# Group 1152.154927 downloaded from the LMFDB on 25 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(467628936234830396417511437263922426330566585099443632512847222140816961,1152); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.5; e := GPC.6; GPerm := Group( (1,2,9,16)(3,15,8,35)(4,20,26,39)(5,27,7,12)(6,30,34,70)(10,25,40,17)(11,24,44,22)(13,46,49,31)(14,28,41,18)(19,53,36,76)(21,43,57,37)(23,59,63,89)(29,65,33,69)(32,73,52,87)(38,78,79,88)(42,82,83,92)(45,66,47,74)(48,72,81,86)(50,71,75,54)(51,67,64,96)(55,85,80,60)(56,90,61,95)(58,68,62,93)(77,91,84,94), (1,3,9,8)(2,10,16,40)(4,21,26,57)(5,28,7,18)(6,19,34,36)(11,41,44,14)(12,43,27,37)(13,38,49,79)(15,39,35,20)(17,24,25,22)(23,56,63,61)(29,32,33,52)(30,67,70,96)(31,54,46,71)(42,81,83,48)(45,84,47,77)(50,80,75,55)(51,62,64,58)(53,89,76,59)(60,91,85,94)(65,95,69,90)(66,72,74,86)(68,73,93,87)(78,92,88,82), (97,98,99), (1,4,7,24,9,26,5,22)(2,11,27,39,16,44,12,20)(3,17,28,57,8,25,18,21)(6,23,33,62,34,63,29,58)(10,15,43,14,40,35,37,41)(13,42,47,80,49,83,45,55)(19,51,32,61,36,64,52,56)(30,68,65,89,70,93,69,59)(31,60,74,82,46,85,66,92)(38,50,84,48,79,75,77,81)(53,90,87,96,76,95,73,67)(54,88,72,94,71,78,86,91), (1,5,9,7)(2,12,16,27)(3,18,8,28)(4,22,26,24)(6,29,34,33)(10,37,40,43)(11,20,44,39)(13,45,49,47)(14,15,41,35)(17,21,25,57)(19,52,36,32)(23,58,63,62)(30,69,70,65)(31,66,46,74)(38,77,79,84)(42,55,83,80)(48,50,81,75)(51,56,64,61)(53,73,76,87)(54,86,71,72)(59,93,89,68)(60,92,85,82)(67,95,96,90)(78,94,88,91), (1,6,31)(2,13,30)(3,19,54)(4,23,60)(5,29,66)(7,33,74)(8,36,71)(9,34,46)(10,38,67)(11,42,68)(12,45,69)(14,48,87)(15,50,53)(16,49,70)(17,51,88)(18,52,86)(20,55,59)(21,56,91)(22,58,92)(24,62,82)(25,64,78)(26,63,85)(27,47,65)(28,32,72)(35,75,76)(37,77,95)(39,80,89)(40,79,96)(41,81,73)(43,84,90)(44,83,93)(57,61,94), (1,7,9,5)(2,14,16,41)(3,18,8,28)(4,24,26,22)(6,32,34,52)(10,11,40,44)(12,15,27,35)(13,47,49,45)(17,21,25,57)(19,33,36,29)(20,43,39,37)(23,61,63,56)(30,53,70,76)(31,71,46,54)(38,77,79,84)(42,80,83,55)(48,50,81,75)(51,62,64,58)(59,67,89,96)(60,78,85,88)(65,87,69,73)(66,72,74,86)(68,90,93,95)(82,91,92,94), (1,8,9,3)(2,15,16,35)(4,25,26,17)(5,28,7,18)(6,33,34,29)(10,39,40,20)(11,43,44,37)(12,41,27,14)(13,48,49,81)(19,52,36,32)(21,22,57,24)(23,62,63,58)(30,65,70,69)(31,72,46,86)(38,42,79,83)(45,50,47,75)(51,56,64,61)(53,73,76,87)(54,74,71,66)(55,84,80,77)(59,68,89,93)(60,94,85,91)(67,95,96,90)(78,92,88,82), (1,9)(2,16)(3,8)(4,26)(5,7)(6,34)(10,40)(11,44)(12,27)(13,49)(14,41)(15,35)(17,25)(18,28)(19,36)(20,39)(21,57)(22,24)(23,63)(29,33)(30,70)(31,46)(32,52)(37,43)(38,79)(42,83)(45,47)(48,81)(50,75)(51,64)(53,76)(54,71)(55,80)(56,61)(58,62)(59,89)(60,85)(65,69)(66,74)(67,96)(68,93)(72,86)(73,87)(77,84)(78,88)(82,92)(90,95)(91,94) ); # Booleans booleans_1152_154927 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false); # Character Table chartbl_1152_154927:=rec(); chartbl_1152_154927.IsFinite:= true; chartbl_1152_154927.UnderlyingCharacteristic:= 0; chartbl_1152_154927.UnderlyingGroup:= GPC; chartbl_1152_154927.Size:= 1152; chartbl_1152_154927.InfoText:= "Character table for group 1152.154927 downloaded from the LMFDB."; chartbl_1152_154927.Identifier:= " C12.GL(2,Z/4) "; chartbl_1152_154927.NrConjugacyClasses:= 75; chartbl_1152_154927.ConjugacyClasses:= [ of ..., f8*f9, f5, f2*f3*f5, f9^2, f9, f3^2*f9, f3^2, f3*f8*f9, f7*f8, f5*f7*f9^2, f2*f3*f8*f9, f1*f3*f4*f6*f7*f8, f8, f8*f9^2, f5*f9, f5*f8, f3*f9^2, f3, f3^2*f8*f9, f2*f3*f5*f9, f2*f3*f5*f8, f6*f7*f8*f9, f6*f8*f9^2, f5*f6*f7*f8*f9, f1*f3^2*f4*f6*f9^2, f7*f9, f7*f8*f9, f5*f7*f8*f9^2, f5*f7, f2*f3*f9, f2*f3*f8, f3^2*f7, f3*f7*f8*f9, f3^2*f7*f8*f9^2, f2, f2*f6, f2*f9, f2*f6*f8, f2*f8, f2*f6*f9, f1*f3*f4*f6*f7*f9, f1*f3*f4*f6*f7*f8*f9, f1*f2*f4*f5*f6*f8, f1*f2*f4*f7*f8*f9, f1*f2*f4*f8*f9^2, f1*f2*f4*f5*f6*f7*f8*f9^2, f1*f2*f6*f7*f9, f1*f2*f8*f9^2, f6*f7*f9, f6*f8*f9, f6*f7*f8, f6*f9^2, f5*f6*f8, f5*f6*f7*f9^2, f3*f6, f3*f5*f6, f3^2*f6, f3*f6*f8, f3*f6*f9^2, f3*f6*f9, f1*f3^2*f4*f5*f6*f7*f9^2, f1*f3^2*f4*f6*f8*f9^2, f1*f2*f4, f1*f2*f4*f8, f1*f2*f4*f7*f9, f1*f2*f4*f7*f8, f1*f2*f4*f5*f8, f1*f2*f4*f5, f1*f2*f4*f6, f1*f2*f4*f8*f9, f1*f2, f1*f2*f8, f1*f2*f7*f9, f1*f2*f5]; chartbl_1152_154927.