| Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
| 294.a.294.1 |
294.a |
\( 2 \cdot 3 \cdot 7^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(21.451533\) |
\(0.148969\) |
$[236,505,18451,37632]$ |
$[59,124,564,4475,294]$ |
$[\frac{714924299}{294},\frac{12733498}{147},\frac{327214}{49}]$ |
$y^2 + (x^3 + 1)y = x^4 + x^2$ |
| 294.a.8232.1 |
294.a |
\( 2 \cdot 3 \cdot 7^{2} \) |
\( 2^{3} \cdot 3 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.45.1, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(7.150511\) |
\(0.148969\) |
$[7636,11785,29745701,1053696]$ |
$[1909,151354,15951264,1885732415,8232]$ |
$[\frac{25353016669288549}{8232},\frac{75211396489919}{588},\frac{49431027484}{7}]$ |
$y^2 + (x^3 + 1)y = -2x^4 + 4x^2 - 9x - 14$ |
| 336.a.172032.1 |
336.a |
\( 2^{4} \cdot 3 \cdot 7 \) |
\( - 2^{13} \cdot 3 \cdot 7 \) |
$0$ |
$2$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.5 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(0.356066\) |
\(0.178033\) |
$[16916,151117825,232872423961,-21504]$ |
$[16916,-88822256,277597802496,-798387183476800,-172032]$ |
$[-\frac{1352659309173012149}{168},\frac{419870026410625699}{168},-461744933079368]$ |
$y^2 + (x^3 + x)y = -x^6 + 15x^4 - 75x^2 - 56$ |
| 360.a.6480.1 |
360.a |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(24.163379\) |
\(0.188776\) |
$[2360,11992,9047820,25920]$ |
$[1180,56018,3453120,234166319,6480]$ |
$[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ |
$y^2 + (x^3 + x)y = -3x^4 + 7x^2 - 5$ |
| 448.a.448.2 |
448.a |
\( 2^{6} \cdot 7 \) |
\( - 2^{6} \cdot 7 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(31.171156\) |
\(0.216466\) |
$[828,16635,5308452,56]$ |
$[828,17476,-853888,-253107460,448]$ |
$[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ |
$y^2 + (x^3 + x)y = -2x^4 + 7$ |
| 448.a.448.1 |
448.a |
\( 2^{6} \cdot 7 \) |
\( 2^{6} \cdot 7 \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.45.1, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(7.792789\) |
\(0.216466\) |
$[828,16635,5308452,56]$ |
$[828,17476,-853888,-253107460,448]$ |
$[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ |
$y^2 + (x^3 + x)y = x^4 - 7$ |
| 450.a.2700.1 |
450.a |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.180.4, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(18.778996\) |
\(0.195615\) |
$[364,3529,393211,345600]$ |
$[91,198,0,-9801,2700]$ |
$[\frac{6240321451}{2700},\frac{8289281}{150},0]$ |
$y^2 + (x^3 + 1)y = x^5 + 3x^4 + 3x^3 + 3x^2 + x$ |
| 450.a.36450.1 |
450.a |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( 2 \cdot 3^{6} \cdot 5^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.180.7, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(18.778996\) |
\(0.195615\) |
$[23444,212089,1627179821,4665600]$ |
$[5861,1422468,457836300,164990835819,36450]$ |
$[\frac{6916057684302385301}{36450},\frac{5303516319500302}{675},\frac{1294426477922}{3}]$ |
$y^2 + (x^3 + 1)y = x^5 - 4x^4 - 9x^3 + 28x^2 - 6x - 16$ |
| 476.a.952.1 |
476.a |
\( 2^{2} \cdot 7 \cdot 17 \) |
\( - 2^{3} \cdot 7 \cdot 17 \) |
$0$ |
$1$ |
$\Z/3\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.90.1, 3.5760.3 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(26.722339\) |
\(0.247429\) |
$[7340,1042345,2905273355,121856]$ |
$[1835,96870,-3910340,-4139817700,952]$ |
$[\frac{20805604708146875}{952},\frac{299272981175625}{476},-\frac{27661753375}{2}]$ |
$y^2 + (x^3 + 1)y = -5x^4 + 7x^3 + 25x^2 - 75x + 54$ |
| 484.a.1936.1 |
484.a |
\( 2^{2} \cdot 11^{2} \) |
\( - 2^{4} \cdot 11^{2} \) |
$0$ |
$0$ |
$\Z/15\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.60.2, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(15.318968\) |
\(0.204253\) |
$[184,37,721,242]$ |
$[184,1386,15040,211591,1936]$ |
