-
g2c_curves • Show schema
Hide schema
{'Lhash': '2114186068369783362', 'abs_disc': 1936, 'analytic_rank': 0, 'analytic_rank_proved': True, 'analytic_sha': 1, 'aut_grp_id': '[4,2]', 'aut_grp_label': '4.2', 'aut_grp_tex': 'C_2^2', 'bad_lfactors': '[[2,[1,2,2]],[11,[1,0,-1]]]', 'bad_primes': [2, 11], 'class': '484.a', 'cond': 484, 'disc_sign': -1, 'end_alg': 'Q x Q', 'eqn': '[[0,0,1,0,2,0,1],[1]]', 'g2_inv': "['13181630464/121','49057344/11','31824640/121']", 'geom_aut_grp_id': '[4,2]', 'geom_aut_grp_label': '4.2', 'geom_aut_grp_tex': 'C_2^2', 'geom_end_alg': 'Q x Q', 'globally_solvable': 1, 'has_square_sha': True, 'hasse_weil_proved': True, 'igusa_clebsch_inv': "['184','37','721','242']", 'igusa_inv': "['184','1386','15040','211591','1936']", 'is_gl2_type': True, 'is_simple_base': False, 'is_simple_geom': False, 'label': '484.a.1936.1', 'leading_coeff': {'__RealLiteral__': 0, 'data': '0.2042529109687498716317241099813480511445765355604950860', 'prec': 190}, 'locally_solvable': True, 'modell_images': ['2.60.2', '3.720.4'], 'mw_rank': 0, 'mw_rank_proved': True, 'non_solvable_places': [], 'num_rat_pts': 4, 'num_rat_wpts': 0, 'real_geom_end_alg': 'R x R', 'real_period': {'__RealLiteral__': 0, 'data': '15.318968322656240372379308249', 'prec': 100}, 'regulator': {'__RealLiteral__': 0, 'data': '1.0', 'prec': 10}, 'root_number': 1, 'st_group': 'SU(2)xSU(2)', 'st_label': '1.4.B.1.1a', 'st_label_components': [1, 4, 1, 1, 1, 0], 'tamagawa_product': 3, 'torsion_order': 15, 'torsion_subgroup': '[15]', 'two_selmer_rank': 0, 'two_torsion_field': ['6.0.30976.1', [2, -4, 4, -2, 2, -2, 1], [6, 3], False]}
-
g2c_endomorphisms • Show schema
Hide schema
{'factorsQQ_base': [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], 'factorsQQ_geom': [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], 'factorsRR_base': ['RR', 'RR'], 'factorsRR_geom': ['RR', 'RR'], 'fod_coeffs': [0, 1], 'fod_label': '1.1.1.1', 'is_simple_base': False, 'is_simple_geom': False, 'label': '484.a.1936.1', 'lattice': [[['1.1.1.1', [0, 1], [0]], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'G_{3,3}']], 'ring_base': [2, -1], 'ring_geom': [2, -1], 'spl_facs_coeffs': [[[-8], [26]], [[16], [-152]]], 'spl_facs_condnorms': [44, 11], 'spl_facs_labels': ['44.a2', '11.a3'], 'spl_fod_coeffs': [0, 1], 'spl_fod_gen': [0], 'spl_fod_label': '1.1.1.1', 'st_group_base': 'G_{3,3}', 'st_group_geom': 'G_{3,3}'}
-
g2c_ratpts • Show schema
Hide schema
{'label': '484.a.1936.1', 'mw_gens': [[[[1, 2], [-1, 2], [1, 1]], [[-3, 4], [1, 4], [0, 1], [0, 1]]]], 'mw_gens_v': True, 'mw_heights': [], 'mw_invs': [15], 'num_rat_pts': 4, 'rat_pts': [[0, -1, 1], [0, 0, 1], [1, -1, 0], [1, 1, 0]], 'rat_pts_v': True}
-
g2c_galrep • Show schema
Hide schema
-
id: 56
{'conductor': 484, 'lmfdb_label': '484.a.1936.1', 'modell_image': '2.60.2', 'prime': 2}
-
id: 57
{'conductor': 484, 'lmfdb_label': '484.a.1936.1', 'modell_image': '3.720.4', 'prime': 3}
-
g2c_tamagawa • Show schema
Hide schema
-
id: 103975
{'label': '484.a.1936.1', 'p': 2, 'tamagawa_number': 3}