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]; chartbl_1152_154927.ComputedPowerMaps:= [ , [1, 1, 1, 1, 6, 5, 7, 9, 8, 2, 2, 2, 2, 6, 5, 5, 6, 7, 8, 9, 5, 6, 10, 10, 10, 11, 15, 14, 15, 14, 14, 15, 18, 19, 20, 19, 20, 18, 18, 20, 19, 15, 14, 25, 25, 25, 25, 23, 24, 27, 28, 28, 27, 27, 28, 33, 33, 34, 35, 35, 34, 29, 30, 54, 55, 55, 54, 55, 54, 55, 54, 50, 51, 52, 53], [1, 2, 3, 4, 1, 1, 1, 1, 1, 10, 11, 12, 13, 2, 2, 3, 3, 2, 2, 2, 4, 4, 24, 23, 25, 26, 10, 10, 11, 11, 12, 12, 10, 10, 10, 12, 12, 12, 12, 12, 12, 13, 13, 46, 47, 45, 44, 49, 48, 23, 23, 24, 24, 25, 25, 23, 24, 24, 24, 23, 23, 26, 26, 44, 45, 46, 47, 47, 46, 44, 45, 48, 48, 49, 49]]; chartbl_1152_154927.SizesCentralizers:= [1152, 1152, 192, 48, 1152, 1152, 144, 144, 144, 576, 192, 144, 24, 1152, 1152, 192, 192, 144, 144, 144, 48, 48, 576, 576, 96, 24, 576, 576, 192, 192, 144, 144, 72, 72, 72, 36, 36, 36, 36, 36, 36, 24, 24, 96, 96, 96, 96, 48, 48, 576, 576, 576, 576, 96, 96, 72, 72, 72, 72, 72, 72, 24, 24, 96, 96, 96, 96, 96, 96, 96, 96, 48, 48, 48, 48]; chartbl_1152_154927.ClassNames:= ["1A", "2A", "2B", "2C", "3A1", "3A-1", "3B", "3C1", "3C-1", "4A", "4B", "4C", "4D", "6A1", "6A-1", "6B1", "6B-1", "6C", "6D1", "6D-1", "6E1", "6E-1", "8A1", "8A3", "8B", "8C", "12A1", "12A-1", "12B1", "12B-1", "12C1", "12C-1", "12D", "12E1", "12E-1", "12F1", "12F-1", "12G1", "12G-1", "12H1", "12H-1", "12I1", "12I-1", "16A1", "16A-1", "16A3", "16A-3", "16B1", "16B3", "24A1", "24A-1", "24A5", "24A-5", "24B1", "24B-1", "24C1", "24C5", "24D1", "24D-1", "24D5", "24D-5", "24E1", "24E-1", "48A1", "48A-1", "48A5", "48A-5", "48A11", "48A-11", "48A17", "48A-17", "48B1", "48B-1", "48B5", "48B-5"]; chartbl_1152_154927.OrderClassRepresentatives:= [1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48]; chartbl_1152_154927.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, E(3)^-1, E(3), 1, E(3)^-1, E(3), 1, 1, 1, 1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, 1, E(3), E(3), E(3)^-1, 1, 1, 1, 1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, E(3)^-1, E(3), E(3), 1, E(3), E(3)^-1, E(3)^-1, 1, E(3)^-1, E(3), 1, 1, 1, 1, 1, 1, E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3)^-1], [1, 1, 1, 1, E(3), E(3)^-1, 1, E(3), E(3)^-1, 1, 1, 1, 1, E(3), E(3)^-1, E(3)^-1, E(3), E(3), 1, E(3)^-1, E(3)^-1, E(3), 1, 1, 1, 1, E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, E(3), E(3)^-1, E(3)^-1, 1, E(3)^-1, E(3), E(3), 1, E(3), E(3)^-1, 1, 1, 1, 1, 1, 1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)], [1, 1, 1, -1, E(3)^-1, E(3), 1, E(3)^-1, E(3), 1, 1, -1, -1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, 1, E(3), -1*E(3), -1*E(3)^-1, 1, 1, 1, -1, E(3)^-1, E(3), E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, 1, E(3)^-1, E(3), -1*E(3), -1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), 1, 1, 1, 1, 1, 1, E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3)^-1], [1, 1, 1, -1, E(3), E(3)^-1, 1, E(3), E(3)^-1, 1, 1, -1, -1, E(3), E(3)^-1, E(3)^-1, E(3), E(3), 1, E(3)^-1, -1*E(3)^-1, -1*E(3), 1, 1, 1, -1, E(3), E(3)^-1, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), 1, E(3), E(3)^-1, -1*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), -1*E(3), -1, -1*E(3), -1*E(3)^-1, 1, 1, 1, 1, 1, 1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)], [1, 1, 1, -1, E(3)^-1, E(3), 1, E(3)^-1, E(3), 1, 1, -1, 1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, 1, E(3), -1*E(3), -1*E(3)^-1, 1, 1, 1, 1, E(3)^-1, E(3), E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, 1, E(3)^-1, E(3), -1*E(3), -1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1, E(3)^-1, E(3), -1, -1, -1, -1, -1, -1, E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1], [1, 