Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
169.a.169.1 169.a \( 13^{2} \) $0$ $\Z/19\Z$ \(\mathrm{M}_2(\Q)\) $[4,793,3757,-21632]$ $[1,-33,-43,-283,-169]$ $[-\frac{1}{169},\frac{33}{169},\frac{43}{169}]$ $y^2 + (x^3 + x + 1)y = x^5 + x^4$
196.a.21952.1 196.a \( 2^{2} \cdot 7^{2} \) $0$ $\Z/6\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[1340,1345,149855,2809856]$ $[335,4620,90160,2214800,21952]$ $[\frac{4219140959375}{21952},\frac{6203236875}{784},\frac{12905875}{28}]$ $y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$
249.a.249.1 249.a \( 3 \cdot 83 \) $0$ $\Z/14\Z$ \(\Q\) $[108,57,2259,-31872]$ $[27,28,32,20,-249]$ $[-\frac{4782969}{83},-\frac{183708}{83},-\frac{7776}{83}]$ $y^2 + (x^3 + 1)y = x^2 + x$
249.a.6723.1 249.a \( 3 \cdot 83 \) $0$ $\Z/28\Z$ \(\Q\) $[1932,87897,65765571,860544]$ $[483,6058,-161212,-28641190,6723]$ $[\frac{324526850403}{83},\frac{25281736298}{249},-\frac{4178776252}{747}]$ $y^2 + (x^3 + 1)y = -x^5 + x^3 + x^2 + 3x + 2$
256.a.512.1 256.a \( 2^{8} \) $0$ $\Z/2\Z\oplus\Z/10\Z$ \(\mathrm{M}_2(\Q)\) $[26,-2,40,2]$ $[52,118,-36,-3949,512]$ $[742586,\frac{129623}{4},-\frac{1521}{8}]$ $y^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x$
277.a.277.1 277.a \( 277 \) $0$ $\Z/15\Z$ \(\Q\) $[64,352,9552,-1108]$ $[32,-16,-464,-3776,-277]$ $[-\frac{33554432}{277},\frac{524288}{277},\frac{475136}{277}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$
277.a.277.2 277.a \( 277 \) $0$ $\Z/5\Z$ \(\Q\) $[4480,1370512,1511819744,-1108]$ $[2240,-19352,164384,-1569936,-277]$ $[-\frac{56394933862400000}{277},\frac{217505333248000}{277},-\frac{824813158400}{277}]$ $y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$
294.a.294.1 294.a \( 2 \cdot 3 \cdot 7^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[236,505,18451,37632]$ $[59,124,564,4475,294]$ $[\frac{714924299}{294},\frac{12733498}{147},\frac{327214}{49}]$ $y^2 + (x^3 + 1)y = x^4 + x^2$
294.a.8232.1 294.a \( 2 \cdot 3 \cdot 7^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[7636,11785,29745701,1053696]$ $[1909,151354,15951264,1885732415,8232]$ $[\frac{25353016669288549}{8232},\frac{75211396489919}{588},\frac{49431027484}{7}]$ $y^2 + (x^3 + 1)y = -2x^4 + 4x^2 - 9x - 14$
295.a.295.1 295.a \( 5 \cdot 59 \) $0$ $\Z/14\Z$ \(\Q\) $[108,-39,20835,37760]$ $[27,32,-256,-1984,295]$ $[\frac{14348907}{295},\frac{629856}{295},-\frac{186624}{295}]$ $y^2 + (x^3 + 1)y = -x^2$
295.a.295.2 295.a \( 5 \cdot 59 \) $0$ $\Z/2\Z$ \(\Q\) $[198804,305807001,18482629056189,-37760]$ $[49701,90182600,203402032096,494095763610824,-295]$ $[-\frac{303267334973269931148501}{295},-\frac{2214359494206283568520}{59},-\frac{502441543825401014496}{295}]$ $y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$
324.a.648.1 324.a \( 2^{2} \cdot 3^{4} \) $0$ $\Z/21\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[15,-30,140,300,648]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
336.a.172032.1 336.a \( 2^{4} \cdot 3 \cdot 7 \) $0$ $\Z/2\Z$ \(\Q \times \Q\) $[16916,151117825,232872423961,-21504]$ $[16916,-88822256,277597802496,-798387183476800,-172032]$ $[-\frac{1352659309173012149}{168},\frac{419870026410625699}{168},-461744933079368]$ $y^2 + (x^3 + x)y = -x^6 + 15x^4 - 75x^2 - 56$
