# Learn more about

## Results (displaying matches 1-50 of 12131) Next

Label Class Equation Sato-Tate $$\overline{\Q}$$-simple $$\GL_2$$ Rank*
169.a.169.1 169.a $$y^2 + (x^3 + x + 1)y = x^5 + x^4$$ $E_6$ 0
196.a.21952.1 196.a $$y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$$ $E_1$ 0
249.a.249.1 249.a $$y^2 + (x^3 + 1)y = x^2 + x$$ $\mathrm{USp}(4)$ 0
249.a.6723.1 249.a $$y^2 + (x^3 + 1)y = -x^5 + x^3 + x^2 + 3x + 2$$ $\mathrm{USp}(4)$ 0
256.a.512.1 256.a $$y^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x$$ $E_4$ 0
277.a.277.1 277.a $$y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$$ $\mathrm{USp}(4)$ 0
277.a.277.2 277.a $$y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$$ $\mathrm{USp}(4)$ 0
294.a.294.1 294.a $$y^2 + (x^3 + 1)y = x^4 + x^2$$ $G_{3,3}$ 0
294.a.8232.1 294.a $$y^2 + (x^3 + 1)y = -2x^4 + 4x^2 - 9x - 14$$ $G_{3,3}$ 0
295.a.295.1 295.a $$y^2 + (x^3 + 1)y = -x^2$$ $\mathrm{USp}(4)$ 0
295.a.295.2 295.a $$y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$$ $\mathrm{USp}(4)$ 0
324.a.648.1 324.a $$y^2 + (x^3 + x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$$ $E_3$ 0
336.a.172032.1 336.a $$y^2 + (x^3 + x)y = -x^6 + 15x^4 - 75x^2 - 56$$ $G_{3,3}$ 0
349.a.349.1 349.a $$y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$$ $\mathrm{USp}(4)$ 0
353.a.353.1 353.a $$y^2 + (x^3 + x + 1)y = x^2$$ $\mathrm{USp}(4)$ 0
360.a.6480.1 360.a $$y^2 + (x^3 + x)y = -3x^4 + 7x^2 - 5$$ $G_{3,3}$ 0
363.a.11979.1 363.a $$y^2 + (x^2 + 1)y = x^5 + 2x^3 + 4x^2 + 2x$$ $G_{3,3}$ 0
363.a.43923.1 363.a $$y^2 + x^2y = 11x^5 - 13x^4 - 7x^3 + 10x^2 + x - 2$$ $G_{3,3}$ 0
388.a.776.1 388.a $$y^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x$$ $\mathrm{USp}(4)$ 0
389.a.389.1 389.a $$y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$$ $\mathrm{USp}(4)$ 0
389.a.389.2 389.a $$y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$$ $\mathrm{USp}(4)$ 0
394.a.394.1 394.a $$y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$$ $\mathrm{USp}(4)$ 0
394.a.3152.1 394.a $$y^2 + (x + 1)y = -x^5$$ $\mathrm{USp}(4)$ 0
400.a.409600.1 400.a $$y^2 = x^6 + 4x^4 + 4x^2 + 1$$ $E_1$ 0
427.a.2989.1 427.a $$y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 4$$ $\mathrm{USp}(4)$ 0
448.a.448.2 448.a $$y^2 + (x^3 + x)y = -2x^4 + 7$$ $N(G_{1,3})$ 0
448.a.448.1 448.a $$y^2 + (x^3 + x)y = x^4 - 7$$ $N(G_{1,3})$ 0
450.a.2700.1 450.a $$y^2 + (x^3 + 1)y = x^5 + 3x^4 + 3x^3 + 3x^2 + x$$ $G_{3,3}$ 0
450.a.36450.1 450.a $$y^2 + (x^3 + 1)y = x^5 - 4x^4 - 9x^3 + 28x^2 - 6x - 16$$ $G_{3,3}$ 0
461.a.461.1 461.a $$y^2 + x^3y = x^5 - 3x^3 + 3x - 2$$ $\mathrm{USp}(4)$ 0
461.a.461.2 461.a $$y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$$ $\mathrm{USp}(4)$ 0
464.a.464.1 464.a $$y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$$ $\mathrm{USp}(4)$ 0
464.a.29696.1 464.a $$y^2 + (x + 1)y = 8x^5 + 3x^4 - 4x^3 - 2x^2$$ $\mathrm{USp}(4)$ 0
464.a.29696.2 464.a $$y^2 + xy = 4x^5 + 33x^4 + 72x^3 + 16x^2 + x$$ $\mathrm{USp}(4)$ 0
472.a.944.1 472.a $$y^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x$$ $\mathrm{USp}(4)$ 0
472.a.60416.1 472.a $$y^2 + (x + 1)y = 8x^5 + 5x^4 + 4x^3 + 2x^2$$ $\mathrm{USp}(4)$ 0
476.a.952.1 476.a $$y^2 + (x^3 + 1)y = -5x^4 + 7x^3 + 25x^2 - 75x + 54$$ $G_{3,3}$ 0
484.a.1936.1 484.a $$y^2 + y = x^6 + 2x^4 + x^2$$ $G_{3,3}$ 0
504.a.27216.1 504.a $$y^2 + (x^3 + x)y = 3x^4 + 15x^2 + 21$$ $G_{3,3}$ 0
523.a.523.1 523.a $$y^2 + (x + 1)y = x^5 - x^4 - x^3$$ $\mathrm{USp}(4)$ 0
523.a.523.2 523.a $$y^2 + xy = x^5 - 31x^4 - 110x^3 + 21x^2 - x$$ $\mathrm{USp}(4)$ 0
529.a.529.1 529.a $$y^2 + (x^3 + x + 1)y = -x^5$$ $G_{3,3}$ 0
555.a.8325.1 555.a $$y^2 + (x + 1)y = 3x^5 - 2x^4 - 4x^3 + x^2 + x$$ $\mathrm{USp}(4)$ 0
574.a.293888.1 574.a $$y^2 + (x^2 + x)y = x^5 - x^4 - 3x^2 + x + 1$$ $\mathrm{USp}(4)$ 0
576.a.576.1 576.a $$y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x$$ $E_2$ 0
576.b.147456.1 576.b $$y^2 = x^6 + 2x^4 + 2x^2 + 1$$ $E_1$ 0
578.a.2312.1 578.a $$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$$ $G_{3,3}$ 0
588.a.18816.1 588.a $$y^2 + (x^3 + 1)y = x^5 + x^4 + 5x^2 + 12x + 8$$ $G_{3,3}$ 0
597.a.597.1 597.a $$y^2 + y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$$ $\mathrm{USp}(4)$ 0
600.a.18000.1 600.a $$y^2 + xy = 10x^5 - 18x^4 + 8x^3 + x^2 - x$$ $G_{3,3}$ 0
Next

Download all search results for