1, 1, -1, E(3), E(3)^-1, 1, E(3), E(3)^-1, 1, 1, -1, 1, E(3), E(3)^-1, E(3)^-1, E(3), E(3), 1, E(3)^-1, -1*E(3)^-1, -1*E(3), 1, 1, 1, 1, E(3), E(3)^-1, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), 1, E(3), E(3)^-1, -1*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), -1*E(3), -1, E(3), E(3)^-1, -1, -1, -1, -1, -1, -1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)], [1, 1, 1, 1, E(3)^-1, E(3), 1, E(3)^-1, E(3), 1, 1, 1, -1, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, 1, E(3), E(3), E(3)^-1, 1, 1, 1, -1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, E(3)^-1, E(3), E(3), 1, E(3), E(3)^-1, E(3)^-1, 1, -1*E(3)^-1, -1*E(3), -1, -1, -1, -1, -1, -1, E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1], [1, 1, 1, 1, E(3), E(3)^-1, 1, E(3), E(3)^-1, 1, 1, 1, -1, E(3), E(3)^-1, E(3)^-1, E(3), E(3), 1, E(3)^-1, E(3)^-1, E(3), 1, 1, 1, -1, E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), 1, E(3), E(3)^-1, E(3)^-1, 1, E(3)^-1, E(3), E(3), 1, -1*E(3), -1*E(3)^-1, -1, -1, -1, -1, -1, -1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)], [2, 2, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, -2, 2, 2, -1, -1, -1, 2, 2, -2, 0, 2, 2, 2, 2, -1, -1, -1, -2, -2, 2, 2, 2, 0, 2, 2, 2, 2, -2, -2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2*E(3)^-1, 2*E(3), -1, -1*E(3)^-1, -1*E(3), 2, 2, 2, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1, -1*E(3), 2*E(3), 2*E(3)^-1, 2, 2, 2, 0, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), -1*E(3), -1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1*E(3), -1, -1, -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2*E(3), 2*E(3)^-1, -1, -1*E(3), -1*E(3)^-1, 2, 2, 2, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), -1*E(3), -1, -1*E(3)^-1, 2*E(3)^-1, 2*E(3), 2, 2, 2, 0, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), -1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), -1*E(3), -1, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), -1*E(3), -1*E(3)^-1, -1, -1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 0, 2, 2, 2, 2, 2, -2, 2, 0, 0, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1], [2, 2, -2, 0, 2, 2, 2, 2, 2, -2, 2, 0, 0, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1], [2, 2, 2, 0, 2, 2, -1, -1, -1, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, 0, 0, -2, -2, -2, 0, 2, 2, 2, 2, 0, 0, -1, -1, -1, -1-2*E(3), -1-2*E(3), 1+2*E(3), 1+2*E(3), -1-2*E(3), 1+2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, 2, -1, -1, -1, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, 0, 0, -2, -2, -2, 0, 2, 2, 2, 2, 0, 0, -1, -1, -1, 1+2*E(3), 1+2*E(3), -1-2*E(3), -1-2*E(3), 1+2*E(3), -1-2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3)^-1, 2*E(3), 2, 2*E(3)^-1, 2*E(3), 2, 2, 0, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2, 2*E(3), 0, 0, -2, -2, -2, 0, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), 0, 0, 2, 2*E(3)^-1, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3), -2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2, -2, -2*E(3)^-1, -2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3), 2*E(3)^-1, 2, 2*E(3), 2*E(3)^-1, 2, 2, 0, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), 2*E(3), 2, 2*E(3)^-1, 0, 0, -2, -2, -2, 0, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 0, 0, 2, 2*E(3), 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3), -2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3)^-1, -2*E(3), -2*E(3), -2*E(3)^-1, -2, -2, -2*E(3), -2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, -2, 2*E(3)^-1, 2*E(3), -1, -1*E(3)^-1, -1*E(3), 2, 2, -2, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1, -1*E(3), -2*E(3), -2*E(3)^-1, 2, 2, 2, 0, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), -2*E(3), -2*E(3)^-1, -1, -1*E(3)^-1, -1*E(3), E(3), 