/* Group 1152.157872 downloaded from the LMFDB on 09 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([9, -2, -2, -3, -2, -3, -2, 2, 2, 2, 181, 46, 218, 2163, 102, 2164, 54437, 1976, 1175, 3813, 1554, 46663, 5650, 1987, 58328, 1007, 2474]); a,b,c,d,e,f,g := Explode([GPC.1, GPC.2, GPC.4, GPC.6, GPC.7, GPC.8, GPC.9]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "d", "e", "f", "g"]); GPerm := PermutationGroup< 15 | (1,2)(3,8)(4,7)(5,6)(10,11), (12,13)(14,15), (12,14)(13,15), (3,4,5)(6,7,8), (9,10,11), (1,3)(2,6)(4,5)(7,8), (1,4)(2,7)(3,5)(6,8), (1,5)(2,7)(3,4)(6,8), (1,3)(2,8)(4,5)(6,7) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1152_157872 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(12,13)(14,15)>,< 2, 1, G!(12,14)(13,15)>,< 2, 1, G!(12,15)(13,14)>,< 2, 3, G!(1,3)(2,6)(4,5)(7,8)>,< 2, 3, G!(1,3)(2,6)(4,5)(7,8)(12,13)(14,15)>,< 2, 3, G!(1,3)(2,6)(4,5)(7,8)(12,14)(13,15)>,< 2, 3, G!(1,3)(2,6)(4,5)(7,8)(12,15)(13,14)>,< 2, 3, G!(1,3)(2,7)(4,5)(6,8)>,< 2, 3, G!(1,3)(2,7)(4,5)(6,8)(12,13)(14,15)>,< 2, 3, G!(1,3)(2,7)(4,5)(6,8)(12,14)(13,15)>,< 2, 3, G!(1,3)(2,7)(4,5)(6,8)(12,15)(13,14)>,< 2, 3, G!(1,3)(2,8)(4,5)(6,7)>,< 2, 3, G!(1,3)(2,8)(4,5)(6,7)(12,13)(14,15)>,< 2, 3, G!(1,3)(2,8)(4,5)(6,7)(12,14)(13,15)>,< 2, 3, G!(1,3)(2,8)(4,5)(6,7)(12,15)(13,14)>,< 2, 6, G!(2,6)(7,8)>,< 2, 6, G!(2,6)(7,8)(12,13)(14,15)>,< 2, 6, G!(2,6)(7,8)(12,14)(13,15)>,< 2, 6, G!(2,6)(7,8)(12,15)(13,14)>,< 2, 36, G!(1,2)(3,8)(4,7)(5,6)(10,11)>,< 2, 36, G!(1,8)(2,3)(4,6)(5,7)(9,10)(12,14)(13,15)>,< 2, 36, G!(1,8)(2,5)(3,6)(4,7)(9,10)(12,13)(14,15)>,< 2, 36, G!(1,2)(3,7)(4,6)(5,8)(9,11)(12,15)(13,14)>,< 3, 2, G!(9,11,10)>,< 3, 32, G!(3,5,4)(6,8,7)>,< 3, 32, G!(3,5,4)(6,8,7)(9,11,10)>,< 3, 32, G!(3,5,4)(6,8,7)(9,10,11)>,< 4, 36, G!(1,2,4,7)(3,8,5,6)(9,10)(12,14)(13,15)>,< 4, 36, G!(1,8,4,6)(2,5,7,3)(9,10)>,< 4, 36, G!(1,7,4,8)(2,5,6,3)(10,11)>,< 4, 36, G!(1,7,3,2)(4,8,5,6)(9,11)(12,13)(14,15)>,< 4, 36, G!(1,6,5,8)(2,4,7,3)(9,11)(12,15)(13,14)>,< 4, 36, G!(1,8,4,7)(2,3,6,5)(10,11)(12,14)(13,15)>,< 4, 36, G!(1,6,3,8)(2,5,7,4)(9,10)(12,14)(13,15)>,< 4, 36, G!(1,8,5,2)(3,6,4,7)(9,10)(12,15)(13,14)>,< 4, 36, G!(1,8,3,6)(2,4,7,5)(9,10)>,< 4, 36, G!(1,7,4,8)(2,5,6,3)(10,11)(12,13)(14,15)>,< 4, 36, G!(1,7,4,2)(3,6,5,8)(9,10)(12,13)(14,15)>,< 4, 36, G!(1,8,3,6)(2,4,7,5)(9,10)(12,15)(13,14)>,< 6, 2, G!(9,10,11)(12,13)(14,15)>,< 6, 2, G!(9,10,11)(12,14)(13,15)>,< 6, 2, G!(9,10,11)(12,15)(13,14)>,< 6, 6, G!(1,3)(2,6)(4,5)(7,8)(9,10,11)>,< 6, 6, G!(1,3)(2,6)(4,5)(7,8)(9,10,11)(12,13)(14,15)>,< 6, 6, G!(1,3)(2,6)(4,5)(7,8)(9,10,11)(12,14)(13,15)>,< 6, 6, G!(1,3)(2,6)(4,5)(7,8)(9,10,11)(12,15)(13,14)>,< 6, 6, G!(1,3)(2,7)(4,5)(6,8)(9,10,11)>,< 6, 6, G!(1,3)(2,7)(4,5)(6,8)(9,10,11)(12,13)(14,15)>,< 6, 6, G!(1,3)(2,7)(4,5)(6,8)(9,10,11)(12,14)(13,15)>,< 6, 6, G!(1,3)(2,7)(4,5)(6,8)(9,10,11)(12,15)(13,14)>,< 6, 6, G!(1,3)(2,8)(4,5)(6,7)(9,10,11)>,< 6, 6, G!(1,3)(2,8)(4,5)(6,7)(9,10,11)(12,13)(14,15)>,< 6, 6, G!(1,3)(2,8)(4,5)(6,7)(9,10,11)(12,14)(13,15)>,< 6, 6, G!(1,3)(2,8)(4,5)(6,7)(9,10,11)(12,15)(13,14)>,< 6, 6, G!(2,6)(7,8)(9,10,11)>,< 6, 6, G!(2,6)(7,8)(9,11,10)>,< 6, 6, G!(2,6)(7,8)(9,10,11)(12,13)(14,15)>,< 6, 6, G!(2,6)(7,8)(9,11,10)(12,13)(14,15)>,< 6, 6, G!(2,6)(7,8)(9,10,11)(12,14)(13,15)>,< 6, 6, G!(2,6)(7,8)(9,11,10)(12,14)(13,15)>,< 6, 6, G!(2,6)(7,8)(9,10,11)(12,15)(13,14)>,< 6, 6, G!(2,6)(7,8)(9,11,10)(12,15)(13,14)>,< 6, 32, G!(3,4,5)(6,7,8)(12,13)(14,15)>,< 6, 32, G!(3,4,5)(6,7,8)(12,14)(13,15)>,< 6, 32, G!(3,4,5)(6,7,8)(12,15)(13,14)>,< 6, 32, G!(3,4,5)(6,7,8)(9,10,11)(12,13)(14,15)>,< 6, 32, G!(3,4,5)(6,7,8)(9,10,11)(12,14)(13,15)>,< 6, 32, G!(3,4,5)(6,7,8)(9,10,11)(12,15)(13,14)>,< 6, 32, G!