# Group 1008.598 downloaded from the LMFDB on 08 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(41625038372093394860716914416222930747326216771,1008); a := GPC.1; b := GPC.2; c := GPC.3; d := GPC.7; GPerm := Group( (2,3)(4,5)(6,7)(12,13), (9,10)(11,12)(13,14), (11,13,14,12)(16,17), (11,14)(12,13), (8,9,10), (15,16,17), (1,2,4,6,7,5,3) ); # Booleans booleans_1008_598 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_1008_598:=rec(); chartbl_1008_598.IsFinite:= true; chartbl_1008_598.UnderlyingCharacteristic:= 0; chartbl_1008_598.UnderlyingGroup:= GPC; chartbl_1008_598.Size:= 1008; chartbl_1008_598.InfoText:= "Character table for group 1008.598 downloaded from the LMFDB."; chartbl_1008_598.Identifier:= " D42:D6 "; chartbl_1008_598.NrConjugacyClasses:= 69; chartbl_1008_598.ConjugacyClasses:= [ of ..., f4*f5*f6^3, f1, f2, f1*f3*f4*f5^2*f6^2, f2*f3*f4*f6^6, f1*f2*f3*f4*f5*f6^6*f7, f1*f2*f3*f5^2*f6^4*f7^2, f7^2, f5^2*f6^4, f5^2*f6^4*f7^2, f3*f5^2*f6, f1*f2*f5^2*f6^6, f4*f5*f6^3*f7, f4*f6, f4*f6*f7, f1*f7, f2*f7, f2*f5, f2*f5*f7, f2*f5*f7^2, f2*f3*f4*f5^2*f6^3, f6^3, f6^6, f6^2, f3*f4*f5, f1*f2*f4*f6^3*f7, f4*f5*f6, f4*f5*f6^4, f4*f5, f1*f6^3, f1*f6^2, f1*f6, f1*f3*f4*f5^2*f6^5, f1*f3*f4*f5^2*f6^4, f1*f3*f4*f5^2*f6^3, f6*f7^2, f6^2*f7, f6^4*f7^2, f5, f5^2, f5*f6, f5*f7^2, f5^2*f7, f5*f6*f7^2, f3*f4, f3*f5^2, f3*f4*f6, f4*f5*f7, f4*f5*f6^2*f7, f4*f5*f6*f7, f4, f4*f5^2, f4*f5^2*f6, f4*f7, f4*f5^2*f7, f4*f6^4*f7, f1*f6*f7, f1*f6^2*f7, f1*f5^2*f7, f1*f6*f7^2, f1*f5^2*f7^2, f1*f5*f7, f3, f3*f6, f3*f5, f3*f6^5, f3*f6^2, f3*f6^6]; chartbl_1008_598.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]; chartbl_1008_598.ComputedPowerMaps:= [ , [1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 11, 2, 2, 9, 10, 11, 9, 9, 10, 11, 11, 10, 24, 25, 23, 15, 14, 23, 25, 24, 24, 23, 25, 24, 23, 25, 38, 39, 37, 41, 42, 40, 44, 45, 43, 30, 28, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 38, 39, 37, 38, 37, 39, 52, 52, 53, 53, 54, 54], [1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 1, 12, 13, 2, 2, 2, 3, 4, 4, 4, 4, 6, 25, 23, 24, 12, 13, 29, 30, 28, 32, 33, 31, 35, 36, 34, 23, 24, 25, 24, 25, 23, 24, 25, 23, 47, 48, 46, 28, 30, 29, 30, 29, 28, 30, 29, 28, 31, 33, 32, 31, 32, 33, 46, 46, 48, 48, 47, 47], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 1, 1, 1, 26, 27, 2, 2, 2, 3, 3, 3, 5, 5, 5, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 26, 26, 26, 26, 26, 26]]; chartbl_1008_598.SizesCentralizers:= [1008, 1008, 168, 72, 56, 24, 16, 16, 504, 504, 252, 168, 24, 504, 504, 252, 84, 36, 36, 36, 36, 12, 504, 504, 504, 84, 12, 504, 504, 504, 84, 84, 84, 28, 28, 28, 252, 252, 252, 252, 252, 252, 126, 126, 126, 84, 84, 84, 252, 252, 252, 252, 252, 252, 126, 126, 126, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84]; chartbl_1008_598.ClassNames:= ["1A", "2A", "2B", "2C", "2D", "2E", "2F", "2G", "3A", "3B", "3C", "4A", "4B", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "6H", "6I", "7A1", "7A2", "7A3", "12A", "12B", "14A1", "14A3", "14A5", "14B1", "14B3", "14B5", "14C1", "14C3", "14C5", "21A1", "21A2", "21A4", "21B1", "21B2", "21B4", "21C1", "21C2", "21C4", "28A1", "28A3", "28A5", "42A1", "42A5", "42A11", "42B1", "42B5", "42B11", "42C1", "42C5", "42C11", "42D1", "42D5", "42D11", "42D13", "42D17", "42D19", "84A1", "84A-1", "84A5", "84A-5", "84A11", "84A-11"]; chartbl_1008_598.OrderClassRepresentatives:= [1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 21, 21, 21, 21, 21, 21, 21, 21, 21, 28, 28, 28, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 84, 84, 84, 84, 84, 84]; chartbl_1008_598.