Learn more

Refine search


Results (1-50 of 45894 matches)

Next   Download to        
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
100000.a.200000.1 100000.a \( 2^{5} \cdot 5^{5} \) $0$ $\mathsf{trivial}$ \(\Q\) $[220,-320,-27640,8]$ $[1100,55750,4522500,466671875,200000]$ $[8052550000,371016250,27361125]$ $y^2 + y = 2x^5 + 5x^3 - 10x^2 + 5x - 1$
100010.a.400040.1 100010.a \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ \(\Q\) $[10868,-17447,-69073955,-51205120]$ $[2717,308314,46839264,8051189423,-400040]$ $[-148063561656653357/400040,-3091947885524641/200020,-43221451942812/50005]$ $y^2 + (x^3 + 1)y = -x^6 + x^5 + 2x^4 + x^3 - 10x^2 + 2x + 5$
100017.a.300051.1 100017.a \( 3^{2} \cdot 11113 \) $0$ $\Z/3\Z$ \(\Q\) $[452,-1271,892565,38406528]$ $[113,585,-10719,-388368,300051]$ $[18424351793/300051,93788305/33339,-5069293/11113]$ $y^2 + (x^3 + x + 1)y = x^3 + x - 1$
100035.a.300105.1 100035.a \( 3^{4} \cdot 5 \cdot 13 \cdot 19 \) $1$ $\mathsf{trivial}$ \(\Q\) $[340,4585,433269,-158080]$ $[255,990,-2304,-391905,-300105]$ $[-887410625/247,-13510750/247,369920/741]$ $y^2 + (x^3 + x + 1)y = -x^4 + x^3 - x^2 - 2x + 2$
100035.b.300105.1 100035.b \( 3^{4} \cdot 5 \cdot 13 \cdot 19 \) $1$ $\Z/2\Z$ \(\Q\) $[2492,25801,20659243,158080]$ $[1869,135873,12388689,1173246903,300105]$ $[93851287159343/1235,3650520528599/1235,534267719209/3705]$ $y^2 + (x^3 + 1)y = x^5 - 3x^4 - 5x^3 + 11x^2 - 5$
100036.a.200072.1 100036.a \( 2^{2} \cdot 89 \cdot 281 \) $2$ $\mathsf{trivial}$ \(\Q\) $[11236,86545,324737977,25609216]$ $[2809,325164,49609856,8405614652,200072]$ $[174887470365513049/200072,1801763080537539/50018,48930703272592/25009]$ $y^2 + (x^3 + x^2 + 1)y = x^5 - 8x^3 - x^2 + 12x - 6$
100051.a.700357.1 100051.a \( 7 \cdot 14293 \) $1$ $\mathsf{trivial}$ \(\Q\) $[608,50272,6244608,-2801428]$ $[304,-4528,78720,857024,-700357]$ $[-2596377985024/700357,127211732992/700357,-7274987520/700357]$ $y^2 + y = 7x^5 - 4x^4 + 2x^2 - x$
100059.a.100059.1 100059.a \( 3 \cdot 33353 \) $1$ $\Z/2\Z$ \(\Q\) $[136,-1844,-27327,400236]$ $[68,500,-2041,-97197,100059]$ $[1453933568/100059,157216000/100059,-9437584/100059]$ $y^2 + xy = x^5 - x^3 - x$
100069.a.100069.1 100069.a \( 100069 \) $2$ $\mathsf{trivial}$ \(\Q\) $[496,5428,942600,400276]$ $[248,1658,-7104,-1127689,100069]$ $[938120019968/100069,25289460736/100069,-436924416/100069]$ $y^2 + x^3y = x^5 + x^4 + 2x^3 + x - 1$
100076.a.200152.1 100076.a \( 2^{2} \cdot 127 \cdot 197 \) $2$ $\mathsf{trivial}$ \(\Q\) $[3940,-86399,-183508255,25619456]$ $[985,44026,3775940,445253056,200152]$ $[4706682753125/1016,106787814625/508,4649126125/254]$ $y^2 + (x^3 + x + 1)y = -6x^4 + 10x^3 - 2x^2$