$[\frac{13181630464}{121},\frac{49057344}{11},\frac{31824640}{121}]$ |
$y^2 + y = x^6 + 2x^4 + x^2$ |
| 504.a.27216.1 |
504.a |
\( 2^{3} \cdot 3^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{5} \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.6, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(7.782699\) |
\(0.243209\) |
$[8456,9496,26675348,108864]$ |
$[4228,743250,173847744,45651924783,27216]$ |
$[\frac{12063042849801664}{243},\frac{167186257609000}{81},\frac{3083035208512}{27}]$ |
$y^2 + (x^3 + x)y = 3x^4 + 15x^2 + 21$ |
| 578.a.2312.1 |
578.a |
\( 2 \cdot 17^{2} \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(13.910299\) |
\(0.289798\) |
$[228,705,135777,295936]$ |
$[57,106,-992,-16945,2312]$ |
$[\frac{601692057}{2312},\frac{9815229}{1156},-\frac{402876}{289}]$ |
$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$ |
| 588.a.18816.1 |
588.a |
\( 2^{2} \cdot 3 \cdot 7^{2} \) |
\( - 2^{7} \cdot 3 \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(20.658150\) |
\(0.286919\) |
$[748,11545,2902787,2408448]$ |
$[187,976,-192,-247120,18816]$ |
$[\frac{228669389707}{18816},\frac{398891383}{1176},-\frac{34969}{98}]$ |
$y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8$ |
| 600.b.30000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3 \cdot 5^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[600,18744,4690524,120000]$ |
$[300,626,-198336,-14973169,30000]$ |
$[81000000,563400,-595008]$ |
$y^2 + (x^3 + x)y = x^4 + x^2 - 3$ |
| 600.b.450000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{5} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{5} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[18072,38904,233095932,1800000]$ |
$[9036,3395570,1698206400,953774351375,450000]$ |
$[\frac{418329622965299904}{3125},\frac{3479436045234936}{625},\frac{38515932506304}{125}]$ |
$y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45$ |
| 630.a.34020.1 |
630.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(19.470889\) |
\(0.304233\) |
$[24100,969793,7474503265,4354560]$ |
$[6025,1472118,470090880,166291536519,34020]$ |
$[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ |
$y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$ |
| 640.a.81920.1 |
640.a |
\( 2^{7} \cdot 5 \) |
\( - 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.1, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ |
$y^2 + x^3y = 3x^4 + 13x^2 + 20$ |
| 640.a.81920.2 |
640.a |
\( 2^{7} \cdot 5 \) |
\( 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ |
$y^2 + x^3y = -3x^4 + 13x^2 - 20$ |
| 644.a.2576.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( - 2^{4} \cdot 7 \cdot 23 \) |
$0$ |
$2$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.4 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(3.928431\) |
\(0.218246\) |
$[39036,4124865,50880984159,329728]$ |
$[9759,3796384,1910683600,1058457444236,2576]$ |
$[\frac{88516980336138032799}{2576},\frac{220529201888022246}{161},70640465629725]$ |
$y^2 + (x^2 + x)y = -5x^6 + 11x^5 - 20x^4 + 20x^3 - 20x^2 + 11x - 5$ |
| 644.a.659456.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( 2^{12} \cdot 7 \cdot 23 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.872985\) |
\(0.218246\) |
$[161796,1070662305,46065265919409,84410368]$ |
$[40449,23560804,14638854160,9253881697856,659456]$ |
$[\frac{108277681088425330677249}{659456},\frac{389810454818831018649}{164864},\frac{9297727292338785}{256}]$ |
$y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3$ |
| 672.a.172032.1 |
672.a |
\( 2^{5} \cdot 3 \cdot 7 \) |
\( 2^{13} \cdot 3 \cdot 7 \) |
$0$ |
$2$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.5 |
|
|
$2$ |
\( 2 \) |
\(1.000000\) |
\(1.113349\) |
\(0.278337\) |
$[16916,151117825,232872423961,-21504]$ |
