# Learn more about

## Results (displaying matches 1-50 of 303) Next

Label Class Equation Sato-Tate $$\overline{\Q}$$-simple $$\GL_2$$ Rank*
448.a.448.2 448.a $$y^2 + (x^3 + x)y = -2x^4 + 7$$ $N(G_{1,3})$ 0
448.a.448.1 448.a $$y^2 + (x^3 + x)y = x^4 - 7$$ $N(G_{1,3})$ 0
640.a.81920.1 640.a $$y^2 + x^3y = 3x^4 + 13x^2 + 20$$ $N(G_{1,3})$ 0
640.a.81920.2 640.a $$y^2 + x^3y = -3x^4 + 13x^2 - 20$$ $N(G_{1,3})$ 0
686.a.686.1 686.a $$y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$$ $N(G_{1,3})$ 0
810.a.196830.1 810.a $$y^2 + (x + 1)y = x^5 + 15x^4 + 20x^3 - 297x^2 + 94x - 8$$ $N(G_{1,3})$ 0
864.a.1728.1 864.a $$y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^2$$ $N(G_{1,3})$ 0
864.a.221184.1 864.a $$y^2 + x^3y = x^5 - 4x^4 - 6x^3 + 33x^2 - 36x + 12$$ $N(G_{1,3})$ 0
864.a.442368.1 864.a $$y^2 = x^6 - 4x^4 + 6x^2 - 3$$ $N(G_{1,3})$ 0
1088.b.2176.1 1088.b $$y^2 + (x^3 + x)y = 4x^4 + 24x^2 + 34$$ $N(G_{1,3})$ 0
1088.b.2176.2 1088.b $$y^2 + (x^3 + x)y = -5x^4 + 24x^2 - 34$$ $N(G_{1,3})$ 0
1331.a.1331.1 1331.a $$y^2 + x^3y = -x^4 - x^3 + 2x^2 + 3x + 1$$ $N(G_{1,3})$ 1
1344.a.4032.1 1344.a $$y^2 + xy = -x^6 - 12x^4 - 48x^2 - 63$$ $N(G_{1,3})$ 0
1344.a.4032.2 1344.a $$y^2 + xy = -x^6 + 12x^4 - 48x^2 + 63$$ $N(G_{1,3})$ 0
1536.b.49152.2 1536.b $$y^2 + x^3y = 3x^4 + 11x^2 + 12$$ $N(G_{1,3})$ 0
1536.b.49152.1 1536.b $$y^2 + x^3y = -3x^4 + 11x^2 - 12$$ $N(G_{1,3})$ 0
1536.c.98304.1 1536.c $$y^2 + y = 4x^6 - 12x^5 + 3x^4 + 14x^3 - 5x^2 - 4x + 1$$ $N(G_{1,3})$ 0
1728.b.442368.1 1728.b $$y^2 = x^6 + 4x^4 + 6x^2 + 3$$ $N(G_{1,3})$ 0
2058.a.2058.1 2058.a $$y^2 + (x^3 + 1)y = 5x^6 - 4x^5 - 5x^4 + 14x^3 - 5x^2 - 4x + 5$$ $N(G_{1,3})$ 0
2058.a.16464.1 2058.a $$y^2 + (x^3 + 1)y = -3x^6 + 5x^5 - 11x^4 + 10x^3 - 11x^2 + 5x - 3$$ $N(G_{1,3})$ 0
2080.a.4160.1 2080.a $$y^2 + xy = x^6 + 12x^4 + 48x^2 + 65$$ $N(G_{1,3})$ 1
2080.a.4160.2 2080.a $$y^2 + xy = x^6 - 12x^4 + 48x^2 - 65$$ $N(G_{1,3})$ 1
2176.a.69632.2 2176.a $$y^2 + xy = x^6 + 9x^4 + 24x^2 + 17$$ $N(G_{1,3})$ 0
2176.a.69632.1 2176.a $$y^2 + xy = x^6 - 9x^4 + 24x^2 - 17$$ $N(G_{1,3})$ 0