1, E(3), E(3)^-1, E(3)^-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1*E(3), -1, -1, -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, -2, 2*E(3), 2*E(3)^-1, -1, -1*E(3), -1*E(3)^-1, 2, 2, -2, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), -1*E(3), -1, -1*E(3)^-1, -2*E(3)^-1, -2*E(3), 2, 2, 2, 0, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, -2*E(3)^-1, -2*E(3), -1, -1*E(3), -1*E(3)^-1, E(3)^-1, 1, E(3)^-1, E(3), E(3), 1, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), -1*E(3), -1*E(3)^-1, -1, -1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3)^-1, 2*E(3), -1, -1*E(3)^-1, -1*E(3), 2, 2, 0, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1, -1*E(3), 0, 0, -2, -2, -2, 0, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), 0, 0, -1, -1*E(3)^-1, -1*E(3), -2-E(3), 1+2*E(3), 2+E(3), -1+E(3), 1-E(3), -1-2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3), -2*E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3), 2*E(3)^-1, -1, -1*E(3), -1*E(3)^-1, 2, 2, 0, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), -1*E(3), -1, -1*E(3)^-1, 0, 0, -2, -2, -2, 0, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 0, 0, -1, -1*E(3), -1*E(3)^-1, -1+E(3), -1-2*E(3), 1-E(3), -2-E(3), 2+E(3), 1+2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3), -2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3)^-1, -2*E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3)^-1, 2*E(3), -1, -1*E(3)^-1, -1*E(3), 2, 2, 0, 0, 2*E(3)^-1, 2*E(3), 2*E(3), 2*E(3)^-1, -1*E(3)^-1, -1, -1*E(3), 0, 0, -2, -2, -2, 0, 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 2*E(3), 0, 0, -1, -1*E(3)^-1, -1*E(3), 2+E(3), -1-2*E(3), -2-E(3), 1-E(3), -1+E(3), 1+2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3), -2*E(3)^-1, E(3)^-1, E(3), 1, 1, E(3)^-1, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2*E(3), 2*E(3)^-1, -1, -1*E(3), -1*E(3)^-1, 2, 2, 0, 0, 2*E(3), 2*E(3)^-1, 2*E(3)^-1, 2*E(3), -1*E(3), -1, -1*E(3)^-1, 0, 0, -2, -2, -2, 0, 2*E(3), 2*E(3)^-1, 2*E(3), 2*E(3)^-1, 0, 0, -1, -1*E(3), -1*E(3)^-1, 1-E(3), 1+2*E(3), -1+E(3), 2+E(3), -2-E(3), -1-2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3), -2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3)^-1, -2*E(3), E(3), E(3)^-1, 1, 1, E(3), E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, 0, -2*E(24)^4, 2*E(24)^8, 2, -2*E(24)^4, 2*E(24)^8, -2, 2, 0, 0, -2*E(24)^4, 2*E(24)^8, -2*E(24)^8, 2*E(24)^4, -2*E(24)^4, 2, 2*E(24)^8, 0, 0, 0, 0, 0, 0, 2*E(24)^4, -2*E(24)^8, -2*E(24)^4, 2*E(24)^8, 0, 0, -2, 2*E(24)^4, -2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7], [2, 2, -2, 0, 2*E(24)^8, -2*E(24)^4, 2, 2*E(24)^8, -2*E(24)^4, -2, 2, 0, 0, 2*E(24)^8, -2*E(24)^4, 2*E(24)^4, -2*E(24)^8, 2*E(24)^8, 2, -2*E(24)^4, 0, 0, 0, 0, 0, 0, -2*E(24)^8, 2*E(24)^4, 2*E(24)^8, -2*E(24)^4, 0, 0, -2, -2*E(24)^8, 2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7], [2, 2, -2, 0, -2*E(24)^4, 2*E(24)^8, 2, -2*E(24)^4, 2*E(24)^8, -2, 2, 0, 0, -2*E(24)^4, 2*E(24)^8, -2*E(24)^8, 2*E(24)^4, -2*E(24)^4, 2, 2*E(24)^8, 0, 0, 0, 0, 0, 0, 2*E(24)^4, -2*E(24)^8, -2*E(24)^4, 2*E(24)^8, 0, 0, -2, 2*E(24)^4, -2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7], [2, 2, -2, 0, 2*E(24)^8, -2*E(24)^4, 2, 2*E(24)^8, -2*E(24)^4, -2, 2, 0, 0, 2*E(24)^8, -2*E(24)^4, 2*E(24)^4, -2*E(24)^8, 2*E(24)^8, 2, -2*E(24)^4, 0, 0, 0, 0, 0, 0, -2*E(24)^8, 2*E(24)^4, 2*E(24)^8, -2*E(24)^4, 0, 0, -2, -2*E(24)^8, 2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7], [3, 3, -1, -1, 3, 3, 0, 0, 0, 3, -1, 3, 1, 3, 3, -1, -1, 0, 0, 0, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, 3, 3, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1], [3, 3, -1, -1, 3, 3, 0, 0, 0, 3, -1, 3, -1, 3, 3, -1, -1, 0, 0, 0, -1, -1, 3, 3, -1, 1, 3, 3, -1, -1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, -1, -1, 3, 3, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1], [3, 3, -1, 1, 3, 3, 0, 