)^-2, 2, 2, E(5)^2+E(5)^-2, E(5)+E(5)^-1, E(5)+E(5)^-1, E(5)^2+E(5)^-2, 0, -6*E(5)^2-6*E(5)^-2, -6*E(5)-6*E(5)^-1, -2, -2, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, -1*E(5)^2-E(5)^-2, -1*E(5)-E(5)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_1200_481);