$[16916,-88822256,277597802496,-798387183476800,-172032]$ |
$[-\frac{1352659309173012149}{168},\frac{419870026410625699}{168},-461744933079368]$ |
$y^2 + (x^3 + x)y = -x^6 - 16x^4 - 75x^2 + 56$ |
| 676.a.5408.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 13^{2} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.60.2, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 7 \) |
\(1.000000\) |
\(20.169780\) |
\(0.320155\) |
$[204,3273,161211,692224]$ |
$[51,-28,0,-196,5408]$ |
$[\frac{345025251}{5408},-\frac{928557}{1352},0]$ |
$y^2 + (x^3 + x^2 + x)y = x^3 + 3x^2 + 3x + 1$ |
| 676.a.562432.1 |
676.a |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{8} \cdot 13^{3} \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.60.2, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 3 \cdot 7 \) |
\(1.000000\) |
\(6.723260\) |
\(0.320155\) |
$[1620,52953,29527389,71991296]$ |
$[405,4628,-8112,-6175936,562432]$ |
$[\frac{10896201253125}{562432},\frac{5912281125}{10816},-\frac{492075}{208}]$ |
$y^2 + (x^3 + 1)y = 2x^5 + 2x^4 + 4x^3 + 2x^2 + 2x$ |
| 686.a.686.1 |
686.a |
\( 2 \cdot 7^{3} \) |
\( 2 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.491655\) |
\(0.319213\) |
$[420,4305,640185,87808]$ |
$[105,280,-980,-45325,686]$ |
$[\frac{37209375}{2},472500,-15750]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$ |
| 720.a.6480.1 |
720.a |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( - 2^{4} \cdot 3^{4} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.180.7, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(9.444268\) |
\(0.295133\) |
$[2360,11992,9047820,25920]$ |
$[1180,56018,3453120,234166319,6480]$ |
$[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ |
$y^2 + (x^3 + x)y = 2x^4 + 7x^2 + 5$ |
| 720.b.116640.1 |
720.b |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( 2^{5} \cdot 3^{6} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(14.457058\) |
\(0.301189\) |
$[35416,45688,537039964,466560]$ |
$[17708,13057938,12831384960,14177105014959,116640]$ |
$[\frac{54412363190235229024}{3645},\frac{251762275020280012}{405},\frac{310461362928064}{9}]$ |
$y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90$ |
| 784.a.1568.1 |
784.a |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{5} \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(20.793351\) |
\(0.288797\) |
$[792,120,15228,6272]$ |
$[396,6514,144256,3673295,1568]$ |
$[\frac{304316815968}{49},\frac{12641055372}{49},14427072]$ |
$y^2 + (x^3 + x)y = -2x^4 + 3x^2 - 2$ |
| 784.a.43904.1 |
784.a |
\( 2^{4} \cdot 7^{2} \) |
\( - 2^{7} \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.1, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(6.931117\) |
\(0.288797\) |
$[21288,3000,20891172,175616]$ |
$[10644,4720114,2790613504,1855953490895,43904]$ |
$[\frac{1067368445729034408}{343},\frac{6352710665144931}{49},\frac{50408453477952}{7}]$ |
$y^2 + (x^3 + x)y = 4x^4 + 27x^2 + 56$ |
| 784.b.12544.1 |
784.b |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(11.270100\) |
\(0.313058\) |
$[116,445,16259,1568]$ |
$[116,264,-1280,-54544,12544]$ |
$[\frac{82044596}{49},\frac{1609674}{49},-\frac{67280}{49}]$ |
$y^2 + (x^3 + x)y = -1$ |
| 800.a.1600.1 |
800.a |
\( 2^{5} \cdot 5^{2} \) |
\( 2^{6} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.90.2, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(16.770151\) |
\(0.349378\) |
$[0,84,936,200]$ |
$[0,-56,832,-784,-1600]$ |
$[0,-\frac{134456}{625},\frac{728}{25}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^4 - x^2$ |
| 800.a.8000.1 |
800.a |
\( 2^{5} \cdot 5^{2} \) |
\( 2^{6} \cdot 5^{3} \) |
$0$ |
$1$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.90.4, 3.720.5 |
|
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(5.590050\) |
