/* Group 1120.1008 downloaded from the LMFDB on 14 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -5, -7, 3920, 15907, 3258, 3881, 80, 8131, 9678, 102, 19500, 11443, 250, 11780]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.4]); AssignNames(~GPC, ["a", "b", "c", "d", "d2", "d4", "d20"]); GPerm := PermutationGroup< 20 | (6,7)(8,10)(9,11)(12,13)(15,16)(17,18)(19,20), (2,3)(4,5)(6,7)(8,10)(9,11)(12,13), (6,8,7,10)(9,13,11,12), (6,9,7,11)(8,12,10,13), (6,7)(8,10)(9,11)(12,13), (1,2,4,5,3), (14,15,17,19,20,18,16) >; GLZN := MatrixGroup< 2, Integers(105) | [[76, 60, 0, 1], [71, 0, 0, 71], [1, 21, 0, 1], [64, 0, 0, 1], [1, 15, 0, 1], [1, 35, 35, 71], [64, 70, 70, 29]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_1120_1008 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^70>,< 2, 5, b>,< 2, 5, b*d^42>,< 2, 7, b*c*d^60>,< 2, 7, b*c*d^30>,< 2, 35, c*d^30>,< 2, 35, c*d^28>,< 4, 2, d^35>,< 4, 2, a*d^70>,< 4, 2, a*d^35>,< 4, 10, b*d^91>,< 4, 10, a*b*d^70>,< 4, 10, a*b*d^91>,< 4, 14, b*c*d^85>,< 4, 14, a*b*c*d^60>,< 4, 14, a*b*c*d^85>,< 4, 70, a*c>,< 4, 70, c*d^121>,< 4, 70, a*c*d^3>,< 5, 2, d^28>,< 5, 2, d^56>,< 7, 2, d^40>,< 7, 2, d^80>,< 7, 2, d^120>,< 10, 2, d^42>,< 10, 2, d^126>,< 10, 14, b*c*d^4>,< 10, 14, b*c*d^8>,< 10, 14, b*c*d^2>,< 10, 14, b*c*d^6>,< 14, 2, d^30>,< 14, 2, d^90>,< 14, 2, d^10>,< 14, 10, b*d^20>,< 14, 10, b*d^4>,< 14, 10, b*d^40>,< 14, 10, b*d^2>,< 14, 10, b*d^22>,< 14, 10, b*d^10>,< 20, 4, d^7>,< 20, 4, d^21>,< 20, 4, a*d^98>,< 20, 4, a*d^84>,< 20, 4, a*d^7>,< 20, 4, a*d^21>,< 20, 28, b*c*d>,< 20, 28, b*c*d^3>,< 20, 28, a*b*c*d^4>,< 20, 28, a*b*c*d^2>,< 20, 28, a*b*c*d>,< 20, 28, a*b*c*d^3>,< 28, 4, d^5>,< 28, 4, d^15>,< 28, 4, d^25>,< 28, 4, a*d^20>,< 28, 4, a*d^130>,< 28, 4, a*d^100>,< 28, 4, a*d^5>,< 28, 4, a*d^15>,< 28, 4, a*d^25>,< 28, 20, b*d>,< 28, 20, b*d^3>,< 28, 20, b*d^5>,< 28, 20, a*b*d^20>,< 28, 20, a*b*d^4>,< 28, 20, a*b*d^2>,< 28, 20, a*b*d>,< 28, 20, a*b*d^3>,< 28, 20, a*b*d^5>,< 35, 4, d^4>,< 35, 4, d^8>,< 35, 4, d^12>,< 35, 4, d^16>,< 35, 4, d^32>,< 35, 4, d^36>,< 70, 4, d^2>,< 70, 4, d^6>,< 70, 4, d^18>,< 70, 4, d^22>,< 70, 4, d^26>,< 70, 4, d^46>,< 140, 8, d>,< 140, 8, d^3>,< 140, 8, d^9>,< 140, 8, d^81>,< 140, 8, d^13>,< 140, 8, d^23>,< 140, 8, a*d^4>,< 140, 8, a*d^2>,< 140, 8, a*d^6>,< 140, 8, a*d^16>,< 140, 8, a*d^32>,< 140, 8, a*d^8>,< 140, 8, a*d>,< 140, 8, a*d^3>,< 140, 8, a*d^9>,< 140, 8, a*d^81>,< 140, 8, a*d^13>,< 140, 8, a*d^23>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,2,2,2,0,0,0,2,2,2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,2,2,2,0,0,0,2,2,2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,-2,-2,2,0,0,0,2,2,-2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,-2,-2,2,0,0,0,2,2,-2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,-2,2,-2,0,0,0,2,-2,2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,-2,2,-2,0,0,0,2,-2,2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,2,-2,-2,0,0,0,-2,2,2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,2,-2,-2,0,0,0,-2,2,2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,-2,-2,0,0,2,2,2,0,0,0,-2,-2,-2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,-2,-2,2,0,0,0,-2,-2,2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,-2,-2,2,0,0,0,-2,-2,2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,-2,2,