100082.a.800656.1 100082.a \( 2 \cdot 163 \cdot 307 \) $2$ $\mathsf{trivial}$ \(\Q\) $[8760,105132,295938975,-3202624]$ $[4380,781828,182944825,47510827979,-800656]$ $[-100751279419800000/50041,-4105949171526000/50041,-219355418795625/50041]$ $y^2 + (x^3 + x)y = -7x^4 + 26x^2 - 29x + 9$
100089.a.100089.1 100089.a \( 3^{3} \cdot 11 \cdot 337 \) $2$ $\mathsf{trivial}$ \(\Q\) $[252,11745,848655,-12811392]$ $[63,-324,-2644,-67887,-100089]$ $[-36756909/3707,3000564/3707,388668/3707]$ $y^2 + (x^3 + x + 1)y = -x^5 + x^4 - 2x^2 + x$
100096.a.100096.1 100096.a \( 2^{8} \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ \(\Q\) $[450,2088,442170,391]$ $[900,28182,-64820,-213140781,100096]$ $[2306601562500/391,160505296875/782,-820378125/1564]$ $y^2 = x^5 - 2x^4 - 3x^3 - 7x^2 - 7x - 2$
100096.b.100096.1 100096.b \( 2^{8} \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ \(\Q\) $[1326,-1344,-597342,-391]$ $[2652,296630,44782996,7693787123,-100096]$ $[-30142461298716/23,-2542592373165/46,-289488481893/92]$ $y^2 = x^5 - 9x^3 + 5x^2 + 21x - 20$
100096.c.100096.1 100096.c \( 2^{8} \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ \(\Q\) $[1326,-1344,-597342,-391]$ $[2652,296630,44782996,7693787123,-100096]$ $[-30142461298716/23,-2542592373165/46,-289488481893/92]$ $y^2 = x^5 - 9x^3 - 5x^2 + 21x + 20$
100109.a.100109.1 100109.a \( 100109 \) $1$ $\mathsf{trivial}$ \(\Q\) $[248,-176,42904,400436]$ $[124,670,-1364,-154509,100109]$ $[29316250624/100109,1277438080/100109,-20972864/100109]$ $y^2 + y = x^5 + 2x^4 + 3x^3 + x^2 + x$
100121.a.100121.1 100121.a \( 7 \cdot 14303 \) $2$ $\mathsf{trivial}$ \(\Q\) $[164,-11999,-624847,12815488]$ $[41,570,3144,-48999,100121]$ $[115856201/100121,39284970/100121,5285064/100121]$ $y^2 + (x^3 + x + 1)y = x^5 - 2x^2$
100121.b.700847.1 100121.b \( 7 \cdot 14303 \) $2$ $\mathsf{trivial}$ \(\Q\) $[1820,71209,42800059,-89708416]$ $[455,5659,-1397,-8164979,-700847]$ $[-397979684375/14303,-10878720125/14303,5902325/14303]$ $y^2 + (x^3 + x + 1)y = -x^4 + 3x^2 + 6x + 4$
100124.a.400496.1 100124.a \( 2^{2} \cdot 25031 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[124,-15239,104995,51263488]$ $[31,675,-6857,-167048,400496]$ $[28629151/400496,20108925/400496,-6589577/400496]$ $y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^2 - 2x$
100128.a.801024.1 100128.a \( 2^{5} \cdot 3 \cdot 7 \cdot 149 \) $0$ $\mathsf{trivial}$ \(\Q\) $[8464,2155228,4957700868,3204096]$ $[4232,387038,46859332,12127569895,801024]$ $[5302593435347072/3129,114591028813564/3129,3278290581553/3129]$ $y^2 + (x^2 + 1)y = 4x^5 - x^4 - 13x^3 - 2x^2 + 7x - 2$