(3,4,5)(6,7,8)(9,11,10)(12,13)(14,15)>,< 6, 32, G!(3,4,5)(6,7,8)(9,11,10)(12,14)(13,15)>,< 6, 32, G!(3,4,5)(6,7,8)(9,11,10)(12,15)(13,14)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -2, -2, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -2, -2, 2, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -2, -2, 2, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 1, 1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -2, 2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -2, 2, -2, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 2, -2, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 1, -1, 1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 2, -2, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 2, -2, -2, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -1, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 2, -2, -2, -1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -1, 1, 1, -1, 1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, 3, 0, 0, 0, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 3, 0, 0, 0, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 3, 0, 0, 0, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, 3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, 3, 0, 0, 0, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -3, -3, 3, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, 3, -3, -3, 3, -1, 1, 1, -1, 1, -1, -1, 1, 3, 0, 0, 0, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -3, -3, 3, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -1, 1, 1, -1, 3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 3, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -3, -3, 3, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 3, -3, -3, 3, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -1, 1, 1, -1, 3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 3, 0, 0, 0, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -3, -3, 3, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 3, -3, -3, 3, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 3, 0, 0, 0, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -3, -3, 3, 3, -3, -3, 3, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 3, -3, -3, 3, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 3, 0, 0, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -3, -3, 3, 3, -3, -3, 3, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, 1, -1, -1, 1, 1, 3, 0, 0, 0, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -3, 3, -3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 3, -3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, 1, 1, 1, -1, -1, 3, 0, 0, 0, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -3, 3, -3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 3, -3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 3, 0, 0, 0, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -3, 3, -3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 3, -3, 3, -3, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 3, 0, 0, 0, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -3, 3, -3, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 3, -3, 3, -3, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 3, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -3, 3, -3, 3, -3, 3, -3, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -3, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 3, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -3, 3, -3, 3, -3, 3, -3, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, -1, 1, -1, 1, 3, 0, 0, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 3, -3, -3, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, 1, -1, 1, -1, 