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1], [1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1], [1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1], [2, 2, 0, 2, 0, 2, 0, 0, 2, -1, -1, 2, 0, 2, -1, -1, 0, -1, -1, 2, -1, -1, 2, 2, 2, -1, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, -1, -1, 2, 2, -1, -1, -1, 2, 2, 2, -1, 2, -1, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1], [2, 2, 2, 2, 0, 0, 0, 0, -1, 2, -1, 0, 2, -1, 2, -1, -1, -1, -1, -1, 2, 0, 2, 2, 2, 0, -1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 2, -1, 2, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 0, 0, -2, 2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 0, 0, 2, -2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 0, 0, 0, 0, -1, 2, -1, 0, 2, -1, 2, -1, 1, 1, 1, 1, -2, 0, 2, 2, 2, 0, -1, 2, 2, 2, -2, -2, -2, 0, 0, 0, 2, -1, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 2, -1, 2, -1, -1, 2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2, 2, -2, 2, 0, 0, 0, 0, -1, 2, -1, 0, -2, -1, 2, -1, 1, -1, -1, -1, 2, 0, 2, 2, 2, 0, 1, 2, 2, 2, -2, -2, -2, 0, 0, 0, 2, -1, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 2, -1, 2, -1, -1, 2, -1, -1, -1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2, 2, 0, -2, 0, -2, 0, 0, 2, -1, -1, 2, 0, 2, -1, -1, 0, 1, 1, -2, 1, 1, 2, 2, 2, -1, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, -1, -1, 2, 2, -1, -1, -1, 2, 2, 2, -1, 2, -1, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1], [2, 2, 0, -2, 0, 2, 0, 0, 2, -1, -1, -2, 0, 2, -1, -1, 0, 1, 1, -2, 1, -1, 2, 2, 2, 1, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, -1, -1, 2, 2, -1, -1, -1, -2, -2, -2, -1, 2, -1, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [2, 2, 0, 2, 0, -2, 0, 0, 2, -1, -1, -2, 0, 2, -1, -1, 0, -1, -1, 2, -1, 1, 2, 2, 2, 1, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 2, -1, -1, 2, 2, -1, -1, -1, -2, -2, -2, -1, 2, -1, 2, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [2, 2, 2, -2, 0, 0, 0, 0, -1, 2, -1, 0, -2, -1, 2, -1, -1, 1, 1, 1, -2, 0, 2, 2, 2, 0, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, -1, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 2, -1, 2, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0], [2, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2], [2, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1], [2, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3], [2, 2, -2, 0, -2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 2, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2], [2, 2, -2, 0, -2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 2, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1], [2, 2, -2, 0, -2, 0, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 2, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3], [2, 2, -2, 0, 2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2], [2, 2, -2, 0, 2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1], [2, 2, -2, 0, 2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, -2, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3], [2, 2, 2, 0, -2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -2, 0, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2], [2, 2, 2, 0, -2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, -2, 0, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1], [2, 2, 2, 0, -2, 0, 0, 0, 2, 2, 2, -2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, -2, 0, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)+E(7)^-1, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3], [4, 4, 0, 4, 0, 0, 0, 0, -2, -2, 1, 0, 0, -2, -2, 1, 0, 1, 1, -2, -2, 0, 4, 4, 4, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 4, -2, 4, 4, -2, -2, -2, -2, -2, 0, 0, 0, -4, 2, -4, 2, 2, -4, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, -2, 4, 4, -2, -2, -2, 0, 0, 0, 2, -4, 2, -4, -4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, 0, -4, 0, 0, 0, 0, -2, -2, 1, 0, 0, -2, -2, 1, 0, -1, -1, 2, 2, 0, 4, 4, 4, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 2, 2, -1, 0, -3, 3, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 0, 2, 2, -1, 0, 3, -3, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -2, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -2, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -2, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3], [4, 4, 4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, -2, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0], [4, 4, 4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, -2, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0], [4, 4, 4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, -2, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 0, 0, 0, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, 2, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, 2, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0], [4, 4, -4, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, -2, 4, -2, 2, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, 0, 0, 0, 2*E(7)+2*E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 0, 0, 0, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, 2*E(7)^2+2*E(7)^-2, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, -4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 0, 0, 0, 0, 0, 0, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -1*E(7)^3-E(7)^-3, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, -4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 0, 0, 0, 0, 0, 0, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)+E(7)^-1], [4, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, -4, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 0, 0, 0, 0, 0, 0, -1*E(7)-E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -1*E(7)-E(7)^-1, 