2430.b.196830.1 2430.b $$y^2 + xy = 9x^5 - 30x^4 - 30x^3 + 92x^2 + 77x + 15$$ $N(G_{1,3})$ 0
2484.a.9936.1 2484.a $$y^2 + (x^3 + x)y = -x^6 - 8x^4 - 24x^2 - 23$$ $N(G_{1,3})$ 0
2592.b.419904.1 2592.b $$y^2 + x^3y = 2x^3 - 6x^2 + 6x - 2$$ $N(G_{1,3})$ 0
2624.a.2624.1 2624.a $$y^2 + (x^3 + x)y = 4x^4 + 24x^2 + 41$$ $N(G_{1,3})$ 1
2624.a.2624.2 2624.a $$y^2 + (x^3 + x)y = -5x^4 + 24x^2 - 41$$ $N(G_{1,3})$ 1
3024.a.48384.1 3024.a $$y^2 = x^5 + x^4 + 3x^3 + x^2 + x$$ $N(G_{1,3})$ 0
3024.b.145152.1 3024.b $$y^2 = x^6 - 2x^5 + 5x^4 - 5x^3 + 5x^2 - 2x + 1$$ $N(G_{1,3})$ 0
3072.a.3072.1 3072.a $$y^2 = x^5 + x^4 + 2x^3 + x^2 + x$$ $N(G_{1,3})$ 0
3072.a.196608.1 3072.a $$y^2 = -2x^6 - 9x^4 - 13x^2 - 6$$ $N(G_{1,3})$ 0
3072.a.196608.2 3072.a $$y^2 = 6x^6 - 13x^4 + 9x^2 - 2$$ $N(G_{1,3})$ 0
3072.b.3072.1 3072.b $$y^2 = x^5 - x^4 + 2x^3 - x^2 + x$$ $N(G_{1,3})$ 0
3072.b.196608.2 3072.b $$y^2 = 2x^6 + 9x^4 + 13x^2 + 6$$ $N(G_{1,3})$ 0
3072.b.196608.1 3072.b $$y^2 = 2x^6 - 9x^4 + 13x^2 - 6$$ $N(G_{1,3})$ 0
3240.a.58320.1 3240.a $$y^2 + (x^3 + x)y = x^4 - x^3 + 2x^2 - 3x$$ $N(G_{1,3})$ 0
3456.c.442368.1 3456.c $$y^2 + x^3y = x^4 - 3x^2 - 12$$ $N(G_{1,3})$ 0
3456.d.442368.1 3456.d $$y^2 = -x^6 - 4x^4 - 6x^2 - 3$$ $N(G_{1,3})$ 0
3456.e.442368.1 3456.e $$y^2 + x^3y = -x^4 - 3x^2 + 12$$ $N(G_{1,3})$ 0
3564.a.128304.1 3564.a $$y^2 + (x^3 + x)y = -2x^4 - x^2 + 11$$ $N(G_{1,3})$ 1
3584.b.229376.1 3584.b $$y^2 + (x^3 + x^2 + x + 1)y = -6x^4 + 34x^2 - 68x + 40$$ $N(G_{1,3})$ 1
3584.c.458752.1 3584.c $$y^2 + x^3y = x^6 - 4x^5 - 13x^4 - 22x^3 - 21x^2 - 12x - 4$$ $N(G_{1,3})$ 0
3645.a.10935.1 3645.a $$y^2 + x^3y = x^3 + 3x^2 + 3x + 1$$ $N(G_{1,3})$ 1
3645.a.295245.1 3645.a $$y^2 + (x^3 + x^2 + x + 1)y = x^5 - 7x^3 + x$$ $N(G_{1,3})$ 1
4096.a.65536.1 4096.a $$y^2 + x^3y = -2x^4 + 3x^2 + 4$$ $N(G_{1,3})$ 1
4096.c.65536.1 4096.c $$y^2 + x^3y = 2x^4 + 3x^2 - 4$$ $N(G_{1,3})$ 0
4096.d.524288.1 4096.d $$y^2 + x^3y = 2x^4 + 6x^2 + 8$$ $N(G_{1,3})$ 0
4096.f.524288.1 4096.f $$y^2 + x^3y = -2x^4 + 6x^2 - 8$$ $N(G_{1,3})$ 0
Next

Download all search results for