349.a.349.1 349.a \( 349 \) $0$ $\Z/13\Z$ \(\Q\) $[8,208,1464,-1396]$ $[4,-34,-124,-413,-349]$ $[-\frac{1024}{349},\frac{2176}{349},\frac{1984}{349}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$
353.a.353.1 353.a \( 353 \) $0$ $\Z/11\Z$ \(\Q\) $[188,817,30871,45184]$ $[47,58,256,2167,353]$ $[\frac{229345007}{353},\frac{6021734}{353},\frac{565504}{353}]$ $y^2 + (x^3 + x + 1)y = x^2$
360.a.6480.1 360.a \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[2360,11992,9047820,25920]$ $[1180,56018,3453120,234166319,6480]$ $[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ $y^2 + (x^3 + x)y = -3x^4 + 7x^2 - 5$
363.a.11979.1 363.a \( 3 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/10\Z$ \(\Q \times \Q\) $[344,-3068,-526433,-47916]$ $[172,1744,45841,1210779,-11979]$ $[-\frac{150536645632}{11979},-\frac{8874253312}{11979},-\frac{1356160144}{11979}]$ $y^2 + (x^2 + 1)y = x^5 + 2x^3 + 4x^2 + 2x$
363.a.43923.1 363.a \( 3 \cdot 11^{2} \) $0$ $\Z/10\Z$ \(\Q \times \Q\) $[11096,25612,88274095,-175692]$ $[5548,1278244,392069161,135322995423,-43923]$ $[-\frac{5256325630316243968}{43923},-\frac{1804005053317888}{363},-\frac{99735603013264}{363}]$ $y^2 + x^2y = 11x^5 - 13x^4 - 7x^3 + 10x^2 + x - 2$
388.a.776.1 388.a \( 2^{2} \cdot 97 \) $0$ $\Z/21\Z$ \(\Q\) $[36,1569,-13743,99328]$ $[9,-62,356,-160,776]$ $[\frac{59049}{776},-\frac{22599}{388},\frac{7209}{194}]$ $y^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x$
389.a.389.1 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[2440,51100,45041351,1556]$ $[1220,53500,2084961,-79649395,389]$ $[\frac{2702708163200000}{389},\frac{97147868000000}{389},\frac{3103255952400}{389}]$ $y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$
389.a.389.2 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[16,100,1775,1556]$ $[8,-14,-159,-367,389]$ $[\frac{32768}{389},-\frac{7168}{389},-\frac{10176}{389}]$ $y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
394.a.394.1 394.a \( 2 \cdot 197 \) $0$ $\Z/10\Z$ \(\Q\) $[11032,106300,393913607,1576]$ $[5516,1250044,371875905,122164372511,394]$ $[12960598758485504,532478222573696,28717744887720]$ $y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$
394.a.3152.1 394.a \( 2 \cdot 197 \) $0$ $\Z/20\Z$ \(\Q\) $[80,-20,649,-12608]$ $[40,70,39,-835,-3152]$ $[-\frac{6400000}{197},-\frac{280000}{197},-\frac{3900}{197}]$ $y^2 + (x + 1)y = -x^5$
400.a.409600.1 400.a \( 2^{4} \cdot 5^{2} \) $0$ $\Z/3\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = x^6 + 4x^4 + 4x^2 + 1$
427.a.2989.1 427.a \( 7 \cdot 61 \) $0$ $\Z/14\Z$ \(\Q\) $[4564,-22439,-35962915,-382592]$ $[1141,55180,3641688,277583402,-2989]$ $[-\frac{39466820645749}{61},-\frac{1672794336220}{61},-\frac{96756008472}{61}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 4$
448.a.448.2 448.a \( 2^{6} \cdot 7 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[828,16635,5308452,56]$ $[828,17476,-853888,-253107460,448]$ $[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ $y^2 + (x^3 + x)y = -2x^4 + 7$