2*E(7)^2+2*E(7)^-2, -1*E(7)^2-E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, E(7)+E(7)^-1, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)^3+E(7)^-3], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^9+2*E(21)^-9, 2*E(21)^3+2*E(21)^-3, 2*E(21)^6+2*E(21)^-6, 0, 0, -2*E(21)^6-2*E(21)^-6, -2*E(21)^3-2*E(21)^-3, -2*E(21)^9-2*E(21)^-9, 0, 0, 0, 0, 0, 0, 2*E(21)^9+2*E(21)^-9, -1*E(21)^6-E(21)^-6, 2*E(21)^6+2*E(21)^-6, 2*E(21)^3+2*E(21)^-3, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, 0, 0, 0, -2*E(21)^9-2*E(21)^-9, E(21)^3+E(21)^-3, -2*E(21)^3-2*E(21)^-3, E(21)^9+E(21)^-9, E(21)^6+E(21)^-6, -2*E(21)^6-2*E(21)^-6, E(21)^9+E(21)^-9, E(21)^3+E(21)^-3, E(21)^6+E(21)^-6, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^9+2*E(21)^-9, 2*E(21)^3+2*E(21)^-3, 2*E(21)^6+2*E(21)^-6, 0, 0, -2*E(21)^6-2*E(21)^-6, -2*E(21)^3-2*E(21)^-3, -2*E(21)^9-2*E(21)^-9, 0, 0, 0, 0, 0, 0, 2*E(21)^9+2*E(21)^-9, -1*E(21)^6-E(21)^-6, 2*E(21)^6+2*E(21)^-6, 2*E(21)^3+2*E(21)^-3, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, 0, 0, 0, -2*E(21)^9-2*E(21)^-9, E(21)^3+E(21)^-3, -2*E(21)^3-2*E(21)^-3, E(21)^9+E(21)^-9, E(21)^6+E(21)^-6, -2*E(21)^6-2*E(21)^-6, E(21)^9+E(21)^-9, E(21)^3+E(21)^-3, E(21)^6+E(21)^-6, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^6+2*E(21)^-6, 2*E(21)^9+2*E(21)^-9, 2*E(21)^3+2*E(21)^-3, 0, 0, -2*E(21)^3-2*E(21)^-3, -2*E(21)^9-2*E(21)^-9, -2*E(21)^6-2*E(21)^-6, 0, 0, 0, 0, 0, 0, 2*E(21)^6+2*E(21)^-6, -1*E(21)^3-E(21)^-3, 2*E(21)^3+2*E(21)^-3, 2*E(21)^9+2*E(21)^-9, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, 0, 0, 0, -2*E(21)^6-2*E(21)^-6, E(21)^9+E(21)^-9, -2*E(21)^9-2*E(21)^-9, E(21)^6+E(21)^-6, E(21)^3+E(21)^-3, -2*E(21)^3-2*E(21)^-3, E(21)^6+E(21)^-6, E(21)^9+E(21)^-9, E(21)^3+E(21)^-3, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^6+2*E(21)^-6, 2*E(21)^9+2*E(21)^-9, 2*E(21)^3+2*E(21)^-3, 0, 0, -2*E(21)^3-2*E(21)^-3, -2*E(21)^9-2*E(21)^-9, -2*E(21)^6-2*E(21)^-6, 0, 0, 0, 0, 0, 0, 2*E(21)^6+2*E(21)^-6, -1*E(21)^3-E(21)^-3, 2*E(21)^3+2*E(21)^-3, 2*E(21)^9+2*E(21)^-9, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, 0, 0, 0, -2*E(21)^6-2*E(21)^-6, E(21)^9+E(21)^-9, -2*E(21)^9-2*E(21)^-9, E(21)^6+E(21)^-6, E(21)^3+E(21)^-3, -2*E(21)^3-2*E(21)^-3, E(21)^6+E(21)^-6, E(21)^9+E(21)^-9, E(21)^3+E(21)^-3, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^3+2*E(21)^-3, 2*E(21)^6+2*E(21)^-6, 2*E(21)^9+2*E(21)^-9, 0, 0, -2*E(21)^9-2*E(21)^-9, -2*E(21)^6-2*E(21)^-6, -2*E(21)^3-2*E(21)^-3, 0, 0, 0, 0, 0, 0, 2*E(21)^3+2*E(21)^-3, -1*E(21)^9-E(21)^-9, 2*E(21)^9+2*E(21)^-9, 2*E(21)^6+2*E(21)^-6, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, 0, 0, 0, -2*E(21)^3-2*E(21)^-3, E(21)^6+E(21)^-6, -2*E(21)^6-2*E(21)^-6, E(21)^3+E(21)^-3, E(21)^9+E(21)^-9, -2*E(21)^9-2*E(21)^-9, E(21)^3+E(21)^-3, E(21)^6+E(21)^-6, E(21)^9+E(21)^-9, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 2, -4, 2, 0, 0, 0, 0, 0, 0, 2*E(21)^3+2*E(21)^-3, 2*E(21)^6+2*E(21)^-6, 2*E(21)^9+2*E(21)^-9, 0, 0, -2*E(21)^9-2*E(21)^-9, -2*E(21)^6-2*E(21)^-6, -2*E(21)^3-2*E(21)^-3, 0, 0, 0, 0, 0, 0, 2*E(21)^3+2*E(21)^-3, -1*E(21)^9-E(21)^-9, 2*E(21)^9+2*E(21)^-9, 