/* Group 112.16 downloaded from the LMFDB on 03 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, -2, -2, -2, -7, 40, 61, 26, 182, 42, 1209]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c"]); GPerm := PermutationGroup< 15 | (2,5)(3,7)(6,8)(10,11)(12,13)(14,15), (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8), (9,10,12,14,15,13,11) >; GLZN := MatrixGroup< 2, Integers(21) | [[1, 3, 0, 1], [20, 14, 14, 13], [8, 18, 7, 13], [1, 14, 14, 8], [8, 0, 0, 8]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_112_16 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^4>,< 2, 28, a*b^5*c^2>,< 4, 2, b^6>,< 4, 4, a*b^4>,< 7, 2, c^4>,< 7, 2, c>,< 7, 2, c^5>,< 8, 14, b^7*c^2>,< 8, 14, b*c^2>,< 14, 2, b^4*c^2>,< 14, 2, b^4*c^6>,< 14, 2, b^4*c^3>,< 28, 4, b^2*c>,< 28, 4, b^2*c^3>,< 28, 4, b^2*c^2>,< 28, 4, a*c>,< 28, 4, a*c^6>,< 28, 4, a*c^3>,< 28, 4, a*c^4>,< 28, 4, a*c^5>,< 28, 4, a*c^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, -2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, -2, 0, -2, 0, 0, 0, 0, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,-2,-2,-2,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-2,-2,-2,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,2,-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3-K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2-K.1^-2,-1*K.1+K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2+K.1^-2,K.1-K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1+K.1^-1,-1*K.1^3+K.1^-3,K.1^2-K.1^-2,K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,-2,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3+K.1^-3,-1*K.1^2-K.1^-2,K.1-K.1^-1,K.1^3-K.1^-3,-1*K.1^2+K.1^-2,-1*K.1+K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_112_16:= KnownIrreducibles(CR);