-2,0,0,0,-2,2,-2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,-2,2,-2,0,0,0,-2,2,-2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,2,-2,-2,0,0,0,2,-2,-2,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,0,0,2,2,0,0,2,-2,-2,0,0,0,2,-2,-2,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,2,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,2,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,2,2,2,2,2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,2,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,-2,2,2,2,-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,-2,2,2,2,-2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,-2,2,2,2,-2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,2,-2,2,-2,2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,2,-2,2,-2,2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,2,-2,2,-2,2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,-2,2,2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,2,2,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,2,2,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,2,2,-2,-2,-2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,2,2,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,-2,2,-2,-2,2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-2,2,2,-2,-2,-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,-2,2,-2,-2,2,-2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-2,-2,-2,2,2,-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,0,0,0,2,-2,-2,2,-2,-2,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,2,-2,-2,-2,-2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,4,4,4,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,4,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,4,4,4,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,0,0,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,4,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,-4,4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,-4,4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,0,0,0,0,0,0,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^14+2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^14+2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^5+2*K.1^-5,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |4,4,0,0,0,0,0,0,4,-4,-4,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,2*K.1^5+2*K.1^-5,2*K.1^10+2*K.1^-10,2*K.1^15+2*K.1^-15,2*K.1^7+2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,2*K.1^15+2*K.1^-15,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,0,0,0,0,0,0,2*K.1^7+2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,-2*K.1^14-2*K.1^-14,-2*K.1^7-2*K.1^-7,2*K.1^14+2*K.1^-14,0,0,0,0,0,0,2*K.1^10+2*K.1^-10,2*K.1^5+2*K.1^-5,2*K.1^15+2*K.1^-15,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,-2*K.1^10-2*K.1^-10,-2*K.1^10-2*K.1^-10,-2*K.1^5-2*K.1^-5,-2*K.1^15-2*K.1^-15,0,0,0,0,0,0,0,0,0,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,K.1^3-K.1^4+K.1^10-K.1^11+K.1^17,K.1^4-K.1^7+K.1^8+K.1^9+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^3+K.1^5-K.1^8-K.1^9+K.1^12-K.1^13-K.1^16-K.1^-17-K.1^-12-K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^3+K.1^4-K.1^10+K.1^11-K.1^17,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,1-K.1^4+K.1^5+K.1^7-K.1^8-K.1^9+K.1^10-