0, 0, 3, -1, -3, -1, 3, 3, -1, -1, 0, 0, 0, 1, 1, 3, 3, -1, 1, 3, 3, -1, -1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 3, 3, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1], [3, 3, -1, 1, 3, 3, 0, 0, 0, 3, -1, -3, 1, 3, 3, -1, -1, 0, 0, 0, 1, 1, 3, 3, -1, -1, 3, 3, -1, -1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, -1, -1, 3, 3, 3, 3, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1], [3, 3, -1, -1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 3, -1, 3, 1, 3*E(3)^-1, 3*E(3), -1*E(3), -1*E(3)^-1, 0, 0, 0, -1*E(3), -1*E(3)^-1, 3, 3, -1, -1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 3*E(3), 3*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(3)^-1, E(3), -1, -1, -1, -1, 1, 1, 3*E(3)^-1, 3*E(3), 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, E(3)^-1, E(3), E(3), E(3)^-1], [3, 3, -1, -1, 3*E(3), 3*E(3)^-1, 0, 0, 0, 3, -1, 3, 1, 3*E(3), 3*E(3)^-1, -1*E(3)^-1, -1*E(3), 0, 0, 0, -1*E(3)^-1, -1*E(3), 3, 3, -1, -1, 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, E(3), E(3)^-1, -1, -1, -1, -1, 1, 1, 3*E(3), 3*E(3)^-1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), E(3), E(3)^-1, E(3)^-1, E(3)], [3, 3, -1, -1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 3, -1, 3, -1, 3*E(3)^-1, 3*E(3), -1*E(3), -1*E(3)^-1, 0, 0, 0, -1*E(3), -1*E(3)^-1, 3, 3, -1, 1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 3*E(3), 3*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(3)^-1, -1*E(3), 1, 1, 1, 1, -1, -1, 3*E(3)^-1, 3*E(3), 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, E(3), E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1], [3, 3, -1, -1, 3*E(3), 3*E(3)^-1, 0, 0, 0, 3, -1, 3, -1, 3*E(3), 3*E(3)^-1, -1*E(3)^-1, -1*E(3), 0, 0, 0, -1*E(3)^-1, -1*E(3), 3, 3, -1, 1, 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(3), -1*E(3)^-1, 1, 1, 1, 1, -1, -1, 3*E(3), 3*E(3)^-1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, E(3)^-1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)], [3, 3, -1, 1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 3, -1, -3, -1, 3*E(3)^-1, 3*E(3), -1*E(3), -1*E(3)^-1, 0, 0, 0, E(3), E(3)^-1, 3, 3, -1, 1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), -3*E(3), -3*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(3)^-1, -1*E(3), -1, -1, -1, -1, 1, 1, 3*E(3)^-1, 3*E(3), 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, E(3)^-1, E(3), E(3), E(3)^-1], [3, 3, -1, 1, 3*E(3), 3*E(3)^-1, 0, 0, 0, 3, -1, -3, -1, 3*E(3), 3*E(3)^-1, -1*E(3)^-1, -1*E(3), 0, 0, 0, E(3)^-1, E(3), 3, 3, -1, 1, 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, -3*E(3)^-1, -3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(3), -1*E(3)^-1, -1, -1, -1, -1, 1, 1, 3*E(3), 3*E(3)^-1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3), E(3), E(3)^-1, E(3)^-1, E(3)], [3, 3, -1, 1, 3*E(3)^-1, 3*E(3), 0, 0, 0, 3, -1, -3, 1, 3*E(3)^-1, 3*E(3), -1*E(3), -1*E(3)^-1, 0, 0, 0, E(3), E(3)^-1, 3, 3, -1, -1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), -3*E(3), -3*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(3)^-1, E(3), 1, 1, 1, 1, -1, -1, 3*E(3)^-1, 3*E(3), 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, 0, 0, 0, 0, 0, 0, -1*E(3), -1*E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1], [3, 3, -1, 1, 3*E(3), 3*E(3)^-1, 0, 0, 0, 3, -1, -3, 1, 3*E(3), 3*E(3)^-1, -1*E(3)^-1, -1*E(3), 0, 0, 0, E(3)^-1, E(3), 3, 3, -1, -1, 3*E(3), 3*E(3)^-1, -1*E(3), -1*E(3)^-1, -3*E(3)^-1, -3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, E(3), E(3)^-1, 1, 1, 1, 1, -1, -1, 3*E(3), 3*E(3)^-1, 3*E(3)^-1, 3*E(3), -1*E(3)^-1, -1*E(3), 0, 0, 0, 0, 0, 0, -1*E(3)^-1, -1*E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3)], [4, 4, -4, 0, 4, 4, -2, -2, -2, -4, 4, 0, 0, 4, 4, -4, -4, -2, -2, -2, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 4*E(3)^-1, 4*E(3), -2, -2*E(3)^-1, -2*E(3), -4, 4, 0, 0, 4*E(3)^-1, 