2*E(21)^6+2*E(21)^-6, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, -1*E(21)^9-E(21)^-9, -1*E(21)^3-E(21)^-3, -1*E(21)^6-E(21)^-6, 0, 0, 0, -2*E(21)^3-2*E(21)^-3, E(21)^6+E(21)^-6, -2*E(21)^6-2*E(21)^-6, E(21)^3+E(21)^-3, E(21)^9+E(21)^-9, -2*E(21)^9-2*E(21)^-9, E(21)^3+E(21)^-3, E(21)^6+E(21)^-6, E(21)^9+E(21)^-9, 1-E(21)+2*E(21)^2+E(21)^3-E(21)^4-2*E(21)^5+E(21)^6-E(21)^8+2*E(21)^9-E(21)^-10, E(21)^3-E(21)^4+2*E(21)^10+E(21)^-10, -1*E(21)^3+E(21)^4-2*E(21)^10-E(21)^-10, 2+E(21)-2*E(21)^2+2*E(21)^3-2*E(21)^5+E(21)^6+2*E(21)^7-3*E(21)^8+2*E(21)^10-2*E(21)^-10, -1+E(21)-2*E(21)^2-E(21)^3+E(21)^4+2*E(21)^5-E(21)^6+E(21)^8-2*E(21)^9+E(21)^-10, -2-E(21)+2*E(21)^2-2*E(21)^3+2*E(21)^5-E(21)^6-2*E(21)^7+3*E(21)^8-2*E(21)^10+2*E(21)^-10, 0, 0, 0, 0, 0, 0], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, 0, 0, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, 0, 0, 0, 0, 0, 0, E(84)^6+E(84)^-6, -2*E(84)^18-2*E(84)^-18, E(84)^18+E(84)^-18, -1*E(84)^12-E(84)^-12, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, E(84)^18+E(84)^-18, E(84)^6+E(84)^-6, -1*E(84)^12-E(84)^-12, 0, 0, 0, -1*E(84)^6-E(84)^-6, -2*E(84)^12-2*E(84)^-12, E(84)^12+E(84)^-12, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, 0, 0, 0, 0, 0, 0, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, 0, 0, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, 0, 0, 0, 0, 0, 0, E(84)^6+E(84)^-6, -2*E(84)^18-2*E(84)^-18, E(84)^18+E(84)^-18, -1*E(84)^12-E(84)^-12, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, E(84)^18+E(84)^-18, E(84)^6+E(84)^-6, -1*E(84)^12-E(84)^-12, 0, 0, 0, -1*E(84)^6-E(84)^-6, -2*E(84)^12-2*E(84)^-12, E(84)^12+E(84)^-12, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, 0, 0, 0, 0, 0, 0, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, 0, 0, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, 0, 0, 0, 0, 0, 0, E(84)^18+E(84)^-18, 2*E(84)^12+2*E(84)^-12, -1*E(84)^12-E(84)^-12, E(84)^6+E(84)^-6, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, -1*E(84)^12-E(84)^-12, E(84)^18+E(84)^-18, E(84)^6+E(84)^-6, 0, 0, 0, -1*E(84)^18-E(84)^-18, 2*E(84)^6+2*E(84)^-6, -1*E(84)^6-E(84)^-6, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, 0, 0, 0, 0, 0, 0, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, 2*E(84)^12+2*E(84)^-12, 0, 0, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, 0, 0, 0, 0, 0, 0, E(84)^18+E(84)^-18, 2*E(84)^12+2*E(84)^-12, -1*E(84)^12-E(84)^-12, E(84)^6+E(84)^-6, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, -1*E(84)^12-E(84)^-12, E(84)^18+E(84)^-18, E(84)^6+E(84)^-6, 0, 0, 0, -1*E(84)^18-E(84)^-18, 2*E(84)^6+2*E(84)^-6, -1*E(84)^6-E(84)^-6, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, 0, 0, 0, 0, 0, 0, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, 0, 0, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, 0, 0, 0, 0, 0, 0, -1*E(84)^12-E(84)^-12, -2*E(84)^6-2*E(84)^-6, E(84)^6+E(84)^-6, E(84)^18+E(84)^-18, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, E(84)^6+E(84)^-6, -1*E(84)^12-E(84)^-12, E(84)^18+E(84)^-18, 0, 0, 0, E(84)^12+E(84)^-12, 2*E(84)^18+2*E(84)^-18, -1*E(84)^18-E(84)^-18, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, 0, 0, 0, 0, 0, 0, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23], [4, -4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, -2*E(84)^6-2*E(84)^-6, 0, 0, 2*E(84)^6+2*E(84)^-6, 2*E(84)^18+2*E(84)^-18, -2*E(84)^12-2*E(84)^-12, 0, 0, 0, 0, 0, 0, -1*E(84)^12-E(84)^-12, -2*E(84)^6-2*E(84)^-6, E(84)^6+E(84)^-6, E(84)^18+E(84)^-18, 2*E(84)^12+2*E(84)^-12, -2*E(84)^18-2*E(84)^-18, E(84)^6+E(84)^-6, -1*E(84)^12-E(84)^-12, E(84)^18+E(84)^-18, 0, 0, 0, E(84)^12+E(84)^-12, 2*E(84)^18+2*E(84)^-18, -1*E(84)^18-E(84)^-18, -2*E(84)^12-2*E(84)^-12, 2*E(84)^6+2*E(84)^-6, -1*E(84)^6-E(84)^-6, E(84)^12+E(84)^-12, -1*E(84)^18-E(84)^-18, -1*E(84)^6-E(84)^-6, 0, 0, 0, 0, 0, 0, E(84)^5-E(84)^9+E(84)^19+2*E(84)^23, -1*E(84)^5+E(84)^9-E(84)^19-2*E(84)^23, -1*E(84)-2*E(84)^3+E(84)^7+E(84)^9+E(84)^11-E(84)^13+3*E(84)^17+E(84)^19-E(84)^23, E(84)+2*E(84)^3-E(84)^7-E(84)^9-E(84)^11+E(84)^13-3*E(84)^17-E(84)^19+E(84)^23, 3*E(84)-E(84)^5-E(84)^7+E(84)^11-E(84)^13-2*E(84)^15-E(84)^17+E(84)^21+E(84)^23, -3*E(84)+E(84)^5+E(84)^7-E(84)^11+E(84)^13+2*E(84)^15+E(84)^17-E(84)^21-E(84)^23], [8, 8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, -4, -4, 2, 0, 0, 0, 0, 0, 0, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 0, 0, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, -4, -4, 2, 0, 0, 0, 0, 0, 0, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 0, 0, 4*E(7)+4*E(7)^-1, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, 8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, -4, -4, 2, 0, 0, 0, 0, 0, 0, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 0, 0, 4*E(7)^3+4*E(7)^-3, 4*E(7)^2+4*E(7)^-2, 4*E(7)+4*E(7)^-1, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, 4, 4, -2, 0, 0, 0, 0, 0, 0, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 0, 0, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, 0, 0, 0, 0, 0, 0, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)-2*E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, 0, 0, 0, 2*E(7)^3+2*E(7)^-3, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, 4, 4, -2, 0, 0, 0, 0, 0, 0, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 4*E(7)+4*E(7)^-1, 0, 0, -4*E(7)-4*E(7)^-1, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, 0, 0, 0, 0, 0, 0, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)^3-2*E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, E(7)^3+E(7)^-3, 0, 0, 0, 2*E(7)^2+2*E(7)^-2, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)+2*E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, -1*E(7)-E(7)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 0, 0, 0, 0, -4, -4, 2, 0, 0, 4, 4, -2, 0, 0, 0, 0, 0, 0, 4*E(7)+4*E(7)^-1, 4*E(7)^2+4*E(7)^-2, 4*E(7)^3+4*E(7)^-3, 0, 0, -4*E(7)^3-4*E(7)^-3, -4*E(7)^2-4*E(7)^-2, -4*E(7)-4*E(7)^-1, 0, 0, 0, 0, 0, 0, -2*E(7)-2*E(7)^-1, -2*E(7)^3-2*E(7)^-3, -2*E(7)^3-2*E(7)^-3, -2*E(7)^2-2*E(7)^-2, -2*E(7)-2*E(7)^-1, -2*E(7)^2-2*E(7)^-2, E(7)^3+E(7)^-3, E(7)+E(7)^-1, E(7)^2+E(7)^-2, 0, 0, 0, 2*E(7)+2*E(7)^-1, 2*E(7)^2+2*E(7)^-2, 2*E(7)^2+2*E(7)^-2, 2*E(7)+2*E(7)^-1, 2*E(7)^3+2*E(7)^-3, 2*E(7)^3+2*E(7)^-3, -1*E(7)-E(7)^-1, -1*E(7)^2-E(7)^-2, -1*E(7)^3-E(7)^-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_1008_598);