100130.a.200260.1 100130.a \( 2 \cdot 5 \cdot 17 \cdot 19 \cdot 31 \) $2$ $\Z/2\Z$ \(\Q\) $[532,218185,-1085371,-25633280]$ $[133,-8354,356384,-5597561,-200260]$ $[-2190305047/10540,517208671/5270,-82948376/2635]$ $y^2 + (x^2 + x + 1)y = x^6 + 5x^5 + 6x^4 + x^2 + x$
100152.a.600912.1 100152.a \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 107 \) $2$ $\mathsf{trivial}$ \(\Q\) $[88,-1235,-14387,75114]$ $[88,1146,-5760,-455049,600912]$ $[329832448/37557,16270144/12519,-309760/4173]$ $y^2 + y = x^6 - 2x^5 - 6x^4 - 4x^3 + x$
100154.a.200308.1 100154.a \( 2 \cdot 50077 \) $2$ $\mathsf{trivial}$ \(\Q\) $[104,5080,134677,-801232]$ $[52,-734,-2409,-166006,-200308]$ $[-95051008/50077,25801568/50077,1628484/50077]$ $y^2 + (x + 1)y = x^6 + x^5 + 2x^4 + 3x^3 + x^2$
100154.b.200308.1 100154.b \( 2 \cdot 50077 \) $0$ $\Z/2\Z$ \(\Q\) $[584,-896,-367069,801232]$ $[292,3702,86305,2874064,200308]$ $[530706327808/50077,23042254944/50077,1839677380/50077]$ $y^2 + (x + 1)y = x^5 + x^3 - 5x^2 + 3x - 1$
100162.a.100162.1 100162.a \( 2 \cdot 61 \cdot 821 \) $2$ $\mathsf{trivial}$ \(\Q\) $[21396,-10503,-75948435,-12820736]$ $[5349,1192596,354674332,118716945663,-100162]$ $[-4378879451923801749/100162,-91260143303221602/50081,-5073935703495966/50081]$ $y^2 + (x^3 + 1)y = x^5 - 2x^4 - 9x^3 + 8x^2 + 20x - 20$
100162.b.400648.1 100162.b \( 2 \cdot 61 \cdot 821 \) $1$ $\Z/3\Z$ \(\Q\) $[3652,-232031,-299933231,-51282944]$ $[913,44400,3475524,300448353,-400648]$ $[-634386434595793/400648,-4223819158350/50081,-724272266289/100162]$ $y^2 + (x^2 + x)y = x^5 - 4x^4 + 4x^2 + 5x + 2$
100224.a.601344.1 100224.a \( 2^{7} \cdot 3^{3} \cdot 29 \) $1$ $\Z/2\Z$ \(\Q\) $[72,648,17784,2349]$ $[144,-864,-50432,-2002176,601344]$ $[2985984/29,-124416/29,-50432/29]$ $y^2 = x^5 + 2x^4 + 4x^3 + 2x^2 + x - 1$
100224.b.601344.1 100224.b \( 2^{7} \cdot 3^{3} \cdot 29 \) $1$ $\Z/2\Z$ \(\Q\) $[120,1368,38520,-2349]$ $[240,-1248,1280,-312576,-601344]$ $[-38400000/29,832000/29,-32000/261]$ $y^2 = x^5 + x^4 - 2x^3 + 4x^2 - 2x + 1$
100227.a.902043.1 100227.a \( 3 \cdot 33409 \) $1$ $\mathsf{trivial}$ \(\Q\) $[7648,-11120,-25359504,-3608172]$ $[3824,611144,130289488,31182503344,-902043]$ $[-817691377217306624/902043,-34174109226336256/902043,-1905220056076288/902043]$ $y^2 + y = x^5 + x^4 + 23x^2 + 57x + 36$
100234.a.801872.1 100234.a \( 2 \cdot 23 \cdot 2179 \) $2$ $\mathsf{trivial}$ \(\Q\) $[2096,-1976,-780241,3207488]$ $[1048,46092,2655225,164550834,801872]$ $[79010794805248/50117,144165579648/2179,182265264900/50117]$ $y^2 + (x^3 + x)y = x^5 - x^4 - 5x^3 - x^2 + 5x - 3$