448.a.448.1 448.a \( 2^{6} \cdot 7 \) $0$ $\Z/6\Z$ \(\mathsf{CM} \times \Q\) $[828,16635,5308452,56]$ $[828,17476,-853888,-253107460,448]$ $[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ $y^2 + (x^3 + x)y = x^4 - 7$
450.a.2700.1 450.a \( 2 \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/24\Z$ \(\Q \times \Q\) $[364,3529,393211,345600]$ $[91,198,0,-9801,2700]$ $[\frac{6240321451}{2700},\frac{8289281}{150},0]$ $y^2 + (x^3 + 1)y = x^5 + 3x^4 + 3x^3 + 3x^2 + x$
450.a.36450.1 450.a \( 2 \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/12\Z$ \(\Q \times \Q\) $[23444,212089,1627179821,4665600]$ $[5861,1422468,457836300,164990835819,36450]$ $[\frac{6916057684302385301}{36450},\frac{5303516319500302}{675},\frac{1294426477922}{3}]$ $y^2 + (x^3 + 1)y = x^5 - 4x^4 - 9x^3 + 28x^2 - 6x - 16$
461.a.461.1 461.a \( 461 \) $0$ $\Z/7\Z$ \(\Q\) $[1176,144,66456,1844]$ $[588,14382,467132,16957923,461]$ $[\frac{70288881159168}{461},\frac{2923824242304}{461},\frac{161508086208}{461}]$ $y^2 + x^3y = x^5 - 3x^3 + 3x - 2$
461.a.461.2 461.a \( 461 \) $0$ $\mathsf{trivial}$ \(\Q\) $[80664,166117104,3752725952952,1844]$ $[40332,40091742,45075737276,52661714805267,461]$ $[\frac{106720731303787612818432}{461},\frac{2630293443843585469056}{461},\frac{73323359651716069824}{461}]$ $y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$
464.a.464.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/8\Z$ \(\Q\) $[136,280,15060,1856]$ $[68,146,-64,-6417,464]$ $[\frac{90870848}{29},\frac{2869192}{29},-\frac{18496}{29}]$ $y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$
464.a.29696.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[680,-5255,-1253953,-3712]$ $[680,22770,1180736,71106895,-29696]$ $[-\frac{141985700000}{29},-\frac{6991813125}{29},-\frac{533176100}{29}]$ $y^2 + (x + 1)y = 8x^5 + 3x^4 - 4x^3 - 2x^2$
464.a.29696.2 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[45368,202225,3012190355,-3712]$ $[45368,85625826,215176422416,607585463496703,-29696]$ $[-\frac{187693059992988715232}{29},-\frac{7808250185554819143}{29},-\frac{432507850151022641}{29}]$ $y^2 + xy = 4x^5 + 33x^4 + 72x^3 + 16x^2 + x$
472.a.944.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[280,760,60604,-3776]$ $[140,690,4544,40015,-944]$ $[-\frac{3361400000}{59},-\frac{118335000}{59},-\frac{5566400}{59}]$ $y^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x$
472.a.60416.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/8\Z$ \(\Q\) $[152,17065,1592025,7552]$ $[152,-10414,-926656,-62325777,60416]$ $[\frac{79235168}{59},-\frac{35714813}{59},-\frac{20907676}{59}]$ $y^2 + (x + 1)y = 8x^5 + 5x^4 + 4x^3 + 2x^2$
476.a.952.1 476.a \( 2^{2} \cdot 7 \cdot 17 \) $0$ $\Z/3\Z\oplus\Z/6\Z$ \(\Q \times \Q\) $[7340,1042345,2905273355,121856]$ $[1835,96870,-3910340,-4139817700,952]$ $[\frac{20805604708146875}{952},\frac{299272981175625}{476},-\frac{27661753375}{2}]$ $y^2 + (x^3 + 1)y = -5x^4 + 7x^3 + 25x^2 - 75x + 54$
484.a.1936.1 484.a \( 2^{2} \cdot 11^{2} \) $0$ $\Z/15\Z$ \(\Q \times \Q\) $[184,37,721,242]$ $[184,1386,15040,211591,1936]$ $[\frac{13181630464}{121},\frac{49057344}{11},\frac{31824640}{121}]$ $y^2 + y = x^6 + 2x^4 + x^2$
  displayed columns for results