-
id: 103976
{'cluster_label': 'c2c2_1~2c2_1~2_0', 'label': '484.a.1936.1', 'p': 11, 'tamagawa_number': 1}
-
g2c_plots • Show schema
Hide schema
{'label': '484.a.1936.1', 'plot': '%2BnaQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt0VNXd//HPECAhJIRwywVDCApiREqAGBEhKBC1FvDWWvFef8%2ByFX3k6eoSrfWRWiWC1tpfE7RSf2qVW6tgaa1yUbkoKhGIclFuhotCCEFMAgkTSM7vj93JZCCBXGcms9%2BvtfYacubMZG%2BSzPmc7z4Xl%2BM4jgAAAGCNdoHuAAAAAPyLAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAkAdHMdRaWmpHMcJdFcAoMURAAGgDmVlZYqJiVFZWVmguwIALY4ACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAteTm5io1NVXp6emB7goAtBqXwzUOAOA0paWliomJUUlJibp06RLo7gBAi6ICCAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgANTCreAA2IBbwQFAHbgVHIBQRgUQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAauFOIABswJ1AAKAO3AkEQCijAggAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIoE2YPXu2UlJSFBERoWHDhmnNmjX1rjtnzhyNGjVKsbGxio2N1bhx47Ru3To/9hYAghsBEEDQW7hwoaZOnapHHnlEGzdu1KhRo3T11Vdr7969da6/cuVK3Xzzzfrggw/08ccfq0%2BfPsrKytK3337r554DQHDiMjAAgl5GRoaGDh2q559/vmbZBRdcoGuvvVbZ2dlnfX1VVZViY2OVk5Oj22%2B/vUHfk8vAAAhlVAD94Ouvpdxc6fvvA90ToO2prKzU%2BvXrlZWV5bM8KytLa9eubdB7lJeX68SJE%2BrWrVtrdBFAEPj%2Be7Ot/frrQPekbSAA%2BsGf/yzdd5%2BUmCjdcYf04YcSdVegYYqLi1VVVaW4uDif5XFxcSosLGzQezz00EPq3bu3xo0bV%2B86brdbpaWlPg1AcHMcac0as21NTDTb2hdfDHSv2gYCoB%2BkpkoXXihVVEh//as0apR0wQXSrFlSA7dfgPVcLpfP147jnLasLrNmzdL8%2BfO1aNEiRURE1Ltedna2YmJialpSUlKz%2BwygdRQWmm3oBRdIo0ebbWtFhdnWXnBBoHvXNhAA/eCOO6RNm6S1a6Wf/Uzq3Fnatk2aNk065xxp0iTprbekEycC3VMg%2BPTo0UNhYWGnVfuKiopOqwqe6plnntGMGTO0bNkyDR48%2BIzrPvzwwyopKalp%2B/bta3bfAbScEyfMtnLSJLPtnDbNbEs7dzbb1rVrzbb2jjsC3dO2gZNAAqCsTFq4UHrpJemTT7zLe/aUbrlFuvNO6Qc/CFj3gKCTkZGhYcOGafbs2TXLUlNTNWnSpHpPAnn66af1xBNPaOnSpbrkkksa/T05CQQIDp9/Lr3yijR3rnTokHf5JZdId98t3XSTFB0dsO61WQTAAPvyS%2Bnll6XXXvOdDv7BD6Tbb5cmT5bi4wPXPyAYLFy4ULfddpteeOEFjRgxQi%2B%2B%2BKLmzJmjLVu2KDk5Wbfffrt69%2B5dEwZnzZqlRx99VPPmzdPIkSNr3icqKkpRUVEN%2Bp4EQCBwCgulefPM1O7nn3uXx8dLt90m3XUXU73NRQAMEidPSu%2B%2Ba/Zy/vlPqbLSLA8Lk7KyzC/8pElSZGRAuwkEzOzZszVr1iwdOHBAgwYN0h/%2B8AeNHj1akjRmzBj17dtXr7zyiiSpb9%2B%2B2rNnz2nv8dhjj2n69OkN%2Bn4EQMC/ysulf/zDFESWLZOqqszyjh2lCRPM7NhVV0nt2we0myGDABiEvvvOTBG/%2Bqr06afe5VFR0vXXS7feKl1%2BOX8EQGsiAAKt7%2BRJ6YMPpNdflxYtko4e9T6XkWGO57vpJokrOLU8AmCQ277d7A3NnSsVFHiXx8dLP/mJmSK%2B%2BGKpASdDAmgEAiDQOhzHFDfmzzfFjoMHvc%2BlpJhj4W%2B7TRowIHB9tAEBsI1wHOnjj81e0t/%2BJh0%2B7H2uXz%2Bzh/TTn0oXXUQYBFoCARBoOY5jztBdsMC02gWN7t1NQePWW6URI9iG%2BQsBsA06cUJautQcIPuPf5jjJjwGDjRh8Cc/MdcfBNA0BECg%2BbZuNUWLhQulr77yLo%2BMNMe1T54sXXml1KFD4PpoKwJgG3fsmPSvf5k9qnfekdxu73MXXij9%2BMemEQaBxiEAAk2zdav097%2BbtmWLd3l4uHT11Wa2asIETmoMNAJgCCkpMRXBhQul5ct9LyydmirdeKN0ww1MEwNnkpubq9zcXFVVVWn79u0EQOAsPNO7b74pvfGGCYAeHTpI48ebmalJk6SYmMD1E74IgCHqyBETBt94w5xOXzsMnnuuOZv4%2BuvNCSTtuB8McBoqgED9qquldevMmbuLFkm7dnmf69DBXL7sxhtN6IuNDVw/UT8CoAW%2B/95cW/DNN82xg8ePe59LSDB/oNdeay4t07Fj4PoJBBMCIOCrstJcsuWtt0yB4cAB73MREeZYvhtuMNO7XbsGrp9oGAKgZY4eNccKLlokvf22uS2dR5cu5iKbkyaZ4zTYa4PNCICAmU165x0T%2BN59Vyot9T4XHS1dc42ZTbr6anOtWrQdBECLud3S%2B