100240.a.400960.1 100240.a \( 2^{4} \cdot 5 \cdot 7 \cdot 179 \) $1$ $\mathsf{trivial}$ \(\Q\) $[3092,3169,3251369,50120]$ $[3092,396240,67352576,12812006848,400960]$ $[4415881923441488/6265,36603852142416/1253,10061279346176/6265]$ $y^2 + x^3y = x^5 - x^4 - 5x^3 + 6x^2 + 10x - 15$
100261.a.100261.1 100261.a \( 7 \cdot 14323 \) $2$ $\mathsf{trivial}$ \(\Q\) $[7048,-31736,-73311541,-401044]$ $[3524,522730,104271441,23551476296,-100261]$ $[-543474909254042624/100261,-22876265307259520/100261,-1294902814688016/100261]$ $y^2 + (x + 1)y = x^5 - 16x^4 - x^3 + 7x^2 - 3x$
100261.b.100261.1 100261.b \( 7 \cdot 14323 \) $1$ $\mathsf{trivial}$ \(\Q\) $[592,-620,494801,401044]$ $[296,3754,-3441,-3777763,100261]$ $[2272262782976/100261,97357497344/100261,-301486656/100261]$ $y^2 + xy = x^5 - x^4 + 3x^2 - 5x + 2$
100277.a.100277.1 100277.a \( 149 \cdot 673 \) $2$ $\mathsf{trivial}$ \(\Q\) $[452,20449,572017,12835456]$ $[113,-320,22140,599855,100277]$ $[18424351793/100277,-461727040/100277,282705660/100277]$ $y^2 + (x^3 + x^2 + 1)y = 2x^4 + 3x^3 - x^2 - x$
100277.b.100277.1 100277.b \( 149 \cdot 673 \) $0$ $\mathsf{trivial}$ \(\Q\) $[24088,9051808,81756374264,401108]$ $[12044,4535446,7341036,-5120463745333,100277]$ $[253427496970010676224/100277,7923776934359848064/100277,1064875530261696/100277]$ $y^2 + y = x^5 + x^4 - 19x^3 - 11x^2 + 92x + 13$
100277.c.100277.1 100277.c \( 149 \cdot 673 \) $1$ $\mathsf{trivial}$ \(\Q\) $[704,5824,1359616,401108]$ $[352,4192,44800,-450816,100277]$ $[5403974828032/100277,182830759936/100277,5550899200/100277]$ $y^2 + y = x^5 - 4x^4 + 4x^2 - 2x$
100278.a.200556.1 100278.a \( 2 \cdot 3^{4} \cdot 619 \) $1$ $\mathsf{trivial}$ \(\Q\) $[17256,37404,223081551,-802224]$ $[8628,3095532,1476933817,790166652513,-200556]$ $[-147572580633292032/619,-6136499412390336/619,-3054068731880548/5571]$ $y^2 + x^2y = 2x^5 + 9x^4 + x^3 - 21x^2 + 15x - 3$
100283.a.100283.1 100283.a \( 17^{2} \cdot 347 \) $2$ $\mathsf{trivial}$ \(\Q\) $[112,-1904,-19159,401132]$ $[56,448,-2401,-83790,100283]$ $[550731776/100283,78675968/100283,-7529536/100283]$ $y^2 + (x^2 + 1)y = x^5 - x^4 - x^3 - x$
100293.a.902637.1 100293.a \( 3 \cdot 101 \cdot 331 \) $0$ $\Z/3\Z$ \(\Q\) $[5020,150745,235520883,115537536]$ $[1255,59345,3494111,215820070,902637]$ $[3113283207034375/902637,117304672574375/902637,5503312177775/902637]$ $y^2 + (x^3 + x + 1)y = -x^6 + x^5 - 5x^4 + 3x^3 - 7x^2 + 2x - 2$
100309.a.100309.1 100309.a \( 11^{2} \cdot 829 \) $0$ $\Z/2\Z$ \(\Q\) $[256,-1880,-101225,401236]$ $[128,996,4961,-89252,100309]$ $[34359738368/100309,2088763392/100309,671744/829]$ $y^2 + xy = x^5 + 2x^3 - 3x^2 + x$