4*E(3), -4*E(3), -4*E(3)^-1, -2*E(3)^-1, -2, -2*E(3), 0, 0, 0, 0, 0, 0, -4*E(3)^-1, -4*E(3), 4*E(3)^-1, 4*E(3), 0, 0, 2, 2*E(3)^-1, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 4*E(3), 4*E(3)^-1, -2, -2*E(3), -2*E(3)^-1, -4, 4, 0, 0, 4*E(3), 4*E(3)^-1, -4*E(3)^-1, -4*E(3), -2*E(3), -2, -2*E(3)^-1, 0, 0, 0, 0, 0, 0, -4*E(3), -4*E(3)^-1, 4*E(3), 4*E(3)^-1, 0, 0, 2, 2*E(3), 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 4, 4, -2, -2, -2, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, -2*E(16)^2-2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, 0, 0, -2*E(16)^2-2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 0, 0, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, 0, 0, E(16)-E(16)^3-E(16)^5+E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, 0, 0, 0, 0], [4, -4, 0, 0, 4, 4, -2, -2, -2, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, -2*E(16)^2-2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, 0, 0, -2*E(16)^2-2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, 0, 0, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, 0, 0, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, 0, 0, 0, 0], [4, -4, 0, 0, 4, 4, -2, -2, -2, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, 2*E(16)^2+2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, 0, 0, 2*E(16)^2+2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 0, 0, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, 0, 0, E(16)+E(16)^3+E(16)^5+E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, 0, 0, 0, 0], [4, -4, 0, 0, 4, 4, -2, -2, -2, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, 2*E(16)^2+2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, 0, 0, 2*E(16)^2+2*E(16)^-2, 2*E(16)^2+2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, -2*E(16)^2-2*E(16)^-2, 0, 0, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, -1*E(16)^2-E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, E(16)^2+E(16)^-2, 0, 0, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, -1*E(16)-E(16)^3-E(16)^5-E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, E(16)+E(16)^3+E(16)^5+E(16)^7, E(16)-E(16)^3-E(16)^5+E(16)^7, -1*E(16)+E(16)^3+E(16)^5-E(16)^7, 0, 0, 0, 0], [4, -4, 0, 0, -4*E(48)^8, 4*E(48)^16, -2, 2*E(48)^8, -2*E(48)^16, 0, 0, 0, 0, 4*E(48)^8, -4*E(48)^16, 0, 0, -2*E(48)^8, 2, 2*E(48)^16, 0, 0, -2*E(48)^6-2*E(48)^-6, 2*E(48)^6+2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, 0, 0, 2*E(48)^2+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, -2*E(48)^2-2*E(48)^14, 0, 0, -1*E(48)^2-E(48)^14, -1*E(48)^6+E(48)^10+E(48)^14, E(48)^6+E(48)^-6, -1*E(48)^6-E(48)^-6, E(48)^2+E(48)^14, E(48)^6-E(48)^10-E(48)^14, 0, 0, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, 0, 0, 0, 0], [4, -4, 0, 0, 4*E(48)^16, -4*E(48)^8, -2, -2*E(48)^16, 2*E(48)^8, 0, 0, 0, 0, -4*E(48)^16, 4*E(48)^8, 0, 0, 2*E(48)^16, 2, -2*E(48)^8, 0, 0, -2*E(48)^6-2*E(48)^-6, 2*E(48)^6+2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, 0, 0, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 2*E(48)^2+2*E(48)^14, -2*E(48)^2-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, 0, 0, -1*E(48)^6+E(48)^10+E(48)^14, -1*E(48)^2-E(48)^14, E(48)^6+E(48)^-6, -1*E(48)^6-E(48)^-6, E(48)^6-E(48)^10-E(48)^14, E(48)^2+E(48)^14, 0, 0, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, 0, 0, 0, 0], [4, -4, 0, 0, -4*E(48)^8, 4*E(48)^16, -2, 2*E(48)^8, -2*E(48)^16, 0, 0, 0, 0, 4*E(48)^8, -4*E(48)^16, 0, 0, -2*E(48)^8, 2, 2*E(48)^16, 0, 0, -2*E(48)^6-2*E(48)^-6, 2*E(48)^6+2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, 0, 0, 2*E(48)^2+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, -2*E(48)^2-2*E(48)^14, 0, 0, -1*E(48)^2-E(48)^14, -1*E(48)^6+E(48)^10+E(48)^14, E(48)^6+E(48)^-6, -1*E(48)^6-E(48)^-6, E(48)^2+E(48)^14, E(48)^6-E(48)^10-E(48)^14, 0, 0, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, 0, 0, 0, 0], [4, -4, 0, 0, 4*E(48)^16, -4*E(48)^8, -2, -2*E(48)^16, 