\(0.349378\) |
$[192,11604,322392,-1000]$ |
$[192,-6200,142400,-2774800,-8000]$ |
$[-\frac{4076863488}{125},\frac{27426816}{5},-\frac{3280896}{5}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^6 + 2x^4 + 4x^3 + 2x^2 - 1$ |
| 800.a.409600.1 |
800.a |
\( 2^{5} \cdot 5^{2} \) |
\( - 2^{14} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(16.770151\) |
\(0.349378\) |
$[120,309,14889,50]$ |
$[480,6304,-151552,-28121344,409600]$ |
$[62208000,1702080,-85248]$ |
$y^2 = x^6 - 2x^2 + 1$ |
| 816.b.52224.1 |
816.b |
\( 2^{4} \cdot 3 \cdot 17 \) |
\( - 2^{10} \cdot 3 \cdot 17 \) |
$0$ |
$2$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.720.4 |
|
|
$2$ |
\( 3 \) |
\(1.000000\) |
\(2.423742\) |
\(0.403957\) |
$[15964,2380825,11444690699,6528]$ |
$[15964,9031504,6282991104,4683401370560,52224]$ |
$[\frac{1012531723491160951}{51},\frac{35882713644370099}{51},30660536527816]$ |
$y^2 + (x^3 + x)y = -x^6 - 12x^4 - 27x^2 - 17$ |
| 847.a.847.1 |
847.a |
\( 7 \cdot 11^{2} \) |
\( - 7 \cdot 11^{2} \) |
$1$ |
$1$ |
$\Z/5\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$0$ |
2.15.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.196056\) |
\(20.305961\) |
\(0.159244\) |
$[120,276,6864,3388]$ |
$[60,104,504,4856,847]$ |
$[\frac{777600000}{847},\frac{22464000}{847},\frac{259200}{121}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^3 + x^2$ |
| 847.d.847.1 |
847.d |
\( 7 \cdot 11^{2} \) |
\( - 7 \cdot 11^{2} \) |
$0$ |
$1$ |
$\Z/3\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.15.2, 3.720.4 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(1.179535\) |
\(0.262119\) |
$[80408,402403732,8094753026048,3388]$ |
$[40204,281112,1967560,19956424,847]$ |
$[\frac{105037970421355597057024}{847},\frac{18267839107785466368}{847},\frac{454326923025280}{121}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -12x^6 - 15x^5 + 9x^4 + 31x^3 + 9x^2 - 15x - 12$ |
| 847.d.456533.1 |
847.d |
\( 7 \cdot 11^{2} \) |
\( 7^{3} \cdot 11^{3} \) |
$0$ |
$1$ |
$\Z/15\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.15.2, 3.2160.20 |
|
|
$2$ |
\( 3 \) |
\(1.000000\) |
\(9.829455\) |
\(0.262119\) |
$[90952,10132,303847072,1826132]$ |
$[45476,86167752,217689875480,618695823148744,456533]$ |
$[\frac{194496275421254111077376}{456533},\frac{736713878289412204032}{41503},\frac{10847340081772160}{11}]$ |
$y^2 + y = -x^6 - 9x^5 - 22x^4 + 3x^3 + 37x^2 - 24x + 4$ |
| 864.a.1728.1 |
864.a |
\( 2^{5} \cdot 3^{3} \) |
\( - 2^{6} \cdot 3^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.90.4, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(18.142966\) |
\(0.377978\) |
$[96,180,5256,216]$ |
$[96,264,576,-3600,1728]$ |
$[4718592,135168,3072]$ |
$y^2 + (x^3 + x^2 + x + 1)y = x^4 + x^2$ |
| 864.a.221184.1 |
864.a |
\( 2^{5} \cdot 3^{3} \) |
\( - 2^{13} \cdot 3^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(18.142966\) |
\(0.377978\) |
$[168,34560,-211428,-864]$ |
$[336,-87456,10192896,-1055934720,-221184]$ |
$[-19361664,14998704,-5202624]$ |
$y^2 + x^3y = x^5 - 4x^4 - 6x^3 + 33x^2 - 36x + 12$ |
| 864.a.442368.1 |
864.a |
\( 2^{5} \cdot 3^{3} \) |
\( 2^{14} \cdot 3^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(9.071483\) |
\(0.377978\) |
$[552,45,7083,54]$ |
$[2208,202656,24809472,3427464960,442368]$ |
$[118634674176,4931431104,273421056]$ |
$y^2 = x^6 - 4x^4 + 6x^2 - 3$ |
| 882.a.63504.1 |
882.a |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(12.542623\) |
\(0.391957\) |
$[548,6049,662961,8128512]$ |
$[137,530,6336,146783,63504]$ |
$[\frac{48261724457}{63504},\frac{681408545}{31752},\frac{825836}{441}]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 3x^2 + 3x + 1$ |
| 930.a.930.1 |
930.a |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.846489\) |
\(0.388226\) |