100312.a.200624.1 100312.a \( 2^{3} \cdot 12539 \) $0$ $\Z/2\Z$ \(\Q\) $[224,4432,1358180,802496]$ $[112,-216,-124676,-3502592,200624]$ $[1101463552/12539,-18966528/12539,-97745984/12539]$ $y^2 + (x^2 + 1)y = -x^6 - 2x^5 + x^4 + 3x^3 - x - 1$
100315.a.501575.1 100315.a \( 5 \cdot 20063 \) $2$ $\mathsf{trivial}$ \(\Q\) $[4380,252849,473905527,64201600]$ $[1095,39424,-338316,-481176949,501575]$ $[62969549637375/20063,2070441838080/20063,-16225973676/20063]$ $y^2 + (x^3 + x + 1)y = 2x^5 + 3x^4 + x^3 + 2x^2 - 5x + 1$
100317.a.702219.1 100317.a \( 3 \cdot 7 \cdot 17 \cdot 281 \) $1$ $\Z/2\Z$ \(\Q\) $[7032,-686316,-1600461345,-2808876]$ $[3516,629480,166727073,47491829567,-702219]$ $[-179111337635976192/234073,-9120261286863360/234073,-687040919518896/234073]$ $y^2 + (x^2 + 1)y = x^5 - 10x^3 - 10x^2 + 28x + 38$
100325.a.100325.1 100325.a \( 5^{2} \cdot 4013 \) $1$ $\mathsf{trivial}$ \(\Q\) $[416,4420,595015,401300]$ $[208,1066,-2719,-425477,100325]$ $[389328928768/100325,9592840192/100325,-117634816/100325]$ $y^2 + x^2y = x^5 - 2x^4 + 4x^3 - 4x^2 + 3x - 1$
100325.b.100325.1 100325.b \( 5^{2} \cdot 4013 \) $1$ $\mathsf{trivial}$ \(\Q\) $[3060,-200871,-238360131,12841600]$ $[765,32754,2568348,222990426,100325]$ $[10480141999125/4013,586554865290/4013,60122458332/4013]$ $y^2 + (x^2 + x + 1)y = -x^5 + 3x^4 - 10x^2 + 2x + 8$
100341.a.100341.1 100341.a \( 3^{2} \cdot 11149 \) $1$ $\mathsf{trivial}$ \(\Q\) $[416,5584,670128,-401364]$ $[208,872,144,-182608,-100341]$ $[-389328928768/100341,-7847051264/100341,-692224/11149]$ $y^2 + y = x^5 - x^4 - 4x^3 - 5x^2 - 3x - 1$
100352.a.100352.1 100352.a \( 2^{11} \cdot 7^{2} \) $0$ $\Z/2\Z$ \(\Q \times \Q\) $[56,-80,-404,392]$ $[112,736,-512,-149760,100352]$ $[175616,10304,-64]$ $y^2 = x^5 - x^4 + x^2 + x$
100352.b.100352.1 100352.b \( 2^{11} \cdot 7^{2} \) $0$ $\Z/2\Z$ \(\Q\) $[342,2436,250236,392]$ $[684,12998,195556,-8796925,100352]$ $[146211169851/98,32496371289/784,1429563249/1568]$ $y^2 = x^5 + x^4 - 5x^3 - 2x^2 + 4x - 1$
100352.c.100352.1 100352.c \( 2^{11} \cdot 7^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[1046,1036,356188,392]$ $[2092,179590,20265956,2535952963,100352]$ $[39129873538843/98,12845683618265/784,1385831669681/1568]$ $y^2 = x^5 - 9x^3 + 7x^2 + 14x - 14$
100352.d.100352.1 100352.d \( 2^{11} \cdot 7^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[304,1372,149940,392]$ $[608,11744,71936,-23546112,100352]$ $[40568406016/49,1288833536/49,12984448/49]$ $y^2 = x^5 - x^4 - 4x^3 + 3x^2 + 4x - 2$
Next   Download to