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12,-1*K.1^2+K.1^3+K.1^8-K.1^12+K.1^13+K.1^-17+K.1^-7,K.1^3-K.1^5+K.1^8+K.1^9-K.1^12+K.1^13+K.1^16+K.1^-17+K.1^-12+K.1^-7,-1+K.1^4-K.1^5-K.1^7+K.1^8+K.1^9-K.1^10+K.1^11-K.1^12+K.1^13+K.1^16-K.1^17+K.1^-17+K.1^-12,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,-1*K.1^2+K.1^3-K.1^4-K.1^9-K.1^11-K.1^16+K.1^17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3+K.1^4+K.1^9+K.1^11+K.1^16-K.1^17+K.1^-12+K.1^-10+K.1^-5,-1*K.1^4+K.1^7-K.1^8-K.1^9-K.1^11+K.1^12-K.1^13-K.1^16+K.1^17-K.1^-17-K.1^-12-K.1^-10-K.1^-5,K.1^2-K.1^3-K.1^8+K.1^12-K.1^13-K.1^-17-K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^14+4*K.1^-14,4*K.1^7+4*K.1^-7,4*K.1^15+4*K.1^-15,4*K.1^5+4*K.1^-5,4*K.1^10+4*K.1^-10,-4*K.1^14-4*K.1^-14,-4*K.1^7-4*K.1^-7,0,0,0,0,-4*K.1^10-4*K.1^-10,-4*K.1^5-4*K.1^-5,-4*K.1^15-4*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^14+4*K.1^-14,4*K.1^7+4*K.1^-7,4*K.1^10+4*K.1^-10,4*K.1^15+4*K.1^-15,4*K.1^5+4*K.1^-5,-4*K.1^14-4*K.1^-14,-4*K.1^7-4*K.1^-7,0,0,0,0,-4*K.1^5-4*K.1^-5,-4*K.1^15-4*K.1^-15,-4*K.1^10-4*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^14+4*K.1^-14,4*K.1^7+4*K.1^-7,4*K.1^5+4*K.1^-5,4*K.1^10+4*K.1^-10,4*K.1^15+4*K.1^-15,-4*K.1^14-4*K.1^-14,-4*K.1^7-4*K.1^-7,0,0,0,0,-4*K.1^15-4*K.1^-15,-4*K.1^10-4*K.1^-10,-4*K.1^5-4*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7+4*K.1^-7,4*K.1^14+4*K.1^-14,4*K.1^15+4*K.1^-15,4*K.1^5+4*K.1^-5,4*K.1^10+4*K.1^-10,-4*K.1^7-4*K.1^-7,-4*K.1^14-4*K.1^-14,0,0,0,0,-4*K.1^10-4*K.1^-10,-4*K.1^5-4*K.1^-5,-4*K.1^15-4*K.1^-15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7+4*K.1^-7,4*K.1^14+4*K.1^-14,4*K.1^10+4*K.1^-10,4*K.1^15+4*K.1^-15,4*K.1^5+4*K.1^-5,-4*K.1^7-4*K.1^-7,-4*K.1^14-4*K.1^-14,0,0,0,0,-4*K.1^5-4*K.1^-5,-4*K.1^15-4*K.1^-15,-4*K.1^10-4*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(35: Sparse := true); S := [ K |8,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^7+4*K.1^-7,4*K.1^14+4*K.1^-14,4*K.1^5+4*K.1^-5,4*K.1^10+4*K.1^-10,4*K.1^15+4*K.1^-15,-4*K.1^7-4*K.1^-7,-4*K.1^14-4*K.1^-14,0,0,0,0,-4*K.1^15-4*K.1^-15,-4*K.1^10-4*K.1^-10,-4*K.1^5-4*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^3-2*K.1^8+2*K.1^12-2*K.1^13-2*K.1^-17-2*K.1^-7,2*K.1^3-2*K.1^5+2*K.1^8+2*K.1^9-2*K.1^12+2*K.1^13+2*K.1^16+2*K.1^-17+2*K.1^-12+2*K.1^-7,-2*K.1^3+2*K.1^4-2*K.1^10+2*K.1^11-2*K.1^17,2*K.1^4-2*K.1^7+2*K.1^8+2*K.1^9+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12+2*K.1^-10+2*K.1^-5,-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^9-2*K.1^11-2*K.1^16+2*K.1^17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2-2*K.1^4+2*K.1^5+2*K.1^7-2*K.1^8-2*K.1^9+2*K.1^10-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12,-2+2*K.1^4-2*K.1^5-2*K.1^7+2*K.1^8+2*K.1^9-2*K.1^10+2*K.1^11-2*K.1^12+2*K.1^13+2*K.1^16-2*K.1^17+2*K.1^-17+2*K.1^-12,-2*K.1^3+2*K.1^5-2*K.1^8-2*K.1^9+2*K.1^12-2*K.1^13-2*K.1^16-2*K.1^-17-2*K.1^-12-2*K.1^-7,-2*K.1^2+2*K.1^3+2*K.1^8-2*K.1^12+2*K.1^13+2*K.1^-17+2*K.1^-7,-2*K.1^4+2*K.1^7-2*K.1^8-2*K.1^9-2*K.1^11+2*K.1^12-2*K.1^13-2*K.1^16+2*K.1^17-2*K.1^-17-2*K.1^-12-2*K.1^-10-2*K.1^-5,2*K.1^3-2*K.1^4+2*K.1^10-2*K.1^11+2*K.1^17,2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^9+2*K.1^11+2*K.1^16-2*K.1^17+2*K.1^-12+2*K.1^-10+2*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_1120_1008:= KnownIrreducibles(CR);