$[46596,239073,3674852529,119040]$ |
$[11649,5644172,3640360380,2637470125259,930]$ |
$[\frac{71502622649365111083}{310},\frac{1487013548016809538}{155},531176338621566]$ |
$y^2 + (x^2 + x)y = -x^5 - 7x^4 + 37x^2 - 45x + 15$ |
| 936.a.1872.1 |
936.a |
\( 2^{3} \cdot 3^{2} \cdot 13 \) |
\( - 2^{4} \cdot 3^{2} \cdot 13 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.90.6, 3.90.1 |
|
|
$2$ |
\( 2 \) |
\(1.000000\) |
\(7.131061\) |
\(0.445691\) |
$[45352,11224,169415364,7488]$ |
$[22676,21423170,26983749312,38232821637503,1872]$ |
$[\frac{374724646811252438336}{117},\frac{15612163699641478120}{117},7411896491650496]$ |
$y^2 + (x^3 + x)y = -x^6 - 9x^4 - 32x^2 - 39$ |
| 960.a.245760.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( 2^{14} \cdot 3 \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[120,213,10095,30]$ |
$[480,7328,-15360,-15268096,245760]$ |
$[103680000,3297600,-14400]$ |
$y^2 = 2x^5 + x^4 + 4x^3 + x^2 + 2x$ |
| 960.a.368640.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( 2^{13} \cdot 3^{2} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[8952,6072,17987052,1440]$ |
$[17904,13340192,13237770240,14762078945024,368640]$ |
$[\frac{24952719973569408}{5},\frac{1038436236963696}{5},11510985848256]$ |
$y^2 = x^5 + 13x^4 + 44x^3 + 13x^2 + x$ |
| 960.a.983040.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( - 2^{16} \cdot 3 \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[9,33,666,120]$ |
$[36,-298,-34260,-330541,983040]$ |
$[\frac{19683}{320},-\frac{36207}{2560},-\frac{46251}{1024}]$ |
$y^2 = x^5 - 2x^4 - x^3 - 2x^2 + x$ |
| 968.a.1936.1 |
968.a |
\( 2^{3} \cdot 11^{2} \) |
\( - 2^{4} \cdot 11^{2} \) |
$1$ |
$1$ |
$\Z/5\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$8$ |
$0$ |
2.60.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.080529\) |
\(26.986750\) |
\(0.173857\) |
$[120,357,14937,242]$ |
$[120,362,-1344,-73081,1936]$ |
$[\frac{1555200000}{121},\frac{39096000}{121},-\frac{1209600}{121}]$ |
$y^2 + y = x^6 - x^4$ |
| 968.a.234256.1 |
968.a |
\( 2^{3} \cdot 11^{2} \) |
\( - 2^{4} \cdot 11^{4} \) |
$1$ |
$1$ |
$\Z/5\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.60.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \cdot 5 \) |
\(0.080529\) |
\(5.397350\) |
\(0.173857\) |
$[23544,6117,47655081,29282]$ |
$[23544,23092586,30194746560,44409396210311,234256]$ |
$[\frac{452148675314325387264}{14641},\frac{1712381980706754624}{1331},\frac{785948064456960}{11}]$ |
$y^2 + x^3y = 6x^4 + 47x^2 + 121$ |
| 980.a.7840.1 |
980.a |
\( 2^{2} \cdot 5 \cdot 7^{2} \) |
\( 2^{5} \cdot 5 \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$0$ |
2.45.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(14.031519\) |
\(0.389764\) |
$[276,3945,280149,1003520]$ |
$[69,34,20,56,7840]$ |
$[\frac{1564031349}{7840},\frac{5584653}{3920},\frac{4761}{392}]$ |
$y^2 + (x^2 + x + 1)y = -x^6 + 3x^5 - 3x^4 - x$ |
| 980.a.878080.1 |
980.a |
\( 2^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{9} \cdot 5 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.45.1, 3.2160.20 |
|
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(4.677173\) |
\(0.389764\) |
$[2508,50745,41700723,112394240]$ |
$[627,14266,359660,5497016,878080]$ |
$[\frac{96903107471907}{878080},\frac{251175228777}{62720},\frac{144278343}{896}]$ |
$y^2 + (x^3 + 1)y = -x^6 + x^5 - 4x^4 + 2x^3 - 4x^2 + x - 1$ |
| 990.a.8910.1 |
990.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
\( 2 \cdot 3^{4} \cdot 5 \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.174937\) |
\(0.385934\) |
$[3268,252577,318023313,1140480]$ |
$[817,17288,-766260,-231227341,8910]$ |
$[\frac{364007458703857}{8910},\frac{4713906106372}{4455},-57404054]$ |
$y^2 + (x^2 + x)y = 3x^5 + 4x^4 + 7x^3 + 4x^2 + 3x$ |