%2B%2BbvbklS3xvRRcWJo0aZfbkJkyQ%2BvcPXD%2BBQCAAwlY7dphZo3/%2BU1qzxntHDslcg3biRDNrdMUV5sQOtE0EQEjyHs%2BxZInZ06t9EK9kAuCPfiT98IfS6NFMFSP0EQBhi8pKafVq6d//NleV2LHD9/kLLzShb%2BJEjhsPJQRA1Onrr717gKtX%2B55EEhUljRtnSv5XXSX16RO4fgKthQCIULZ3r5nSfecdacUK31uwdehgdvQ9M0D9%2BgWun2g9BECcVWmpuazMv/5lPixq37ZHMpeYueoqcwDw6NHmYGCgrSMAIpQcP2525pcuNcHv1Fme%2BHjzOf6jH5nLtvArH/oIgGiU6mpp40YTBN95R/rkE7PMIyJCysw0HyDjx3PNQbRdBEC0ZZ5r8y1fbtqqVb5XgGjXTrrkEjOTc/XVUloaU7u2IQCiWb77zkwfvPuuud7gt9/6Ph8fL40da9q4cVJSUmD6CTQWARBtzb595vP4vffM46mzNb17m%2BvzXXWV%2BTzu1i0w/URwIACixTiOmVZYutS7x1lR4btO//4mDF5%2BuWk9ewamr8DZEAAR7IqKpJUrzbX5VqyQdu70fT4y0hyWM368OUQnNZUZGXgRANFq3G5p7VrvHmlenu90sSQNGiSNGWPa6NEEQgQet4JDsDp0yBzHt3KlaZs3%2Bz7frp2Unu6dcbn0Ui7TgvoRAOE3JSWmKvj%2B%2B6Zt2nT6Oqmp5hjCzExzHcLERP/3E5CoACLw9u831%2BFbtcq0U0/ckMxx1ldcYVpmJvfaRcMRABEwhw6ZDzXP3uyWLaev06%2BfCYKXXWba%2BeczhQH/IADCnxxH2rZN%2BvBD09asMZfjOtWFF3pnTTIzmTVB0xEAETQOHTIfeqtXm/b556dPGXfvbqY1Ro40j8OHS506Baa/CG0EQLSmigrps8/MYTIffWQeDx/2XaddO%2BkHPzCHx3hajx6B6S9CDwEQQaukxHwoevaG8/J8L2MgSe3bS0OGSCNGmEsaXHKJlJJClRDNRwBES3EcqaDAXDbrk0%2Bkjz%2BW8vOlkyd914uIMMfweWY9Lr2UKV20HgIg2ozKSmnDBt895tr3L/bo0UPKyDAtPd207t3931%2B0bQRANNXhw2aHNS9P%2BvRT04qLT18vPt53RmPoUG6zCf8hAKLNchxpzx6zN%2B3Zs9640fe2dR4pKSYIDh9u2tCh7FnjzAiAaIiSErNj%2BtlnpuXlmWrfqTp0MBdb9sxUjBghJSczW4HAIQAipLjdZmrl00%2BldetMO/XG5h7nnWeCoKelpXF8DbwIgDhVcbHZydywwdtOvfaeR//%2B0sUXm5aRYQ5V4ZIsCCYEQIS8I0ek9evNnvn69WYvfc%2Beutft3dt8UA8ZYg6%2BHjLEnIkcFubfPiPwCID2qqoyZ%2BDm55uT0fLzTTv1TkceyclmZmHYMDPTMGyYFBvr3z4DjUUAhJWKi7178Bs3mlZfpTAy0lywevBgc82tiy4yX3P5hdBGALTDoUPmgsqbNpn2xRfm6/Lyutfv39/MFqSleWcPmDlAW0QABP6jrMx3b//zz82G4NQzjz169TJB8MILTUtNNY0TTkIDATC0HD5sLqS8dau55uiWLebvu6io7vUjIszft2cmwDMrEB3t334DrYUACJxBVZWpDH7xhbc6sGlT3Qd5e/TqJQ0cKF1wgffx/POlpCSmktsCbgXXdlVVSfv2mQsqf/ml9NVX3sf6gp5kThK76CJvlX/wYFPp4%2B8VoYwACDTB0aO%2BlQTPv/furf81ERHmxJPzz5cGDDAbGE/r1YuzAYMNFcDg5DgmzO3Y4W3bt5vQt3Nn/RV7SerTx1utr125j4ryX/%2BBYEEABFrQ0aNmQ7R1q6k6eNrOneY6hvWJijLh8Nxzva1fP9P69DEXvIZ/EQAD5%2BRJszP19dem7drlbTt3mr%2Bz%2BnTsaP6WBg70ttRUs%2BNF0AO8CICAH1RVSbt3m3C4fbu3arFjh9nQnemvMCzMTB/37Wumqvr2NS052bTevc01xtCyCICt58QJc0btnj2m7d5tWkGBedy3z/zN1MflMjtG/ft7q%2BkDBpiQ17cvU7dAQxAAgQBzu71Vjp07zaPn6927zfNn0q6dlJBgNohJSd52zjkmHJ5zjrnjAFXExiEANs3Jk%2BYOPd98Y0LeN9%2BYQOdpe/dKBw6cfp/vU4WHmzDnqYafe663St6vH9fUA5qLAAgEsepqs7GsXR3xtD17zMb0TFPLHu3aSXFxUmKityUkmBYfbx7j4kxjwyrpyBGVvvOOYm65RSW7d6tLcnKgexRwbrd08KBpBw6YkHfggGn793vbwYNnD3eSmart08dUsT1V7dpV7oQE83sLoHUQAIE2rLraHBC/d69ptSstnurL/v1nnk47Vdeu5qSUuDjz2LOneezRw/y7Rw/Tunc3j506td74/K6qSpo2TZo9W6UVFYqRVBIRoS5TpkgzZ4bU3GJFhbke5uHD5rG42FwTr7jY/E4dOmQeDx40j99/3/D3DgszOxmeKnTtynSfPqb16kXAAwKJAAiEuKoqswHfv9%2BEQk/FxlO9KSw07eDBuu%2BjfDYRESYMdutmWmyst3Xt6m1dupj7L8fEmH97WlBVHKdOlf74R0lSqWQCoKQunuf%2B8IfA9e0UbrdUWuptJSWmlZaasOZpR45423ffmXb48JnPlq1Phw5mxyA%2B3ls5TkjwVpR79zb/7tUrpLIyEJIIgAAkmRNRjhzxTvMVFflWgjzVoUOHTIA4fNgc79VcHTqYi%2BtGRZnHzp3Nvzt3Nndh8TxGRppqY%2B0WEWFaeLiZUgwP9/67QwfTPP9u397bwsK8rV27/7TDhxTW9xy5/jOnfmoAdMLDVVWwT9Xde6q62lRfq6q87eRJbztxwkzNnzjh/bfbbZrn38ePm1ZR4dvKy007dsz7ePSoeSwrM/8uK2taWD9V%2B/YmvHfv7q3ueiq%2BnkdPNTguzoR6LlcEhAYCYDM4jqOysrJAdwMICMcx1SZPZal2ten7770VqdqVKc9jWZkJO8HkRv1NL%2Bm/ar4ulZQkaZ/%2BUwGU9DP9RW/qxwHoXf06dTLB2VNhrV1p9bSuXX2rsp5KbZcuBDrYLTo6Wi5L/wgIgM3gOUsQAAC0PTaf5U8AbIaGVgDT09OVl5fXoPcsLS1VUlKS9u3b16Bfysa8d2PXb611W3OMwfD/0djxtVY/GrtuY9Zvq2N0HCk9PUMfffSpqqq807jV1dKJPQXqecUwuf5zxsypFUAnLEzff7hZSkhUu3be6eOwMDOVmpGRrs8%2B42%2Bxqeu3xTEGw/9HW/1bbMz6rTlGmyuAXBmsGVwuV4N%2BGcPCwhq9h9GlS5dWee/GrN9a63q0xhiD5f9Davj4WrMfrfn/IbXNMbZv71LPnnWsn/wD6fbbpZdf9lnc5T9Nd9yhmEsGnuF9g%2BN3L1j%2BFhu7flscY7D8f0ht828xWMZoK07C94MpU6YEzXs3Zv3WWrexWrMfoT7G1vz/aKw2McbnnzchsNb1SRyXyyybPdt//fDTuo3FGJvXj1AfY1v9vLEVU8BBxoa7D4T6GEN9fJIFY9yzRwcXLlT8tGn65uOP1fuSSwLdo1YR8j9Hhf4YQ318kh1jDISw6dOnTw90J%2BArLCxMY8aMUfsQvndXqI8x1McnhfgYu3ZVxYABevrpp/VQdrY6d%2B4c6B61mpD%2BOf5HqI8x1Mcn2TFGf6MCCAB1oOoAIJRxDCAAAIBlCIAAAACWIQACAABYhgAIAABgGQJgADiOo%2BnTpysxMVGdOnXSmDFjtGXLlga/Pjs7Wy6XS1OnTm3FXjZPU8b4/PPPa/DgwTUX%2BxwxYoTeeecdP/W48ZoyxuzsbKWnpys6Olq9evXStddeq23btvmpx43TlPGtXr1aEyZMUGJiolwul9566y0/9bbl5ObmKjU1Venp6YHuSouYPXu2UlJSFBERoWHDhmnNmjX1rrtlyxbdcMMN6tu3r1wul5577jk/9rTpGjPGOXPmaNSoUYqNjVVsbKzGjRundevW%2BbG3jdeY8S1atEjDhw9X165d1blzZw0ZMkSvvfaaH3vbNI0ZY20LFiyQy%2BXStdde28o9DEEO/O6pp55yoqOjnTfffNPZtGmTc9NNNzkJCQlOaWnpWV%2B7bt06p2/fvs7gwYOdBx54wA%2B9bZqmjHHJkiXO22%2B/7Wzbts3Ztm2b8%2Btf/9rp0KGDs3nzZj/2vOGaMsYrr7zSefnll53Nmzc7%2Bfn5zjXXXOP06dPHOXr0qB973jBNGd%2B///1v55FHHnHefPNNR5KzePFiP/a4ZZWUlDiSnJKSkkB3pckWLFjgdOjQwZkzZ46zdetW54EHHnA6d%2B7s7Nmzp871161b5/zqV79y5s%2Bf78THxzt/%2BMMf/NzjxmvsGCdPnuzk5uY6GzdudL788kvnrrvucmJiYpxvvvnGzz1vmMaO74MPPnAWLVrkbN261dm5c6fz3HPPOWFhYc67777r5543XGPH6LF7926nd%2B/ezqhRo5xJkyb5qbehgwDoZ9XV1U58fLzz1FNP1Sw7fvy4ExMT47zwwgtnfG1ZWZnTv39/Z/ny5U5mZmbQBsDmjPFUsbGxzl/%2B8peW7mKztdQYi4qKHEnOqlWrWqObTdYS4yMABt7FF1/s/PznP/dZNnDgQOehhx4662uTk5PbRABszhgdx3FOnjzpREdHO6%2B%2B%2BmprdK/Zmjs%2Bx3GctLQ05ze/%2BU1Ld63FNGWMJ0%2BedEaOHOn85S9/ce644w4CYBMwBexnBQUFKiwsVFZWVs2y8PBwZWZmau3atWd87ZQpU3TNNddo3Lhxrd3NZmnOGD2qqqq0YMECHTt2TCNGjGitrjZZS4xRkkpKSiRJ3bp1a/E%2BNkdLjQ%2BBU1lZqfXr1/v8DCUpKysrZH6GLTHG8vJynThxIuj%2BBqXmj89xHL333nvatm2bRo8e3VrdbJamjvHxxx9Xz549dffdd7d2F0MWl9T2s8LCQklSXFycz/K4uDjt2bOn3tctWLBAGzZsUF5eXqv2ryU0dYyStGnTJo0YMULHjx9XVFSUFi9erNTU1Fbra1M1Z4wejuPol7/8pS677DINGjSoxfvYHC0xPgRWcXGxqqqq6vwZen6%2BbV1LjPGhhx5S7969g3LHuqnjKykpUe/eveV2uxUWFqbZs2dr/Pjxrd3dJmnKGD/66CO99NJLys/P90cXQxYVwFY2d%2B5cRUVF1bQTJ05Iklwul896juOctsxj3759euCBB/T6668rIiKi1fvcWC0xRo/zzz9f%2Bfn5%2BuSTT/SLX/xCd9xxh7Zu3dpqfW%2Bolhyjx3333acvvvhC8%2BfPb/H%2BNlZrjA/BwYafYVPHOGvWLM2fP1%2BLFi0Kys9Wj8aOLzo6Wvn5%2BcrLy9OTTz6pX/7yl1q5cmUr97J5GjrGsrIy3XrrrZozZ4569Ojhr%2B6FJCqArWzixInKyMio%2BdrtdksyFZaEhISa5UVFRaftAXmsX79eRUVFGjZsWM2yqqoqrV69Wjk5OTV7eYHSEmP06Nixo8477zxJ0vDhw5WXl6c//vGP%2BvOf/9wKPW%2B4lhyjJN1///1asmSJVq9erXPOOaflO9xILT0%2BBF6PHj0UFhZ2WhUllH6GzRnjM888oxkzZmjFihUaPHhwa3azyZo6vnbt2tV8jg4ZMkRffvmlsrOzNWbMmNbsbpM0doy7du3S7t27NWHChJpl1dXVkqT27dtr27ZtOvfcc1u30yGCCmAri46O1nnnnVfTUlNTFR8fr%2BXLl9esU1lZqVWrVunSSy%2Bt8z3Gjh2rTZs2KT8/v6YNHz5ct9xyi/Lz8wMa/qSWGWN9HMepCSOB1FJjdBxH9913