2*E(48)^8, 0, 0, 0, 0, -4*E(48)^16, 4*E(48)^8, 0, 0, 2*E(48)^16, 2, -2*E(48)^8, 0, 0, -2*E(48)^6-2*E(48)^-6, 2*E(48)^6+2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, 0, 0, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 2*E(48)^2+2*E(48)^14, -2*E(48)^2-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, 0, 0, -1*E(48)^6+E(48)^10+E(48)^14, -1*E(48)^2-E(48)^14, E(48)^6+E(48)^-6, -1*E(48)^6-E(48)^-6, E(48)^6-E(48)^10-E(48)^14, E(48)^2+E(48)^14, 0, 0, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, 0, 0, 0, 0], [4, -4, 0, 0, -4*E(48)^8, 4*E(48)^16, -2, 2*E(48)^8, -2*E(48)^16, 0, 0, 0, 0, 4*E(48)^8, -4*E(48)^16, 0, 0, -2*E(48)^8, 2, 2*E(48)^16, 0, 0, 2*E(48)^6+2*E(48)^-6, -2*E(48)^6-2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, 0, 0, -2*E(48)^2-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 2*E(48)^2+2*E(48)^14, 0, 0, E(48)^2+E(48)^14, E(48)^6-E(48)^10-E(48)^14, -1*E(48)^6-E(48)^-6, E(48)^6+E(48)^-6, -1*E(48)^2-E(48)^14, -1*E(48)^6+E(48)^10+E(48)^14, 0, 0, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, 0, 0, 0, 0], [4, -4, 0, 0, 4*E(48)^16, -4*E(48)^8, -2, -2*E(48)^16, 2*E(48)^8, 0, 0, 0, 0, -4*E(48)^16, 4*E(48)^8, 0, 0, 2*E(48)^16, 2, -2*E(48)^8, 0, 0, 2*E(48)^6+2*E(48)^-6, -2*E(48)^6-2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, 0, 0, -2*E(48)^6+2*E(48)^10+2*E(48)^14, -2*E(48)^2-2*E(48)^14, 2*E(48)^2+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 0, 0, E(48)^6-E(48)^10-E(48)^14, E(48)^2+E(48)^14, -1*E(48)^6-E(48)^-6, E(48)^6+E(48)^-6, -1*E(48)^6+E(48)^10+E(48)^14, -1*E(48)^2-E(48)^14, 0, 0, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, 0, 0, 0, 0], [4, -4, 0, 0, -4*E(48)^8, 4*E(48)^16, -2, 2*E(48)^8, -2*E(48)^16, 0, 0, 0, 0, 4*E(48)^8, -4*E(48)^16, 0, 0, -2*E(48)^8, 2, 2*E(48)^16, 0, 0, 2*E(48)^6+2*E(48)^-6, -2*E(48)^6-2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, 0, 0, -2*E(48)^2-2*E(48)^14, -2*E(48)^6+2*E(48)^10+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 2*E(48)^2+2*E(48)^14, 0, 0, E(48)^2+E(48)^14, E(48)^6-E(48)^10-E(48)^14, -1*E(48)^6-E(48)^-6, E(48)^6+E(48)^-6, -1*E(48)^2-E(48)^14, -1*E(48)^6+E(48)^10+E(48)^14, 0, 0, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, 0, 0, 0, 0], [4, -4, 0, 0, 4*E(48)^16, -4*E(48)^8, -2, -2*E(48)^16, 2*E(48)^8, 0, 0, 0, 0, -4*E(48)^16, 4*E(48)^8, 0, 0, 2*E(48)^16, 2, -2*E(48)^8, 0, 0, 2*E(48)^6+2*E(48)^-6, -2*E(48)^6-2*E(48)^-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(48)^3-E(48)^5-E(48)^9+E(48)^13-E(48)^15, -1*E(48)^3+E(48)^5+E(48)^9-E(48)^13+E(48)^15, E(48)^3-E(48)^5+E(48)^9+E(48)^13+E(48)^15, -1*E(48)^3+E(48)^5-E(48)^9-E(48)^13-E(48)^15, 0, 0, -2*E(48)^6+2*E(48)^10+2*E(48)^14, -2*E(48)^2-2*E(48)^14, 2*E(48)^2+2*E(48)^14, 2*E(48)^6-2*E(48)^10-2*E(48)^14, 0, 0, E(48)^6-E(48)^10-E(48)^14, E(48)^2+E(48)^14, -1*E(48)^6-E(48)^-6, E(48)^6+E(48)^-6, -1*E(48)^6+E(48)^10+E(48)^14, -1*E(48)^2-E(48)^14, 0, 0, -1*E(48)-E(48)^3-E(48)^7+E(48)^11-E(48)^13, E(48)+E(48)^5+E(48)^7-E(48)^9-E(48)^11-E(48)^15, -1*E(48)-E(48)^5-E(48)^7+E(48)^9+E(48)^11+E(48)^15, -1*E(48)+E(48)^5-E(48)^7+E(48)^9-E(48)^11+E(48)^15, E(48)-E(48)^5+E(48)^7-E(48)^9+E(48)^11-E(48)^15, E(48)+E(48)^3+E(48)^7-E(48)^11+E(48)^13, -1*E(48)+E(48)^3-E(48)^7-E(48)^11+E(48)^13, E(48)-E(48)^3+E(48)^7+E(48)^11-E(48)^13, 0, 0, 0, 0], [6, 6, -2, 0, 6, 6, 0, 0, 0, 6, -2, 0, 0, 6, 6, -2, -2, 0, 0, 0, 0, 0, -6, -6, 2, 0, 6, 6, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, -6, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 2, 0, 6, 6, 0, 0, 0, -6, -2, 0, 0, 6, 6, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1], [6, 6, 2, 0, 6, 6, 0, 0, 0, -6, -2, 0, 0, 6, 6, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1], [6, 6, -2, 0, 6*E(3)^-1, 6*E(3), 0, 0, 0, 6, -2, 0, 0, 6*E(3)^-1, 6*E(3), -2*E(3), -2*E(3)^-1, 0, 0, 0, 0, 0, -6, -6, 2, 0, 6*E(3)^-1, 6*E(3), -2*E(3)^-1, -2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(3)^-1, -6*E(3), -6*E(3), -6*E(3)^-1, 