3, 0, 0, 0, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 3, -3, -3, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, -1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 3, 0, 0, 0, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 3, -3, -3, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, -1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 3, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 3, -3, -3, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 3, 3, -3, -3, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 3, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 3, -3, -3, 3, 3, -3, -3, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, 3, -3, -3, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 3, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 3, -3, -3, 3, 3, -3, -3, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, 6, 6, 6, 6, -2, -2, -2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 6, -2, 2, 2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 6, -6, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, -6, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, -2, 2, 2, -2, -2, 2, 2, -2, 6, -6, -6, 6, -2, 2, 2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, -2, 2, 2, -2, 6, -6, -6, 6, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -3, 3, 3, -3, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 6, -6, -6, 6, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, -3, 3, 3, -3, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, 2, -2, 2, -2, 2, 6, -6, 6, -6, -2, 2, -2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, 2, 6, -6, 6, -6, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -3, 3, -3, 3, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 6, -6, 6, -6, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, -3, 3, -3, 3, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -2, -2, 2, 2, -2, -2, 2, 2, 6, 6, -6, -6, -2, -2, 2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -2, -2, 2, 2, 6, 6, -6, -6, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -3, -3, 3, 3, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 6, 6, -6, -6, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -3, -3, 3, 3, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,1,1,1,1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,-3,1,1,1,1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-6,6,-2,2,2,-2,-2,2,2,-2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,1,-1,-1,1,-3-4*K.1,1+4*K.1,3+4*K.1,-1-4*K.1,3+4*K.1,-1-4*K.1,-3-4*K.1,1+4*K.1,1,-1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,-6,6,-2,2,2,-2,-2,2,2,-2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,-3,1,-1,-1,1,1+4*K.1,-3-4*K.1,-1-4*K.1,3+4*K.1,-1-4*K.1,3+4*K.1,1+4*K.1,-3-4*K.1,1,-1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,6,-6,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,3,1,-1,1,-1,-3-4*K.1,1+4*K.1,3+4*K.1,-1-4*K.1,-3-4*K.1,1+4*K.1,3+4*K.1,-1-4*K.1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,-6,6,-6,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,-3,3,1,-1,1,-1,1+4*K.1,-3-4*K.1,-1-4*K.1,3+4*K.1,1+4*K.1,-3-4*K.1,-1-4*K.1,3+4*K.1,1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,-6,-6,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,1,1,-1,-1,-3-4*K.1,1+4*K.1,-3-4*K.1,1+4*K.1,3+4*K.1,-1-4*K.1,3+4*K.1,-1-4*K.1,1,1,-1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |6,6,-6,-6,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3,1,1,-1,-1,1+4*K.1,-3-4*K.1,1+4*K.1,-3-4*K.1,-1-4*K.1,3+4*K.1,-1-4*K.1,3+4*K.1,1,1,-1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1152_157872:= KnownIrreducibles(CR);