nxYtWqT3339fKSkp/uj%2BWbXmzxCB0bFjRw0bNsznZyhJy5cvD5mfYVPH%2BPTTT%2Bt3v/ud3n33XQ0fPry1u9lkLfUzDJbP0bo0dowDBw48bXs4ceJEXX755crPz1dSUpK/ut72BeTUE8s99dRTTkxMjLNo0SJn06ZNzs0333za5TWuuOIK509/%2BlO97xHMZwE7TtPG%2BPDDDzurV692CgoKnC%2B%2B%2BML59a9/7bRr185ZtmxZIIZwVk0Z4y9%2B8QsnJibGWblypXPgwIGaVl5eHoghnFFTxldWVuZs3LjR2bhxoyPJefbZZ52NGzee9XIOwSgUzgL2XF7jpZdecrZu3epMnTrV6dy5s7N7927HcRzntttu8znT0u121/z8EhISnF/96lfOxo0bnR07dgRqCGfV2DHOnDnT6dixo/PGG2/4/A2WlZUFaghn1NjxzZgxw1m2bJmza9cu58svv3R%2B//vfO%2B3bt3fmzJkTqCGcVWPHeCrOAm4aAmAAVFdXO4899pgTHx/vhIeHO6NHj3Y2bdrks05ycrLz2GOP1fsewR4AmzLGn/3sZ05ycrLTsWNHp2fPns7YsWODNvw5TtPGKKnO9vLLL/u38w3QlPF98MEHdY7vjjvu8G/nW0AoBEDHcZzc3Nyav6uhQ4f6XHIoMzPT52dTUFBQ588vMzPT/x1vhMaMMTk5uc4xnunzNtAaM75HHnnEOe%2B885yIiAgnNjbWGTFihLNgwYIA9LpxGjPGUxEAm8blOI7jv3ojAAS33Nxc5ebmqqqqStu3b1dJSYm6dOkS6G4BQIsiAAJAHUpLSxUTE0MABBCSOAkEAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAqCU3N1epqalKT08PdFcAoNVwKzgAqAO3ggMQyqgAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIIao7jaPr06UpMTFSnTp00ZswYbdmy5Yyvyc7OVnp6uqKjo9WrVy9de%2B212rZtm596DADBjwAIIKjNmjVLzz77rHJycpSXl6f4%2BHiNHz9eZWVl9b5m1apVmjJlij755BMtX75cJ0%2BeVFZWlo4dO%2BbHngNA8OIyMACCluM4SkxM1NSpUzVt2jRJktvtVlxcnGbOnKl77rmnQe9z6NAh9erVS6tWrdLo0aMb9BouAwMglFEBBBC0CgoKVFhYqKysrJpl4eHhyszM1Nq1axv8PiUlJZKkbt261buO2%2B1WaWmpTwOAUEUABBC0CgsLJUlxcXE%2By%2BPi4mqeOxvHcfTLX/5Sl112mQYNGlTvetnZ2YqJialpSUlJTe84AAQ5AiCAoDF37lxFRUXVtBMnTkiSXC6Xz3qO45y2rD733XefvvjiC82fP/%2BM6z388MMqKSmpafv27WvaIACgDWgf6A4AgMfEiROVkZFR87Xb7ZZkKoEJCQk1y4uKik6rCtbl/vvv15IlS7R69Wqdc845Z1w3PDxc4eHhTew5ALQtBEAAQSM6OlrR0dE1XzuOo/j4eC1fvlxpaWmSpMrKSq1atUozZ86s930cx9H999%2BvxYsXa%2BXKlUpJSWn1vgNAW8IUMICg5XK5NHXqVM2YMUOLFy/W5s2bdeeddyoyMlKTJ0%2BuWW/s2LHKycmp%2BXrKlCl6/fXXNW/ePEVHR6uwsFCFhYWqqKgIxDAAIOhQAQQQ1B588EFVVFTo3nvv1ZEjR5SRkaFly5b5VAp37dql4uLimq%2Bff/55SdKYMWN83uvll1/WnXfe6Y9uA0BQ4zqAAFAHrgMIIJQxBQwAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIALXk5uYqNTVV6enpge4KALQazgIGgDpwFjCAUEYFEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAGrhTiAAbMCdQACgDtwJBEAoowIIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFgQSvNQAAAdMUlEQVSGAAgAAGAZAiAA1MKt4ADYgFvBAUAduBUcgFBGBRAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQQFBzHEfTp09XYmKiOnXqpDFjxmjLli0Nfn12drZcLpemTp3air0EgLaFAAggqM2aNUvPPvuscnJylJeXp/j4eI0fP15lZWVnfW1eXp5efPFFDR482A89BYC2gwAIIGg5jqPnnntOjzzyiK6//noNGjRIr776qsrLyzVv3rwzvvbo0aO65ZZbNGfOHMXGxvqpxwDQNhAAAQStgoICFRYWKisrq2ZZeHi4MjMztXbt2jO%2BdsqUKbrmmms0bty4Bn0vt9ut0tJSnwYAoap9oDsAAPUpLCyUJMXFxfksj4uL0549e%2Bp93YIFC7Rhwwbl5eU1%2BHtlZ2frt7/9bdM6CgBtDBVAAEFj7ty5ioqKqmknTpyQJLlcLp/1HMc5bZnHvn379MADD%2Bj1119XREREg7/3ww8/rJKSkpq2b9%2B%2Bpg8EAIIcFUAAQWPixInKyMio%2BdrtdksylcCEhISa5UVFRadVBT3Wr1%2BvoqIiDRs2rGZZVVWVVq9erZycHLndboWFhZ32uvDwcIWHh7fUUAAgqBEAAQSN6OhoRUdH13ztOI7i4%2BO1fPlypaWlSZIqKyu1atUqzZw5s873GDt2rDZt2uSz7K677tLAgQM1bdq0OsMfANiGAAggaHmu3zdjxgz1799f/fv314wZMxQZGanJkyfXrDd27Fhdd911uu%2B%2B%2BxQdHa1Bgwb5vE/nzp3VvXv305YDgK0IgACC2oMPPqiKigrde%2B%2B9OnLkiDIyMrRs2TKfSuGuXbtUXFwcwF4CQNvichzHCXQnACDYlJaWKiYmRiUlJerSpUuguwMALYqzgAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABoJbc3FylpqYqPT090F0BgFbDWcAAUAfOAgYQyqgAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACQC3cCQSADbgTCADUgTuBAAhlVAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAASAWrgVHAAbcCs4AKgDt4IDEMqoAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACCGqO42j69OlKTExUp06dNGbMGG3ZsuWsr/v222916623qnv37oqMjNSQIUO0fv16P/QYAIIfARBAUJs1a5aeffZZ5eTkKC8vT/Hx8Ro/frzKysrqfc2RI0c0cuRIdejQQe%2B88462bt2q3//%2B9%2Bratasfew4AwYvLwAAIWo7jKDExUVOnTtW0adMkSW63W3FxcZo5c6buueeeOl/30EMP6aOPPtKaNWua/L25DAyAUEYFEEDQKigoUGFhobKysmqWhYeHKzMzU2vXrq33dUuWLNHw4cP14x//WL169VJaWprmzJlzxu/ldrtVWlrq0wAgVBEAAQStwsJCSVJcXJzP8ri4uJrn6vL111/r%2BeefV//%2B/bV06VL9/Oc/13//93/rr3/9a72vyc7OVkxMTE1LSkpqmUEAQBAiAAIIGnPnzlVUVFRNO3HihCTJ5XL5rOc4zmnLaquurtbQoUM1Y8YMpaWl6Z577tF//dd/6fnnn6/3NQ8//LBKSkpq2r59%2B1pmUAAQhNoHugMA4DFx4kRlZGTUfO12uyWZSmBCQkLN8qKiotOqgrUlJCQoNTXVZ9kFF1ygN998s97XhIeHKzw8vKldB4A2hQAIIGhER0crOjq65mvHcRQfH6/ly5crLS1NklRZWalVq1Zp5syZ9b7PyJEjtW3bNp9l27dvV3Jycut0HADaGKaAAQQtl8ulqVOnasaMGVq8eLE2b96sO%2B%2B8U5GRkZo8eXLNemPHjlVOTk7N1//zP/%2BjTz75RDNmzNDOnTs1b948vfjii5oyZUoghgEAQYcKIICg9uCDD6qiokL33nuvjhw5ooyMDC1btsynUrhr1y4VFxfXfJ2enq7Fixfr4Ycf1uOPP66UlBQ999xzuuWWWwIxBAAIOlwHEADqwHUAAYQypoABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAaCW3NxcpaamKj09PdBdAYBWw1nAAFAHzgIGEMqoAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAC1cCs4ADbgVnAAUAduBQcglFEBBAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEgFq4EwgAG3AnEACoA3cCARDKqAACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAghqjuNo%2BvTpSkxMVKdOnTRmzBht2bLljK85efKkfvOb3yglJUWdOnVSv3799Pjjj6u6utpPvQaA4EYABBDUZs2apWeffVY5OTnKy8tTfHy8xo8fr7KysnpfM3PmTL3wwgvKycnRl19%2BqVmzZunpp5/Wn/70Jz/2HACCF5eBARC0HMdRYmKipk6dqmnTpkmS3G634uLiNHPmTN1zzz11vu5HP/qR4uLi9NJLL9Usu%2BGGGxQZGanXXnutQd%2Bby8AACGVUAAEErYKCAhUWFiorK6tmWXh4uDIzM7V27dp6X3fZZZfpvffe0/bt2yVJn3/%2BuT788EP98Ic/bPU%2BA0Bb0D7QHQCA%2BhQWFkqS4uLifJbHxcVpz5499b5u2rRpKikp0cCBAxUWFqaqqio9%2BeSTuvnmm%2Bt9jdvtltvtrvm6tLS0mb0HgOBFBRBA0Jg7d66ioqJq2okTJyRJLpfLZz3HcU5bVtvChQv1%2Buuva968edqwYYNeffVVPfPMM3r11VfrfU12drZiYmJqWlJSUssMCgCCEMcAAggaZWVlOnjwYM3XbrdbgwYN0oYNG5SWllazfNKkSeratWu9gS4pKUkPPfSQpkyZUrPsiSee0Ouvv66vvvqqztfUVQFMSkriGEAAIYkpYABBIzo6WtHR0TVfO46j%2BPh4LV%2B%2BvCYAVlZWatWqVZo5c2a971NeXq527XwnOMLCws54GZjw8HCFh4c3cwQA0DYwBQwgaLlcLk2dOlUzZszQ4sWLtXnzZt15552KjIzU5MmTa9YbO3ascnJyar6eMGGCnnzySb399tvavXu3Fi9erGeffVbXXXddIIYBAEGHCiCAoPbggw%2BqoqJC9957r44cOaKMjAwtW7bMp1K4a9cuFRcX13z9pz/9SY8%2B%2BqjuvfdeFRUVKTExUffcc4/%2B93//NxBDAICgwzGAAFAHrgMIIJQxBQwAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIALXk5uYqNTVV6enpge4KALQazgIGgDpwFjCAUEYFEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAKiFW8EBsAG3ggOAOnArOAChjAogAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAA1MKdQADYgDuBAEAduBMIgFBGBRAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQQMhZtGiRrrzySvXo0UMul0v5%2BfkNf3FVlfTWW9LUqebrf/3LLAOAEEIABBByjh07ppEjR%2Bqpp55q3AsLC6WhQ6XrrpNeftksu%2BUWs6ywsOU7CgAB0j7QHQCAlnbbbbdJknbv3t24F956q/TFF6cv/%2BIL89yKFc3vHAAEAQIggJBQVSVVVkput3msrJT27Wsvqb927YqQyyWdPOltVVVSdbW3RX69WZe%2B91793%2BC997T2xc0q7zdI7dqppoWFSe3b%2B7YOHbytY0fTwsPNY1iY3/5LAKBeXAgagF84jlReLpWUSKWl3lZWZtrRo9527Ji3lZf7tooK6fjx01tzD9O7Xa/qVd1Z83WppBhJJZK61FrnNd3erO8TFiZFRJzeOnWSIiN9W%2BfO3hYV5W3R0aZ16eJtMTHmNS5Xs7oHwBJUAAE0yvHjUnGxdPiwt333nWlHjngfjxyRvv/eBD7Poz/PpTCVuGpVVJSqa9cohYe396nShYWZVlPJ23vSpL0z6N43WhdFe6uGVVWm1a4setqJE6YKefKk73tUVXnDbUsLCzNBsGtX72NsrGndunkfu3WTunf3th49TAgFYA8qgIDlqqpMoCsslA4e9LaiItMOHfI%2BFhc3P7i0a2cqVrUrWJ6qlqfC5al4eapgnopYp07e5qmcnTx5VGVlh9Sxo6MOHRz17ZuomJhOcrnMMYApKSnauHGjhgwZcsZ%2BuY8cUceUFLlKTAo8rQLYtau0f7/55o3gON4pac8U9anVy4oKb/NUOj3VT09F1FMd9VRLa1dQS0tNIG2Ozp1NEOzZU%2BrVy/vYq5cUF%2Bdt8fFmPaaygbaNCiAQoqqrTWD79ltv27/f2w4cMK2oqPHhISzMt4LkqSp5mqfqVLsSFRNjWufOLT1NGfWf1jzhsbFSdrZ07711rzBjRqPDn2TGGh5uWmtxHBMSS0p8K67ff%2B%2BtxnqqtJ5Wu4Jbuyq5Z8/Zv1%2B7diYYJiSYlpjobb17e1uPHmZdAMGHAAi0USUl0t69ZoO9d69p%2B/ZJ33xjHr/91lScGsLlMhtrT4XHU/WpXQ3ytB49TJAL5mPNvvvuO%2B3du1f79%2B%2BXJG3btk2SFB8fr/j4%2BPpf%2BItfmLT65JPSli1m2cCB0v/%2Br3Tzza3d7SZzubzV0969G/daxzG/S8XFpsrraZ6qr6ca7KkQFxebHYbCQtM2bqz/vTt2NP1JSpLOOcc89uljWnKyeYyJad7YATQNU8BAkDp6VCooMO3rr6Xdu71tzx5T3Tkbl8sEOE9lxvPoqdokJHgDX/sQ2h185ZVXdNddd522/LHHHtP06dMb9B6lW7cq5sILVVJSoi5dupz9BZY4edIbCA8c8FaTPRVmz2NRkQmXZ9O1qwmDfft6W79%2BUkqKaVHNL%2B4CqAMBEAgQxzFTcTt2SDt3Srt2eR937TIb0LPp1s1bSenTx1RYPO2cc0zA69ix9ccSikpLSxUTE0MAbKLKShMMPRVpT/NUq/fsMb//Z9Orl3Tuuaadd573sX9/8/sfzJVoIJgRAIFWVl4ubd8ubdtmHj1txw5zbNaZxMaaKoinIuKpkCQnm0Z1pPUQAFvf0aMmCO7Z461ueyreBQUN%2B/vo318aMMDbzj/fPEZG%2BmMEQNtFAARaSHGxtHWr9OWX3vbVV6bacSa9e5uNWO0Kx7nnmtDXtat/%2Bo7TEQAD7/vvTRj0VMU9FfIdO8xU85n06WMO37zgAm9LTTXHsAIgAAKNduSItHmzt23das4XOHSo/td062Y2RrUrFQMGmKBHpSI4EQCDW3m5CYO1q%2Brbt5udrjNNLffsKV14oQmDgwZ5W2ys//oOBAMCIFCPykozbfvFF962adOZKw/JyWbD4qk4DBxoGlWHtocA2HYVF5sg%2BNVX3mr81q1nvsRN797SRRdJgwd72/nncwwtQhcBEJCZavr8c3NJi/x807ZuNXdzqEufPt7KwYUXmjZwoLnGHdq23Nxc5ebmqqqqStu3bycAhpBjx0wo3LLFtM2bzU7dvn11r9%2Bhg9mhGzLEtLQ06Qc/4NAMhAYCIKxTXCxt2CCtX28eN2wwxxnVpUsXbzXAUx0YNMgsR2ijAmiP0lITBj1Vfk/Fv7S07vX79ZOGDjVt2DDzSJUfbQ0BECGtpET67DMpL888fvZZ/dNAycnePf0hQ8yeft%2B%2BXGbCVgRAuzmOOSv588%2B9swL5%2BWf%2B/Bg%2B3LT0dPPIRa4RzAiACBmVlWav/dNPTVu3zhzDV5f%2B/X334NPSzIkagAcBEHX57jtzqEjtGYQdO%2Bpe9/zzpYsvljIyTBs8mGMKETwIgGiz9u%2BX1q6VPvlE%2Bvhj84Hsdp%2B%2BXt%2B%2BZo/cs1c%2BdCh75jg7AiAaqqTEBEHPbENenqkenioiwnz%2BjBghXXKJdOml5o48QCAQANEmVFWZ6t7atdJHH5nHuqZiYmO9e9sXX2xCX8%2Be/u8v2j4CIJrj0CETBNet885K1HVh6%2BRkEwRHjjSPgwdLYWH%2B7y/sQwBEUKqoMB%2Bca9aY9vHHUlmZ7zrt2pkTMy691AS%2BESPM1C7H7KElEADRkhzHTBV//LEJg2vXmhNOqqt914uONp9lo0aZdvHFUqdOgekzQhsBEEHh6FFT2Vu1Slq92oS/Uy/B4vlg9OwpZ2SYZUBrIACitZWVecPgRx/VvaPbsaOZyRg9WsrMNJ9/3AISLYEAiIA4dkz68ENp5Urpgw/MsTNVVb7rJCR494Ivu8xU%2B5gagb8QAOFvVVWmKvjhh97ZjwMHfNcJCzPHMl9%2BuTRmjPls5PqjaAoCIPzC7TYna7z3ngl8n3winTzpu05ysvlAy8w0e7v9%2BjGdi8AhACLQHMdco3T1ajM7snLl6cc%2Bd%2BhgZkMuv1waO9acXBIeHpDuoo0hAKJVVFebkzZWrJCWLzd7tOXlvuv06SNdcYUJfWPGmAAIBAsCIILRnj0mCK5cKb3/vrR3r%2B/zkZGmKjh%2BvDRunDmppF27QPQUwY4AiBZz4IC0bJlpK1ZIRUW%2Bz/fqZfZQr7jCtH79AtNP4Ey4FRzaCseRCgpMEHz/fTPDUtfn7rhxUlaWaQkJgekrgg8BEE1WWWkqe%2B%2B%2BKy1daip%2BtXXubKZzx40zbdAgpnTRdlABRFvjOOaWditWmLZqlTneurbBg6Urr5SuuspUCrkwtb0IgGiUffukf/9beucds7d59Kj3OZfL3FXDs6c5YgQfLmi7CIBo6yorzZnFnpmZ9etNSPSIijKzMldfLf3wh1JSUuD6Cv8jAOKMqqrMCRv/%2Bpf09tvmDLXaevUye5JXXmmOOeGiywgVBECEmkOHzDHZS5eamZtTp4svuki65hrpRz8yJ5Nw1YXQRgDEaUpKzAfEP/9pKn2HD3ufa9fOnHH2wx%2BaNmQIBxgjNBEAEcqqq6X8fDOj8%2B9/m%2BsR1r4odffupjI4YYLZyedPIPQQACHJTO3%2B4x/SkiXm7LLaF2GOjTUfANdcYx67dw9YNwG/IQDCJocPm6rg22%2Bbx9q3revQwVypYeJEadIkpopDBQHQUo4jbd0qLVokvfWWuZF5bQMGmD/2CRPMXTfatw9MP4FAIQDCVidPmruT/POfpiiwfbvv80OHStdeK11/vZSaysl9bRUB0CKOY26xtmiRaTt3ep9zuUzQmzTJtAEDAtdPIBgQAAFj%2B3YzQ/SPf5hgWDs1nHeeCYLXX2/uW0wYbDsIgCGuutr8wb7xhvTmm9I333ifCw83l2e57jpT6evVK3D9BIINARA4XVGRqQwuXmwuNeN2e5875xzphhukG280BQWODw9uBMAQVFVlbiz%2B97%2Bb0Ff7XpJRUebkjRtuMAf4RkcHrp9AMCMAAmdWVmZOFHzzTXMiSe3LgiUkmO3Mj39srjdIGAw%2BBMAQUV1tLteycKEJfrVDX0yMOZ7vxhvN9fkiIgLXTyDYcScQoPGOHzfXGnzjDXPcYEmJ97mEBBMEb7rJXF6GMBgcCIBtmONIGzdK8%2BdLf/ub7z0hY2LMQbo/%2BYmZ5uWCzEDjUAEEmsbtNtPDf/%2B7Ocmwdhjs08dsl26%2BWUpL45jBQCIAtkE7dkjz5plW%2B%2Bys6GhzAsdNN5mLMoeHB66PQFtHAASaz%2B02F59euNCcRFJW5n1uwABp8mTT%2BvcPXB9tRQBsIw4elBYsMKFv3Trv8ogIc9X2m282x/YxvQu0DAIg0LIqKswxg/Pnm7tLHT/ufe7ii00Q/OlPpbi4wPXRJgTAIFZebvaYXnvNHFtRVWWWh4WZCt/kyWaalxM5gJZHAARaT2mp2b7Nm2cqhLW3b1lZ0m23mRmtyMjA9jOUEQCDTHW19OGH0quvmuMnapfLL75YuvVWc/wEe0hA6yIAAv5x8KA5jv31131nuKKjzckjd9zBmcStgf/OILF7t/Tb35qLamZmSv/v/5nw17ev9Oij0rZt5l6N999P%2BINdFi1apCuvvFI9evSQy%2BVSfn7%2BWV8zZ84cjRo1SrGxsYqNjdW4ceO0rvaWBUDQiIsz27ZPPzXbukcfNdu%2BsjKzLczMNNvG3/7WbCvRMgiAAVRebqZ3r7hCSkmRpk%2BXCgrMXs/dd0urVkm7dkmPP86dOWCvY8eOaeTIkXrqqaca/JqVK1fq5ptv1gcffKCPP/5Yffr0UVZWlr799ttW7CmA5howwGzzdu0y28C77zbbxIICs41MSTHbzNdeM9tQNB1TwH7mONL69dJLL5ljH0pLzXKXy/xS33mnuaUOxz0Avnbv3q2UlBRt3LhRQ4YMadRrq6qqFBsbq5ycHN1%2B%2B%2B0Neg1TwEBwKC83ty995RXp/fe9t6Lr0sUcC3/33dKwYVxSprGoAPrJkSNSTo657lF6uvTCCyb8paSYsnZBgblu0q23Ev6AllZeXq4TJ06oW7duge4KgEaKjDTbxhUrzLbyt781287SUrMtTU8329acHLOtRcNQAfSDRx%2BVnnnGe8p7eLip8v2f/yONGcOBrUBDNKcCOGXKFC1dulSbN29WRD3XSnK73XLXurFpaWmpkpKSqAACQai6Wlq5UvrLX0x10POnGxEh/epX0u9%2BF9DutQlEDz/o0sWEv4sukv7v/zW3aZs3z0z5Ev4Ar7lz5yoqKqqmrVmzptnvOWvWLM2fP1%2BLFi2qN/xJUnZ2tmJiYmpaUlJSs783gNbRrp3Zhs6bJ%2B3fb7atF11ktrUxMYHuXdtABdAPDh82d%2B/IyOAYBeBMysrKdPDgwZqve/furU6dOklqWgXwmWee0RNPPKEVK1Zo%2BPDhZ1yXCiDQtjmOOZO4f3%2Bpe/dA9yb4tQ90B2zQvTu/jEBDREdHK7qFrmz%2B9NNP64knntDSpUvPGv4kKTw8XOHcPxFos1wu6ZJLAt2LtoMACCCofffdd9q7d6/2798vSdq2bZskKT4%2BXvHx8ZKk22%2B/Xb1791Z2drYkM%2B376KOPat68eerbt68KCwslqWZqGQBsxxFoAILakiVLlJaWpmuuuUaS9NOf/lRpaWl64YUXatbZu3evDhw4UPP17NmzVVlZqRtvvFEJCQk17ZlnnvF7/wEgGHEMIADUgesAAghlVAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAaCW3NxcpaamKj09PdBdAYBWw1nAAFAHzgIGEMqoAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAC1cCs4ADbgVnAAUAduBQcglFEBBAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAGrhVnAAbMCt4ACgDtwKDkAoowIIAABgGQIgAACAZQiAAAAAliEAAgAAWIaTQACgDo7jqKysTNHR0XK5XIHuDgC0KAIgAACAZZgCBgAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDL/H%2B/KVM%2B2nacpAAAAAElFTkSuQmCC'}