2*E(3), 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, -2, 0, 6*E(3), 6*E(3)^-1, 0, 0, 0, 6, -2, 0, 0, 6*E(3), 6*E(3)^-1, -2*E(3)^-1, -2*E(3), 0, 0, 0, 0, 0, -6, -6, 2, 0, 6*E(3), 6*E(3)^-1, -2*E(3), -2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(3), -6*E(3)^-1, -6*E(3)^-1, -6*E(3), 2*E(3)^-1, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 2, 0, -6*E(24)^4, 6*E(24)^8, 0, 0, 0, -6, -2, 0, 0, -6*E(24)^4, 6*E(24)^8, 2*E(24)^8, -2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6*E(24)^4, -6*E(24)^8, 2*E(24)^4, -2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7], [6, 6, 2, 0, 6*E(24)^8, -6*E(24)^4, 0, 0, 0, -6, -2, 0, 0, 6*E(24)^8, -6*E(24)^4, -2*E(24)^4, 2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(24)^8, 6*E(24)^4, -2*E(24)^8, 2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7], [6, 6, 2, 0, -6*E(24)^4, 6*E(24)^8, 0, 0, 0, -6, -2, 0, 0, -6*E(24)^4, 6*E(24)^8, 2*E(24)^8, -2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6*E(24)^4, -6*E(24)^8, 2*E(24)^4, -2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7], [6, 6, 2, 0, 6*E(24)^8, -6*E(24)^4, 0, 0, 0, -6, -2, 0, 0, 6*E(24)^8, -6*E(24)^4, -2*E(24)^4, 2*E(24)^8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6*E(24)^8, 6*E(24)^4, -2*E(24)^8, 2*E(24)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3+E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)-E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7], [8, -8, 0, 0, 8, 8, 2, 2, 2, 0, 0, 0, 0, -8, -8, 0, 0, -2, -2, -2, 0, 0, -4*E(8)-4*E(8)^-1, 4*E(8)+4*E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4*E(8)-4*E(8)^-1, -4*E(8)-4*E(8)^-1, 4*E(8)+4*E(8)^-1, 4*E(8)+4*E(8)^-1, 0, 0, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8, 8, 2, 2, 2, 0, 0, 0, 0, -8, -8, 0, 0, -2, -2, -2, 0, 0, 4*E(8)+4*E(8)^-1, -4*E(8)-4*E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4*E(8)+4*E(8)^-1, 4*E(8)+4*E(8)^-1, -4*E(8)-4*E(8)^-1, -4*E(8)-4*E(8)^-1, 0, 0, E(8)+E(8)^-1, E(8)+E(8)^-1, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, -8*E(24)^4, 8*E(24)^8, 2, -2*E(24)^4, 2*E(24)^8, 0, 0, 0, 0, 8*E(24)^4, -8*E(24)^8, 0, 0, 2*E(24)^4, -2, -2*E(24)^8, 0, 0, -4*E(24)^3-4*E(24)^-3, 4*E(24)^3+4*E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4*E(24)+4*E(24)^7, 4*E(24)^3-4*E(24)^5-4*E(24)^7, -4*E(24)^3+4*E(24)^5+4*E(24)^7, -4*E(24)-4*E(24)^7, 0, 0, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8*E(24)^8, -8*E(24)^4, 2, 2*E(24)^8, -2*E(24)^4, 0, 0, 0, 0, -8*E(24)^8, 8*E(24)^4, 0, 0, -2*E(24)^8, -2, 2*E(24)^4, 0, 0, -4*E(24)^3-4*E(24)^-3, 4*E(24)^3+4*E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4*E(24)^3-4*E(24)^5-4*E(24)^7, 4*E(24)+4*E(24)^7, -4*E(24)-4*E(24)^7, -4*E(24)^3+4*E(24)^5+4*E(24)^7, 0, 0, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, -1*E(24)^3-E(24)^-3, E(24)^3+E(24)^-3, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, -8*E(24)^4, 8*E(24)^8, 2, -2*E(24)^4, 2*E(24)^8, 0, 0, 0, 0, 8*E(24)^4, -8*E(24)^8, 0, 0, 2*E(24)^4, -2, -2*E(24)^8, 0, 0, 4*E(24)^3+4*E(24)^-3, -4*E(24)^3-4*E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4*E(24)-4*E(24)^7, -4*E(24)^3+4*E(24)^5+4*E(24)^7, 4*E(24)^3-4*E(24)^5-4*E(24)^7, 4*E(24)+4*E(24)^7, 0, 0, -1*E(24)-E(24)^7, -1*E(24)^3+E(24)^5+E(24)^7, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)+E(24)^7, E(24)^3-E(24)^5-E(24)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8*E(24)^8, -8*E(24)^4, 2, 2*E(24)^8, -2*E(24)^4, 0, 0, 0, 0, -8*E(24)^8, 8*E(24)^4, 0, 0, -2*E(24)^8, -2, 2*E(24)^4, 0, 0, 4*E(24)^3+4*E(24)^-3, -4*E(24)^3-4*E(24)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4*E(24)^3+4*E(24)^5+4*E(24)^7, -4*E(24)-4*E(24)^7, 4*E(24)+4*E(24)^7, 4*E(24)^3-4*E(24)^5-4*E(24)^7, 0, 0, -1*E(24)^3+E(24)^5+E(24)^7, -1*E(24)-E(24)^7, E(24)^3+E(24)^-3, -1*E(24)^3-E(24)^-3, E(24)^3-E(24)^5-E(24)^7, E(24)+E(24)^7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_1152_154927);